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Autocorrelation studies for the first 2+ nuclear energy levels
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The autocorrelation function, and the correlation time are calculated for a series of the first 2+ states of 466
even-even nuclei classified by different parameters related to nuclear structure. The results indicate enhanced
values for the P factor compared with other classifying parameters to cumulate nuclei having similar properties
nearby each other.
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Introduction. The introduction of random matrix theory
(RMT) to describe the fluctuation properties of nuclear energy
states has gained a considerable interest with many physicists
[1,2]. Bohigas et al. [3] conjectured that RMT could be used
to model the fluctuation properties of quantum systems which
are fully chaotic in the classical limit. RMT provides analytical
results for the spacing distributions, the level number variance,
and the spectral rigidity of quantum systems. Comparing these
expressions with the corresponding experimental results has
been used as a signature of chaotic dynamics [4–6]. It has
been realized that the nuclear dynamics interpolates between
the Poisson (integrable) and Wigner (chaotic) distributions.
The analysis of spectra of nuclei in the ground-state domain
shows intermediate behavior [7–17].

Parameterizing isotopes of the nuclear chart according to
their collective behavior in a single control parameter is an
interesting field of research. Many parameters are introduced to
take such a role, for example, the number of protons Z, number
of neutrons N , mass number A, quadrupole deformation
parameter β2, R4/2 ratio, and P factor.

The aim of the present work is to answer the following
question: which of the previously mentioned parameters can
be used to describe the collective behavior of nuclei best? In
other words, we search for the parameter that is capable of
arranging nuclei of similar collective behavior nearby each
other.

In order to achieve this aim, we select even-even nuclei
for their abundance and simplicity to be described by nuclear
models. For each nucleus the first 2+ energy state is taken—
most even-even nuclei have 2+ levels as the first excited state.
In this way, we collect a series of 466 even-even nuclei ranging
between 10 � A � 256, are taken from National Nuclear Data
Center [18] up to August 2010.

It is well known that—neglecting the shell closure effect—
light nuclei having higher excitation energies of the first 2+
levels on the order of a few MeV. On the other hand, as the
mass number A increases, the 2+ excitation energies decrease
to be on the order of several tenths of a KeV. Consequently, in
general the first 2+ level energy of each nucleus can be used
as an indicator of collective behavior.

A recent approach proposed by Relaño et al. [19] considers
the spectrum of any quantum system as a set of discrete
eigenvalues placed along the real energy axis. This set is
ordered as any sequence of events occurring at different

times. Thus, these events (energy levels) can be treated by
standard time series analysis methods. An important result
using the power-spectrum analysis was that quantum systems
are characterized by 1/f α noise, where the exponent α is
related to the degree of chaos. It is equal to 1 and 2 for
chaotic and integrable systems, respectively, while varying
between these two values for intermediate systems [20,21].
This conjecture is supported by numerical calculations [19]
and theoretical studies [22]. One of the main advantages of
this approach is that the spectral fluctuations can be described
without reference to random matrix models. A recent review
that covers this approach is given by Gómeza et al. [23] and
references therein.

In the current study, we follow the same trend by assuming
the analogy between energy levels and time series. But we
use the autocorrelation function (ACF) as another technique
instead of the power-spectrum analysis used in the previous
references.

We describe the method of analysis in Sec. II. A brief
account of the classifying parameters is given in Sec. III. Sec-
tion IV is devoted to results and discussions. The conclusion
of this work is outlined in Sec. V.

Method of analysis. Long-term correlations [24] have
been found in the dynamics of many physical, technological,
and natural systems. They are characterized by a divergent
correlation time [25]. This type of persistence represents a
surprising regularity since it is found in many different data,
such as DNA-sequences, climatological temperatures, human
heartbeat, etc. [26–28].

The autocorrelation function of a time series measures how
strongly on average each data point of a time series is correlated
with another, which is k time steps away in the same series. It is
the ratio of the autocovariance to the variance of the data [29].
Uncorrelated data should have an ACF within ±2/

√
N of zero

(two standard deviations) for about 95% of the k values. The
error bar for each point of an ACF is shown as a dotted line in
Figs. 1 and 2. The ACF falls from a value of 1 at k = 0 to zero
at large k. The value of k at which an ACF falls to 1/e ≈ 37%
is called the correlation time τc [29]. In the present study,
series of the 2+ levels that are arranged in increasing order
of the Z, N,A, β2, R4/2, and P parameters, respectively, are
investigated. We expect the ACF and τc values to increase as the
parameter under investigation is capable to order neighboring
nuclei having nearly similar collective behavior.
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FIG. 1. Shows the ACF and τc versus the lag number k for the 2+ states of all 466 nuclei.

The ACF could be represented as

ACF =
∑N−k

i=1 (Ei − E)(Ei+k − E)
∑N

i=1 (Ei − E)2
, (1)

where N is the series length, which is equal to the number of
nuclei, i.e., 466. k is a lag number which should not exceed
N/4 in order to get significant results (see [29] and references
within). Here E is the first 2+ energy state of ith nuclei, and
E the average of 2+ energy levels of nuclei contributed in the
calculation of the ACF. A weak point of the autocorrelation
analysis is its sensitivity to outliers within each series under
investigation with respect to the average. In the current study,
the energy level values are ranging from 0.0415 to 7.012 MeV
for 248Cf and 14C, respectively. To avoid such a situation,
a common method to deal with time series cases where all
values are positive, such as energy levels, is to compose a new
series by taking the natural logarithm of the original series and
performing the analysis on the new series.

Classifying parameters. (a) Z, N, and A parameters. The
shell model [30,31] was suggested to resolve the extraordinary

stability of nuclei having certain values for either the num-
ber of protons Z or the number of neutrons N or both.
These so called magic numbers are 2, 8, 20, 28, 50, 82,
and 126.

As more valence nucleons of both types are added beyond
a major shell, more complex excitations—including collective
modes—develop. Absolutely critical in this process is the
key role of the valence, namely, the residual proton-neutron
interaction, which is essential to the development of collec-
tivity and deformation in nuclei. Its competition with the
like nucleon pairing force largely determines the evolution
of nuclear structure. [32].

(b) β2 parameter. Bohr and Mottelson [33] proposed the
geometric collective model in which the collective motion can
be interpreted as vibrations and rotations of the nuclear surface.
The moving nuclear surface may be described by an expansion
in spherical harmonics with time-dependent shape parameters
as coefficients. The nuclear radius for axially symmetric nuclei
can be written as

R(θ, φ) = Rav[1 + β2Y20(θ, φ)], (2)
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FIG. 2. (Color online) (a) Shows the 2+ states of all 466 nuclei classified by atomic number Z and the 2+ states calculated by Eq. (4).
(b) The same as (a) but for neutron number N . (c), (d) The ACFs of Eq. (4) for Z and N, respectively. (e), (f) The ACFs for Eqs. (5) and (6),
respectively.

where β2 is the quadrupole deformation parameter. Positive
and negative β2 values correspond to prolate and oblate shapes,
respectively.

(c) R4/2 ratio. The interacting boson model (IBM) [34]
presents three dynamical symmetries where there are analyt-
ical solutions. These dynamical states are U(5), SO(6), and

SU(3) which are assigned to vibrational, gamma unstable, and
rotational nuclei, respectively. We here follow the suggestion
of several authors to differentiate between these configurations
using the R4/2 ratio [35,36]. The R4/2 ratio is defined as the
ratio of the first 4+ to the 2+ excitation energy. When the R4/2

ratio increases, the collective behavior is favored.
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(d) P factor. Coupling of pairs of identical nucleons which
have spherically symmetric wave functions drives the nucleus
towards a spherical shape since it forms the J = 0+ ground
state. Deformation and collectivity, on the other hand, arise
from configuration mixing. Configuration mixing itself is
largely driven by the valence p-n interaction. Hence it is
a pairing p-n competition that tends to drive the structural
evolution of nuclei [37–39]. This idea was used to estimate
the locus of collectivity in nuclei. The valence p-n interactions
can be represented by the P factor defined in Eq. (3):

P = NnNp

Nn + Np

, (3)

where Np and Nn are the numbers of valence protons and
neutrons, respectively. Thus, one expects significant collectiv-
ity and the onset of deformation when the P factor [40–42]
increases.

Results and discussions. In Fig. 1, the ACF of the logarithm
of the 2+ states of all 466 even-even nuclei is calculated for
each classifying parameter. The results in Fig. 1 show that
the ACF and the correlation times τc are nearly compatible
for the Z, N, and A parameters and are characterized by
varying periodic behavior. This fast decaying ACF may be
explained in terms of a time series analysis as a short-range
correlation, which may be referred mainly to the shell closure
effect buildup on the variation of valence protons and neutrons
Np and Nn or simply on the P -factor values. On the other
hand, the ACF plot of 2+ energy states classified by the β2,
R4/2, and P parameters show a certain kind of what is known
as long-range correlation which is characterized by a higher
correlation time.

To interpret the trend in Fig. 1, we try to model the 2+
states of even-even nuclei in the case of Z and N classifying
parameters as a single variable. We propose that the data set
of the 2+ states can be modeled by a simple empirical formula
(4). This formula is a combination of a decaying exponential
function multiplied by a varying period cosine function in the
following way:

E(2+
i ) = αe−β

√
Zi [γ − cos(δ

√
Zi)], (4)

where α, β, γ , and δ are constant parameters and could be
calculated by a least-squares fit. We replace the atomic number
Z by the neutron number N in Eq. (4) to calculate the 2+ states
according to the neutron number classification. Figures 2(a)
and 2(b) show the experimental 2+ energy states (scattered
plot) and the obtained 2+ states from Eq. (4) against Z and N ,
respectively.

The fit parameters are equal to 7.10, 0.38, 1.20, and 3.08 for
Z, and equal to 6.96, 0.28, 1.11, and 3.10 for N , respectively.
We observe that Eq. (4) could model the shell effect of magic
numbers as seen from the peaks at nearly 2, 8, 50, 82, and 126,
while it is around 26 for the two closed successive shells 20
and 28. The ACFs of the 2+ energy states calculated by Eq. (4)
for Z and N are performed in Figs. 2(c) and 2(d), respectively.
It is observed that such a step cannot explain the periodic
variation of the ACF given in Fig. 1. This drawback comes
from neglecting the isotopes and isotones of each element that
take place in our study.

We turn then to add a term that represents the number of
valence protons and neutrons Np and Nn to Eq. (4) to satisfy
the variety of isotopes and isotones. In order to simulate the
positive values of the 2+ energy states, we add the following
two terms for Eq. (4):

E(2+
i ) = αe−β

√
Zi [γ − cos(δ

√
Zi)] + (

30 − Nni

)
, (5)

E(2+
i ) = αe−β

√
Ni [γ − cos(δ

√
Ni)] + (

18 − Npi

)
. (6)

The constant numbers 30 and 18 are the maximum Nn and
Np values in our study, respectively. The energy of the 2+
states calculated by Eqs. (5) and (6) are shifted in their values
by the two terms added to Eq. (4), but this procedure will not
affect the ACF calculation since it is a normalized function
according to its definition in Eq. (1).

The ACFs of the 2+ levels calculated by Eqs. (5), and (6) are
performed and given in Figs. 2(e) and 2(f), respectively. It is
apparent that the ACFs are similar in pattern and have the same
periods of variation as Fig. 1 for the Z and N classifications.
Another point could be extracted from the observed fluctua-
tions of the ACF with respect to Z classification compared to
N classification. This may be referred to the larger available
number of isotopes for each element of fixed Z compared to
the case of a lesser number of isotones for each element of
fixed N . We expect a more complex combination of residual
valance interaction of protons and neutrons to build up the
pattern of the ACF with respect to the mass number A.

The importance of the residual valence interaction as shown
in Eqs. (5) and (6) is essential to describe the variation of the
ACF. As a result, we expect that the classification of energy
states according to ascending P -factor values will decrease
sharply the effect of shell closure, so nuclei of similar structure
or collective mode will be arranged nearby each other and the
ACF of these similar 2+ energy states will increase remarkably.
Figure 1 shows that the ACF increases from 0.391 and 0.426 for
β2 and R4/2, respectively, to reach 0.471 in the case of the P -
factor classification as it is expected. This could be used as an
indicator of the ability of the P factor to represent the collective
behavior within nuclear structure. This finding is supported by
the work of the authors of references [43–45]. They suggested
an empirical formula which describes the essential trends of the
excitation energies of the lowest natural parity even multipole
states, such as the 2+ states, in even-even nuclei throughout the
periodic table. This formula depends on the valence nucleon
numbers Np and Nn and the mass number A.

Conclusion. In the current study we try to probe the variety
of nuclear structure evolution with one of the standard time
series techniques—the autocorrelation analysis. We assume
that a series of the 2+ states of even-even nuclei classified
by different parameters related to nuclear structure, such
as Z,N,A, β2, R4/2, and P parameters, could be treated
as a time series, where the time step is replaced by the
parameter step. We take the log transformation to stabilize the
variability of each series. Then the 2+ states are analyzed using
the autocorrelation function defined in Eq. (1). We terminate
the lag number k at N/4 for each series. The 95% confidence
level—dotted line—indicates that autocorrelations that lie
outside this range are statistically significant. The ACF and
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the correlation time τc have reached enhanced values for the P

factor. This indicates that the P factor could cumulate nuclei
having nearly the same properties nearby each other. This
finding is in need of more studies to find a theoretical basis.
We may use this result in future work to forecast some of

the missed or unknown nuclear properties according to the
autocorrelation plot.
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Z. Gácsi, J. L. Wei, K. Allaart, G. Bonsignori, and J. F. Shriner
Jr., Phys. Rev. C 43, 521 (1991).

[12] J. F. Shriner Jr., E. G. Bilpuch, P. M. Endt, and G. E. Mitchell,
Z. Phys. A 335, 393 (1990).

[13] J. F. Shriner Jr., G. E. Mitchell, and T. von Egidy, Z. Phys. A
338, 309 (1991).

[14] J. F. Shriner, C. A. Grossmann, and G. E. Mitchell, Phys. Rev.
C 62, 054305 (2000).

[15] J. D. Garrett, J. Q. Robinson, A. J. Foglia, and H.-Q. Jin, Phys.
Lett. B 392, 24 (1997).

[16] J. Enders, T. Guhr, N. Huxel, P. von Neumann-Cosel,
C. Rangacharyulu, and A. Richter, Phys. Lett. B 486, 273 (2000).

[17] A. Y. Abul-Magd, H. L. Harney, M. H. Simbel, and H. A.
Weidenmüller, Phys. Lett. B 579, 278 (2004).

[18] [www.nndc.bnl.gov].
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