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Symmetry breaking and fluctuations within stochastic mean-field dynamics: Importance of
initial quantum fluctuations
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Dynamics of spontaneous symmetry breaking and fluctuations in the Lipkin-Meshkov-Glick model are
investigated in a stochastic mean-field approach. Different from the standard mean-field approach, in the stochastic
approach, initial state fluctuations are incorporated. In weak coupling, the approach perfectly reproduces the exact
quantal dynamics. On the other hand, for increasing coupling strength, above the symmetry breaking threshold, the
approach provides descriptions of gross properties (i.e., time-averaged behavior) of the exact quantal evolution.
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The mean-field description of a many-body system, i.e.,
the Hartree-Fock (HF) and/or time-dependent Hartree-Fock
theory (TDHF), provides a simple tool for descriptions
of certain aspects of complex quantum systems [1]. For
example, in the constrained HF method, by explicitly breaking
certain symmetries of the underlying Hamiltonian in static
calculation, it is possible to describe the topology of a
quantum phase transition [2]. However, it is well-known that
the mean-field approximation is suitable for the description
of mean values of one-body observables, while quantum
fluctuations of collective variables are severely underestimated
[3]. Numerous extended mean-field approaches have been
proposed that describe fluctuations in collective space [4,5].
Most often, these approaches are too complex to be applied
in realistic situations with actual computational power. A
second limitation of mean-field dynamics is that it cannot
describe spontaneous symmetry breaking during dynamical
evolution. If certain symmetries are present in the initial
state, these symmetries are preserved during the evolution
[1,2]. Accordingly, the mean-field approach cannot describe
physical effects related to spontaneous symmetry breaking
including molecule dissociation, spontaneous magnetization,
and spontaneous fission in nuclei.

Both dynamical symmetry breaking and lack of fluctuations
are related to the absence of quantal effects in collective space
and consequently collective motion appears nearly classical
in the mean-field dynamics. To overcome this difficulty, the
mean-field approximation should be improved by considering
a more general wave function by coherent superposition of
Slater determinants, such as in the time-dependent generator
coordinate method [6,7]. However, at present, applications of
this method can be made only in a very restricted collective
space and mostly along the adiabatic potential energy surface.
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Here, we employ a stochastic approach, that is much simpler
than the generator coordinate method and is based on the fact
that initial state fluctuations (quantal and thermal) dominate the
fluctuation dynamics at low energies [8,9]. This idea was pro-
posed nearly 30 years ago by Esbensen et al. in a macroscopic
model of nuclear reactions [10,11] and has more recently been
tested in heavy-ion fusion reactions [12]. Following a similar
idea, recently a stochastic mean-field approach (SMF) has
been proposed [13] to treat fluctuations beyond mean-field
description. In the standard mean-field dynamics, ignoring
quantal and thermal fluctuations, the initial state is specified
in a deterministic manner: a given initial state leads to a
well-defined final outcome. In the SMF, however, initial state
fluctuations are incorporated in a stochastic approximation.
Consequently, an ensemble of events is generated starting from
a specified distribution of initial states. It is shown in Ref. [13],
in the small amplitude limit, that this approach gives rise to
the same expression for dispersions of one-body observables
as the one obtained in the variational description of Balian
and Vénéroni (BV) [14,15]. In other applications, the average
version of the SMF theory was recently employed [16–18] to
successfully reconcile the onset of dissipation in TDHF and
to calculate transport coefficients for relative momentum and
nucleon-exchange in deep-inelastic heavy-ion collisions [19].

Recently, the variational approach of BV has been applied to
nuclear reactions [20,21]. Similarly to the standard mean-field
description, the approach cannot describe the spontaneous
symmetry breaking mechanism, unless a symmetry-breaking
density is used in the variational principle. Therefore, the
variational approach can provide only a poor approximation
for dynamical evolution in the case of spontaneous symmetry
breaking (SSB) (see Fig. 6 of Ref. [22]). Currently, a
realistic description of spontaneous symmetry breaking in
the mean-field framework remains an open problem. For this
reason it is worthwhile to test whether the SMF approach
overcomes this difficulty. In the SMF approach the initial state
is not the standard HF state, but is specified by a suitable
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distribution. Even if the HF state respects a symmetry, in the
SMF, this symmetry may be broken initially event by event.
Consequently one might anticipate that, contrary to the original
TDHF and/or BV methods, in the SMF approach it may be
possible to treat the onset of the SSB. We illustrate here that
this is indeed the case.

As a test case, the Lipkin-Meshkov-Glick (LMG) model
[2,23–25] is considered here. This model consists of N

particles distributed in two N -fold degenerated single-particle
states separated by an energy ε. The associated Hamiltonian
is given by (taking h̄ = 1)

H = εJz − V
(
J 2

x − J 2
y

)
, (1)

where V denotes the interaction strength while Ji (i = x, y,
z) are the quasispin operators defined as

Jz = 1

2

N∑
p=1

(c†+,pc+,p − c
†
−,pc−,p),

(2)

Jx = 1

2
(J+ + J−), Jy = 1

2i
(J+ − J−),

with J+ = ∑N
p=1 c

†
+,pc−,p and J− = J

†
+ and where c

†
+,p and

c
†
−,p are creation operators associated with the upper and lower

single-particle levels. In the following, energies and times are
given in ε and h̄/ε units, respectively.

This model has the advantage of being exactly solvable
both in the static case [2] and the dynamical case [26,27].
The LMG model is known to present a spontaneous symmetry
breaking in mean-field theory as the interaction V increases
(see Fig. 1 below). Therefore, this model is perfectly suitable
to investigate if the SMF approach is able to treat the SSB.

The HF (or mean-field) solution is obtained by in-
troducing the Slater determinant trial states written as
|�〉 = �N

p=1a
†
0,p|−〉, where the HF single-particle states are

given by

a
†
0,p = cos(α)c†−,p + sin(α)eiϕc

†
+,p. (3)

The HF solution is obtained by minimizing the mean-field
energy with respect to variables α and ϕ,

EHF[α, ϕ] = −εN

2

{
cos(2α) + χ

2
sin2(2α) cos(2ϕ)

}
, (4)

E H
F
/(

εN
)

α

FIG. 1. (Color online) Evolution of the HF energy EHF as a
function of α for χ = 0.5 (dashed line), χ = 1.8 (dotted line), and
χ = 5 (solid line) for N = 40 particles. The arrow indicates the initial
condition used in the SMF dynamics.

where χ = V (N − 1)/ε. In Fig. 1, EHF[α, 0] is shown for
different χ parameters. When the strength parameter is larger
than a critical value (χ > 1), the parity symmetry is broken in
the α direction.

The mean-field evolution can be formulated either in the
Schrödinger picture [27] or in the Heisenberg picture. Here,
we employ the second option. We consider the expectation
values of the quasispin operators ji ≡ 〈Ji〉/N (for i = x, y,
and z). In the mean-field approximation, it is possible to derive
a set of coupled equations for the expectation values of the
quasispin operators as

d

dt

⎛
⎜⎝

jx

jy

jz

⎞
⎟⎠ = ε

⎛
⎜⎝

0 −1 + χjz χjy

1 + χjz 0 χjx

−2χjy −2χjx 0

⎞
⎟⎠

⎛
⎜⎝

jx

jy

jz

⎞
⎟⎠. (5)

Initially, we prepare the system in the state |j,−j 〉, i.e., α = 0,
which means that all particles are placed in the lower single-
particle states. This case is indicated by an arrow in Fig. 1. In
this state, initial expectation values of quasispin components
are jz(t0) = −1/2, jx(t0) = jy(t0) = 0. This initial condition is
a stationary solution of Eq. (5). When the strength parameter is
larger that critical value χ > 1, the initial state is at the saddle
point. Because the mean field cannot break the symmetry,
the system will remain at the saddle point. Therefore, it is not
possible to describe the onset of SSB in the standard mean-field
framework. This situation is similar to the classical object
positioned at α = 0. In exact quantal description, because the
initial state is not an eigenstate of the Hamiltonian H , different
spin components and their correlations change in time. The
difference between the exact and the mean-field evolution is
that quantum fluctuations are properly taken into account in
the exact evolution.

In the SMF approach, the expectation values of the
quasispin operators obey the same set of equations given by
Eq. (5), except that the initial conditions are different. To
simulate quantum fluctuations in an approximate manner, in
the SMF approach [13] an initial ensemble of single-particle
density matrices is prepared around the same state |j,−j 〉 used
in the exact evolution. According to the stochastic properties
of the initial state, it is possible to determine the initial
distributions of expectation values of quasispin operators. We
find that that the z quasispin component is not a fluctuating
quantity with a mean value jz(t0) = − 1

2 . However, the x and
y quasispin components are uncorrelated Gaussian random
numbers with zero mean values,

jλ
x (t0) = jλ

y (t0) = 0, (6)

and second moments determined by

jλ
x (t0)jλ

x (t0) = jλ
y (t0)jλ

y (t0) = 1

4N
. (7)

We note that, even if all trajectories start from the top of the
energy landscape (the arrow in Fig. 1) and the system has
good parity on average, in the SMF evolution this symmetry
is broken event by event due to nonzero values of the spin
components along the x and y axis.

In the SMF, mean values and fluctuations of observables
are obtained by performing the average of expectation values
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FIG. 2. (Color online) Exact evolution of the z quasispin compo-
nent obtained when the initial state is |j, −j〉 for three different values
of χ : χ = 0.5 (solid line), χ = 1.8 (dotted line), and χ = 5.0 (dashed
line) for N = 40 particles. The corresponding results obtained with
the SMF simulations are shown with circles, squares, and triangles,
respectively.

over the generated ensemble. The mean values of the quasispin
components and associated dispersions, denoted respectively
by Ji and 	2

i , are given by

Ji(t) = Njλ
i (t),	2

i (t) = N2((jλ
i

)2 − (
jλ
i

)2)
. (8)

In Fig. 2, the exact and SMF evolutions of the z quasispin
component obtained when the initial state is |j,−j 〉 for three
different values of χ (χ = 0.5, χ = 1.8, and χ = 5.0) are
shown. In TDHF, for 40 particles, this component remains
constant and equal to −20. In both the exact results and the
SMF simulations, the mean values of the x and y components
are zero. In this and the following figure, the SMF simulations
are carried out using a set of 105 trajectories. Simulations are
performed using the second order Runge-Kutta algorithm time
step of 0.01.

The evolutions of dispersions of quasispin components
obtained in the SMF simulations are shown in Fig. 3 and com-
pared with the exact results, 	2

i (t) = 〈J 2
i 〉 − 〈Ji〉2, obtained

starting from the state |j,−j 〉. We note that, in the standard
TDHF dynamics, because the state |j,−j 〉 does not evolve in
time, dispersions of the quasispin variables remain constant
and equal to their initial values, 	2

x = 	2
y = N

4 and 	2
z = 0.

Below the critical value of the strength parameter (χ = 0.5),
where energy can be regarded as nearly harmonic around
α = 0 (see Fig. 1), results obtained in the SMF simulations
can hardly be distinguished from the exact solution. Only a
small difference is noticeable in the z component. A similar
result is obtained in Ref. [22] with the BV description. The
fact that both approaches produce very similar results in the
harmonic limit is not surprising, because it was shown that they
both lead to the same fluctuation evolution in this limit [13].
Above the critical strength (χ = 1.8 and 5) (middle panel and
bottom panel of Fig. 3), the BV description has been shown to
lead to very bad results [22] when calculations start from the
same initial condition. Here, we see that the SMF approach
provides a fairly good reproduction of gross properties of the
exact dynamics. In particular, during the early times, the SMF
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FIG. 3. (Color online) Exact evolution of dispersions of quasispin
operators obtained when the initial state is |j, −j〉 for three different
values of χ : from top to bottom, χ = 0.5 (a), χ = 1.8 (b), and χ =
5.0 (c). In each case, solid, dashed, and dotted lines correspond to
	2

x(t), 	2
y(t), and 	2

z(t), respectively. In each case, results of the SMF
simulations are shown with triangles (	2

x), squares (	2
y), and circles

(	2
z).

simulations cannot be distinguished from the exact evolution.
During the long time evolution, the SMF simulations describe
time-averaged behavior of the exact dynamics very well. Note
that, the SMF dynamics is more damped than the exact solution
and resembles a quasispin operator system coupled with a
heat bath [28]. As seen from Fig. 2, a similar agreement is
obtained for the mean value of the z component of quasispin
for all values of the strength parameter χ . The present example
clearly demonstrates the ability of the SMF approach to
describe gross properties of mean values and fluctuations for
any strength of the interaction.

It is well known that the standard mean-field theory
provides a poor description for fluctuations of collective
motion, and it essentially treats the collective motion in a
classical approximation. The SMF approach makes an attempt
to correct this shortcoming by incorporating quantal and
thermal fluctuations in the initial state. In this work, we test
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the approach in the LMG model. As seen in Figs. 2 and 3,
the SMF simulations provide nearly perfect descriptions for
nontrivial oscillations during early evolution of mean values
and dispersions of quasispin operators. Over the long time
interval, simulations also provide a satisfactory description
for the gross properties, i.e., time-averaged behavior of the
mean values and dispersions of quasispin operators. We
should note that we do not expect that such a simple SMF
approach will provide a detailed quantum mechanical feature
of the evolution. In particular, possible interferences between
different trajectories are neglected. Nevertheless, the stochastic

method presented here provides a suitable framework beyond
mean field for describing the dynamics of fluctuations and
for understanding SSB in complex quantum systems from a
quasiclassical perspective.
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