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The effects of including light clusters in nuclear matter at low densities are investigated within four different
parametrizations of relativistic models at finite temperature. Both homogeneous and inhomogeneous matter
(pasta phase) are described for neutral nuclear matter with fixed proton fractions. We discuss the effect of the
density dependence of the symmetry energy, the temperature, and the proton fraction on the nonhomogeneous
matter forming the inner crust of protoneutron stars. It is shown that the number of nucleons in the clusters, the
cluster proton fraction, and the sizes of the Wigner-Seitz cell and of the cluster are very sensitive to the density
dependence of the symmetry energy.
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I. INTRODUCTION

The formation of light clusters in nuclear matter at low
densities and its influence on the appearance and composition
of pasta structures has been frequently discussed in the
literature [1–10].

Below saturation density, homogeneous nuclear matter
can become unstable against phase separation and several
types of complex structures can be formed as a result of
the competition between the strong and the electromagnetic
interactions. This “pasta” phase [11–15] is found at densities
of the order of 0.001–0.1 fm−3 [16] in neutral nuclear matter,
formed by protons, neutrons, and electrons, and in a smaller
density range in β-equilibrium stellar matter [17,18]. At very
low densities, up to 0.001 times the saturation density, and
moderate temperatures, the few-body correlations are still
important and the system minimizes its energy by forming light
nuclei such as deuterons, tritons, helions, and/or α particles.
The appearance of these light clusters can modify the behavior
of the neutrinos in the expanding matter resulting from a
supernovae core collapse and affect the cooling process of
the protoneutron star.

In a previous paper [19] we have studied the influence of the
α particles both on homogeneous matter and on the onset and
structure of the pasta phase within the relativistic mean-field
approximation. We have considered both free α particles and
α particles interacting through an α-ω meson coupling. This
repulsive interaction is essential to avoid an overprediction of
α particles above ρ ∼ 0.001 fm−3 and it is also the mechanism
responsible for the dissolution of the α-particle clusters in the
approach considered.

Model dependencies are more important for ρ >

0.001 fm−3 when the α-particle fraction differences between
models may be as large as one order of magnitude or even
larger. The effect of the temperature is to shift the maximum of
the α-particle distribution and the density of cluster dissolution
to larger densities. At the same time, the maximum values
of the distributions themselves were shown to decrease with
the increase of the temperature. The maximum values of the
α-particle distributions also decrease when the proton fraction
decreases. However, the proton fraction has no effect either on

the density localization of the maximum or on the density of
dissolution of the clusters.

It was also shown that in the pasta phase formed in
asymmetric nuclear matter the α-particle fraction increases
with temperature. This is an interesting effect related to the
proton fraction in the background gas, which increases with
temperature for asymmetric matter. It is important to test the
above-mentioned behaviors when other light clusters are also
included in the system.

In the present paper we extend our previous work [19] by
considering also deuterons, tritons, and helions. We study the
distribution of these light clusters as a function of the baryonic
density for several temperatures and proton fractions, and we
investigate the effect of the light clusters on the onset, type of
structures, and size of the heavy clusters (A > 4) of the pasta
phase. We compute the mass and charge content of the droplets
formed in the droplet regime of the pasta phase and compare
with other approaches.

Our approach to the description of the pasta phase is
within what is known as the single-nucleus approximation. The
same approach was used in [1,2]; however, only α particles
were included as light clusters. In [7] a statistical model
consisting of an ensemble of nuclei and interacting nucleons
in nuclear statistical equilibrium was proposed to describe
supernova matter. There, it was shown that the presence of
light clusters besides α particles is of particular importance at
low densities. A similar conclusion was drawn in [8], where a
phenomenological statistical model consisting of free nucleons
described within a mean-field approximation and a loosely
interacting cluster gas was formulated to describe matter in
supernova explosions and protoneutron stars. In all these works
an excluding volume concept was used: in the first two works
this was done with respect to the α particles and in the other
two with respect to all nuclei or clusters.

The validity of the two approximations, excluded volume
and single nucleus, has already been discussed. Recently, the
excluded volume approach was compared to two quantum
many-body models in [10] and it was shown that this approach
is a bit crude at temperatures of the order of 5 MeV,
although this occurs at densities where the composition of
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matter is dominated by heavy ions. In [20] it was discussed
that the equation of state (EOS) is not much affected by
the single-nucleus approximation, which describes matter
composition in an average way, although a correct distribution
of nuclei may be important to describe correctly the supernova
dynamics.

The approach we consider in the present work has the
drawbacks of a single-nucleus approximation and does not
include shell effects, in contrast to statistical models [10].
Therefore, we will restrict ourselves to temperatures above
which shell effects are no longer important. However, we
would like to point out that at densities close to the crust-core
transition statistical models have difficulties in describing
properly the medium effects on the nuclei and exotic structures
such as the pasta phases, in contrast to the present approach.

As mentioned before, we will avoid the excluded volume
approximation and will include Pauli blocking and self-energy
effects in a phenomenological approach by including a meson-
cluster interaction within a relativistic mean-field formalism.
A quantum statistical approach allows the calculation of the
medium influence on the quasienergies of clusters [3,6,9]. In
particular, recently, analytical fits to the quasienergy shifts
of light nuclei were published [9]. These results allow the
determination of a better parametrization of the cluster-meson
interaction than the one used in the present work. However,
we should point out that when the medium effects are more
important the contribution of light clusters is already very
small. Moreover, we have shown in [19] that the fraction
of α particles obtained with the prescription used in the
present work agrees with the results both of the virial equation
proposed in [4] and the results of [6] within a generalized
mean-field model.

A relativistic mean-field approach is a phenomenologi-
cal theory where the meson-nucleon and the meson-meson
interactions mimic the different contributions of a quantum
many-body formalism such as the Pauli blocking and self-
energies and it is difficult to separate the different contributions
which determine the behavior of the system. The same may be
said with respect to the meson-cluster interactions introduced
in [6,19]. In a recent study [21] the effect of the meson-cluster
couplings in the EOS of homogeneous nuclear matter with
clusters was investigated within a zero-temperature relativistic
mean-field approach. It was shown that the σ -cluster and
ω-cluster couplings determine the behavior of the clusters,
namely their fraction and dissolution density.

In this work we use the relativistic mean-field approxi-
mation and we consider four different parametrizations. We
have chosen the NL3 [22], NL3ωρ [23], FSUGold [24], and
IU-FSU [25] parametrizations of the nonlinear Walecka model
(NLWM) [26], which allow us to discuss the role of the density
dependence of the symmetry energy on the properties of the
nonhomogeneous nuclear EOS.

The paper is organized as follows: in Sec. II we briefly
review the formalism underlying the homogeneous neutral npe

matter with the inclusion of the light clusters. In Sec. III the
coexisting-phases method used to obtain the pasta phase is
briefly reviewed. In Sec. IV our results are displayed and
commented upon and in Sec. V the final conclusions are
drawn.

II. FORMALISM

We consider a system of protons and neutrons with mass
M interacting with and through an isoscalar-scalar field φ

with mass ms , an isoscalar-vector field V μ with mass mv , and
an isovector-vector field bμ with mass mρ . We also include
tritons (3H, represented by t), helions (3He, represented by h),
α particles, and deuterons (d). A system of electrons with mass
me that makes matter neutral is also included.

The Lagrangian density reads

L =
∑

j=p,n,t,h

Lj + Lα + Ld + Lσ + Lω + Lρ

+Lωρ + Le + LA, (1)

where the Lagrangian density Lj is

Lj = ψ̄j

[
γμiD

μ

j − M∗
j

]
ψj . (2)

The α particles and the deuterons are described as in [6] with
Lα and Ld given, respectively, by

Lα = 1
2

(
iDμ

α φα

)∗
(iDμαφα) − 1

2φ∗
αM2

αφα (3)

and

Ld = 1
4

(
iD

μ

d φν
d − iDν

dφ
μ

d

)∗
(iDdμφdν − iDdνφdμ)

− 1
2φ

μ∗
d M2

dφdμ, (4)

with

iD
μ

j = i∂μ − gvjV
μ − gρj

2
τ · bμ − e

2
(1 + τ3) Aμ,

j = p, n, t, h, α, d, (5)

M∗
j = M − gsφ, j = p, n, (6)

M∗
t = Mt = 3M − Bt, (7)

M∗
h = Mh = 3M − Bh, (8)

M∗
α = Mα = 4M − Bα, (9)

M∗
d = Md = 2M − Bd, (10)

with the binding energies given by Bt = 8.482 MeV, Bh =
7.718 MeV, Bα = 28.296 MeV, and Bd = 2.224 MeV and
gvj = Ajgv and gρj = |Zj − Nj |gρ , where Aj is the mass
number, Zj is the proton number, and Nj is the neutron
number. Notice that in our model the cluster masses are fixed to
constant values: they do not depend upon the temperature and
the density. However, due to the cluster-meson interaction, we
find (see Sec. IV) that the dissolution density of each cluster
increases with the temperature.

The electron Lagrangian density is given by

Le = ψ̄e[γμ(i∂μ + eAμ) − me]ψe, (11)

and the remaining terms in Eq. (1) are

Lσ = + 1
2

(
∂μφ∂μφ − m2

sφ
2 − 1

3κφ3 − 1
12λφ4

)
,

Lω = 1
2

( − 1
2�μν�

μν + m2
vVμV μ + 1

12ξg4
v(VμV μ)2

)
,

Lρ = 1
2

( − 1
2 Bμν · Bμν + m2

ρbμ · bμ
)
,
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Lωρ = �vg
2
vg

2
ρVμV μbμ · bμ,

LA = − 1
4FμνF

μν,

where �μν = ∂μVν − ∂νVμ, Bμν = ∂μbν − ∂νbμ − �ρ(bμ ×
bν), and Fμν = ∂μAν − ∂νAμ. The parameters of the models
are the nucleon mass M = 939 MeV, the coupling parameters
gs , gv , and gρ of the mesons to the nucleons, the self interacting
κ , λ, and ξ constant couplings, and the ω-ρ coupling �v .
In the above Lagrangian density τ is the isospin operator.
When the NL3 parametrization is used, �v is set equal to
zero. When the NL3ωρ parametrization is chosen, we follow
the prescription of [23], where the starting point was the NL3
parametrization and the gρ coupling was adjusted for each
value of the coupling �v in such a way that for kF = 1.15 fm−1

(not the saturation point) the symmetry energy is 25.68 MeV.
In particular, in this work we set �v to a moderately large value
(�v = 0.03; see Table I). The comparison of NL3 and NL3ωρ

results is meant to show the effect of changing the isovector
part of the Lagrangian only.

The FSUGold [24] parametrization was chosen because it
has the advantage of reproducing some of the results [27]
obtained with more sophisticated density dependent hadronic
models [28] without the need of rearrangement terms. FSUGold

combines the inclusion of the vector self-interaction term
present in Refs. [29,30] that is responsible for explaining
some observed properties at nuclear density and the isoscalar-
isovector coupling present in [23], capable of improving the
density dependence of the symmetry energy. An interesting
comparison of the results for the neutron star mass-radius
relation involving NL3 and FSUGold is given in [31]. We also
consider the IU-FSU parametrization, which keeps the main
properties of FSU but was readjusted in order to allow for
neutron star masses up to about 2.0M� [25]. The parameter sets
for the NL3, NL3ωρ, FSUGold, and IU-FSU models are shown
in Table I. Their corresponding bulk nuclear matter properties
are given in Table II. In order to clarify the discussion, we show
in Fig. 1, for the models considered, the symmetry energy at
densities below 0.3 fm−3 and the surface tension at T = 5 MeV
as a function of the proton fraction. The surface tension was
determined according to the parametrization given in Eq. (33)

TABLE I. Parameter sets for the models used in this work. The
masses of the mesons are in MeV and the other quantities are
dimensional (with κ given in nucleon mass units).

NL3 NL3ωρ FSUGold IU-FSU
[22] [23] [24] [25]

ms 508.194 508.194 491.500 491.500
mv 782.501 782.501 782.500 782.500
mρ 763.000 763.000 763.000 763.000
gs 10.217 10.217 10.592 9.971
gv 12.868 12.868 14.302 13.032
gρ 8.948 11.2766 11.767 13.590
κ 4.384 4.384 1.7976 3.5695
λ − 173.31 − 173.31 299.11 2.926
ξ 0.00 0.00 0.06 0.03
�v 0.00 0.03 0.03 0.046

TABLE II. Nuclear matter properties at the saturation density
and zero temperature: binding energy per nucleon, B/A, density ρ0,
effective nucleon mass M∗, incompressibility K , symmetry energy
Esym, and slope L of the symmetry energy Esym(ρ).

NL3 NL3ωρ FSUGold IU-FSU
[22] [23] [24] [25]

B/A (MeV) 16.3 16.3 16.302 16.4
ρ0 (fm−3) 0.148 0.148 0.148 0.155
M∗/M 0.60 0.60 0.62 0.62
K (MeV) 272 272 227.9 231.2
Esym (MeV) 37.4 31.66 32.54 31.3
L (MeV) 118.32 55.23 60.39 47.2

and the Appendix. With the present choice of models we will
be able to discuss the implications of the symmetry energy on
the pasta phase. One expects, generally speaking, two types
of effects: a smaller L corresponds to a larger surface tension
for asymmetric matter [see Fig. 1(b) and Table II]; a larger
Esym leads to a more isospin-symmetric liquid phase. We will
see in Sec. IV that in models with a larger surface tension the
pasta phase sets in at higher densities and the drip of particles
is unfavored, giving rise to a lower density background gas.

After this discussion that motivates our choice of
parametrizations, we go back to the description of the method.
From the Euler-Lagrange formalism we obtain coupled dif-
ferential equations for the scalar, vector, isovector-scalar,
nucleon, and cluster fields. In the static case there are no
currents and the spatial vector components are zero. Moreover,
we neglect, as usual, the Coulomb interaction in the case of
homogeneous matter. In the calculation of the pasta phase, its
effect on the protons will be included. In [16] a complete de-
scription of the mean-field and Thomas-Fermi approximations
applied to different parametrizations of the NLWM is given
and we do not repeat it here. The equations of motion for the
fields are obtained and solved self-consistently and they can
be read off [16,18]. The above-mentioned equations of motion
depend on the the equilibrium densities

ρ = ρp + ρn + 4ρα + 2ρd + 3ρt + 3ρh, (12)
ρ3 = ρp − ρn − ρt + ρh, (13)

ρs = ρsp
+ ρsn

. (14)
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FIG. 1. Comparison of (a) the symmetry energy and (b) the
surface tension at T = 5 MeV calculated with the models NL3,
NL3ωρ, FSUGold, and IU-FSU.
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The quantities ρα and ρd are discussed next. The fermionic
densities are

ρi = 1

π2

∫
p2dp(fi+ − fi−), i = p, n, t, h, (15)

and the corresponding scalar densities are

ρsi
= 1

π2

∫
p2dp

M∗
i

ε∗
i

(fi+ + fi−). (16)

The distribution functions are given by

fi± = 1

1 + exp[(ε∗
i (p) ∓ νi)/T ]

, i = p, n, t, h, (17)

where ε∗
i =√

p2 + M∗
i

2, and the effective chemical potentials are

νi = μi − gviV0 − gρi

2
τ3ib0, (18)

where

μt = μp + 2μn, μh = 2μp + μn, (19)

and τ3i = ±1 is the isospin projection for the protons (helions)
and neutrons (tritons), respectively.

In the present work the α particles and the deuterons are
included as bosons and their chemical potentials are obtained
from the proton and neutron chemical potentials by imposing
chemical equilibrium, as in [6]:

μα = 2(μp + μn), μd = μp + μn. (20)

Their effective chemical potentials read

νj = μj − gjV0, j = α, d. (21)

The density of thermal α particles and deuterons is

ρj = 1

π2

∫
p2dp(fj+ − fj−), (22)

with the boson distribution function given by

fj± = 1

−1 + exp[(εj ∓ νj )/T ]
, (23)

where εj =√
p2 + M2

j . We should point out that at low enough
temperatures the α particles and deuterons contribute with
two terms: a condensed fraction and a thermal contribution.
Both contributions can be included explicitly in the present
formalism. We only indicate the thermal contribution because
we have limited our discussion to temperatures above Bose
condensation of α particles or deuterons.

For the free electrons, their density and distribution func-
tions are the same as for the other fermions, where μe is
the electron chemical potential and εe =√

p2 + m2
e . We always

consider neutral matter and therefore the electron density is
equal to the total charge density of the charged particles.

In the description of the equation of state of a system, the
required quantities are the baryonic density ρ, energy density
E , entropy density S, pressure P , and free energy density
F = E − T S, and their expressions are explicitly given in
[16,18].

III. NUCLEAR PASTA

In this section we describe briefly the coexisting-phases
(CP) method to study the nonhomogeneous phase of nuclear
matter with a fixed proton fraction. The basic idea is that matter
can be organized into separated regions of higher and lower
density, and the geometry of these regions is assumed to be
very simple: a lattice of spherical droplets (bubbles), a plane
of cylindrical rods (tubes), or an alternating sequence of slabs.
The interface between regions is sharp, and it is taken into
account by a surface term and a Coulomb one in the energy
density. In the spirit of this approach, a single geometry will
be the physical one for some given conditions (temperature,
density, and proton fraction).

As in [15,16], for a given total density ρ and proton
fraction, now defined including the protons present inside
the light clusters, the pasta structures are built with different
geometrical forms in a background nucleon gas. This is
achieved by calculating from the Gibbs conditions the density
and the proton fraction of the pasta and of the background
gas, so that we have to solve simultaneously the following
equations together with Eqs. (19) and (20):

P I = P II , (24)

μI
i = μII

i , i = p, n, t, h, α, d, (25)

fρI
c + (1 − f )ρII

c = Ypg ρ, (26)

where I and II label the higher and the lower density phase,
respectively, and f is the volume fraction of phase I,

f = ρ − ρII

ρI − ρII
. (27)

The total baryonic density ρ is given by Eq. (12), Ypg is the
global proton fraction given by

Ypg = ρc

ρ
, (28)

and ρc = ρp + 2ρα + ρd + ρt + 2ρh stands for the charge
density.

The density of electrons is uniform and taken as ρe = Ypg ρ.
The total pressure is given by the sum of the nuclear and
electron partial pressures, P = Pnucl + Pe, where the nuclear
contribution Pnucl includes the kinetic contribution of each
type of particle (nucleons and light clusters) plus the meson
contribution. The total energy density of the system is given
by

E = f E I + (1 − f )E II + Ee + Esurf + ECoul. (29)

By minimizing the sum Esurf + ECoul with respect to the size
of the droplet or bubble, rod or tube, or slab one gets [15]
Esurf = 2ECoul, and

ECoul = 2F

42/3
(e2π�)1/3

[
σD

(
ρI

c − ρII
c

)]2/3
, (30)

where F is the volume fraction of the inner part (F = f

for droplets, rods, and slabs and F = 1 − f for bubbles
and tubes), σ is the surface tension, D is the dimension of
the system, and � is a coefficient depending upon F and
D [11,15].
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TABLE III. Surface tension parameters fitted within the Thomas-Fermi approximation for NL3, NL3ωρ, FSUGold, and IU-FSU
parametrizations. The coefficients are for T in MeV and σ0 is in MeV/fm2.

σ̃ (x) a(T ) b(T ) c(T )

NL3
σ0 1.12307 – – –
σ1 20.7779 – – –
a0 – 0.0121222 0.00792168 –
a1 − 5.84915 0.01664 −8.2504 × 10−5 –
a2 138.839 − 0.00137266 −4.59336 × 10−6 –
a3 − 1631.42 4.0257 × 10−5 −2.81679 × 10−7 –
a4 8900.34 – – –
a5 − 21592.3 – – –
a6 20858.6 – – –

NL3ωρ

σ0 1.12013 – – –
σ1 14.0774 – – –
a0 – −5.80451 × 10−5 0.00725961 − 0.00259094
a1 − 2.15376 0.0233833 0.000318409 − 0.053756
a2 57.8455 − 0.00507732 − 0.000104941 0.0114598
a3 − 431.365 0.000490863 1.19645×10−5 − 0.000354375
a4 1854.81 −1.59473 × 10−5 −7.19099 × 10−7 −4.76451 × 10−5

a5 − 3653.96 −7.55062 × 10−8 1.62087 × 10−8 2.28389 × 10−6

a6 3214.82 – – –

FSUGold

σ0 1.1223 – – –
σ1 − 1.45717 – – –
a0 – − 0.0133789 0.00773356 0.0408077
a1 − 3.17729 0.0330912 − 0.000240406 − 0.0971609
a2 − 9.5121 − 0.00786564 4.52523 × 10−5 0.0195288
a3 70.5609 0.000902286 −7.64893 × 10−6 − 0.00140166
a4 − 155.641 −4.84828 × 10−5 5.33346 × 10−7 4.97386 × 10−5

a5 154.691 9.56728 × 10−7 −1.45394 × 10−8 −1.20803 × 10−6

a6 − 58.9476 – – –

IU-FSU
σ0 1.16473 – – –
σ1 − 0.659167 – – –
a0 – 0.00404325 0.00767923 0.0066774
a1 − 2.25482 0.00828207 −8.58068 × 10−5 − 0.0514285
a2 − 5.64237 − 0.00153301 4.43918 × 10−7 0.00949505
a3 37.8471 7.26763 × 10−5 −5.44453 × 10−7 − 0.000427613
a4 − 81.6617 – – –
a5 81.2696 – – –
a6 − 31.0227 – – –

Each structure is considered to be in the center of a charge-
neutral Wigner-Seitz cell constituted by neutrons, protons, and
electrons [2]. The Wigner-Seitz cell is a sphere or cylinder or
slab whose volume is the same as the unit bcc cell. In [2] the
internal structures are associated with heavy nuclei. Hence, the
radius of the droplet (rod or slab), RD , and of the Wigner-Seitz
cell, RW , are respectively given by

RD =
[

σD

4πe2
(
ρI

c − ρII
c

)2
�

]1/3

, (31)

RW = RD

F 1/D
. (32)

Concerning the surface energy, the authors of [32] have
shown how the surface energy affects the appearance of
nonspherical pasta structures. Also the authors of [15] state that
the appearance of the pasta phase essentially depends on the
value of the surface tension. We have fixed the surface tension
at different values and confirmed their claim in [16,18], where
the surface tension was parametrized in terms of the proton
fraction according to the functional proposed in [33], obtained
by fitting Thomas-Fermi and Hartree-Fock numerical values
with a Skyrme force. In [19] a new prescription was used
and the surface energy was fitted to the results obtained from
a relativistic Thomas-Fermi calculation and its dependence
upon the temperature was taken into account. A mathematical
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FIG. 2. (Color online) Free energy per particle as a function of
the baryonic density for NL3 at T = 5 MeV and Ypg = 0.2. Four
constructions of the equation of state (H, HC, HP, and HPC; see
text) are shown: (a) for subsaturation densities and (b) at very low
densities. For subsaturation densities, the curves H and HC or HP and
HPC are indistinguishable.

formula for σ that gives accurate results for a broad range of
neutron excess and for temperatures up to 10 MeV is

σ (x, T ) = σ̃ (x)[1 − a(T )xT − b(T )T 2 − c(T )x2T ], (33)

where σ̃ (x) is the surface tension at T = 0 and x = δ2 stands
for the squared relative neutron excess:

δ = ρn − ρp

ρ
= 1 − 2Ypg.

In Table III the σ parameters fitted to the Thomas-Fermi
approximation results up to T = 10 MeV are given. For
T = 10 MeV the parametrization is good if Ypg > 0.2. For
lower temperatures, the range of validity extends to lower Ypg

values.

IV. RESULTS AND DISCUSSION

In this section we present the results of this work. In Fig. 2
the free energy per particle is shown for four different con-
structions of the EOS: homogeneous matter (H), homogeneous
matter with clusters (HC), mixed homogeneous matter and
pasta phase (HP), and finally HP with clusters (HPC). Notice
that with HP we mean that both nonhomogeneous matter in
five different shapes (droplets, rods, slabs, tubes, and bubbles)
and homogeneous matter are computed and the phase with the
lowest free energy per particle is the physical one.

The free energy is clearly lowered by the inclusion of both
pasta and clusters. However, the pasta phase affects the results
in a large density range and leads to a decrease of a few MeV
[Fig. 2(a)], whereas the clusters are visible only at very low
density and lead to a decrease of �1 MeV [Fig. 2(b)]. Their
effect is even smaller in the pasta phase range. It is also seen,
as already discussed in [6], that the pasta phase sets in at a
larger density when light clusters are included.

The inclusion of the light clusters in the EOS improves the
CP method. In fact, the way the surface energy enters in the CP
calculation does not allow the appearance of these light nuclei
but, as we have seen, their presence is important just below
the onset of the pasta phase. We will later verify whether the
inclusion of the light clusters explicitly does not correspond to

a double description of the small clusters in the pasta phase.
In fact, if we include light clusters and obtain droplets formed
by four or fewer nucleons the same physical object is being
described simultaneously in two distinct ways.

In the more complete case (i.e., HPC), we can see how
the fraction of nucleons belonging to different structures
changes with the total baryonic density. Nucleons can be
free (not clusterized), belong to a light cluster (A � 4), or
belong to a heavy one. In our formalism, the role of heavy
clusters is played by the high-density part of pasta structures.
In the regimes of temperature and proton fraction where a
nonhomogeneous phase appears, the following sequence is
generally found: homogeneous matter at very low baryonic
density, pasta phase at intermediate densities, and then again
homogeneous matter at higher densities.

In the nonhomogeneous matter range, the fraction of a
generic constituent has contributions from the high-density
phase (phase I) and the low-density phase (phase II):

Yi = Y I
i f

ρI

ρ
+ Y II

i (1 − f )
ρII

ρ
, (34)

where i = p, n, α, h, t, d, and f is the volume fraction of
the denser phase defined in (27).

Therefore, we classify the fraction of nucleons as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Yp,free = Yp,

Yn,free = Yn,

Ylight = Yα + Yh + Yt + Yd,

Yheavy = 0

(35)

in homogeneous matter at low density,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Yp,free = Y II
p (1 − f ) ρII

ρ
,

Yn,free = Y II
n (1 − f ) ρII

ρ
,

Ylight = (
Y II

α + Y II
h + Y II

t + Y II
d

)
(1 − f ) ρII

ρ
,

Yheavy = f
ρI

ρ

(36)

in the nonhomogeneous phase, and finally⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Yp,free = 0,

Yn,free = 0,

Ylight = 0,

Yheavy = 1

(37)

in the high-density homogeneous phase.
In Fig. 3 the fractions of nucleons are shown for the NL3

and NL3ωρ parametrizations at T = 5 MeV and Ypg = 0.2.
For both parametrizations, matter in the low-density regime
is formed by unclusterized neutrons and protons and a light-
cluster fraction. The magnitude of this fraction depends on the
temperature. At ρ ∼ 0.001 fm−3 the pasta phase sets in. The
background low-density gas is constituted mainly by neutrons
with a small fraction of protons and light clusters. For densities
above 0.08 fm−3 there is a transition to dense homogeneous
matter, interpreted in the present approach as an infinite cluster.

The differences between the results obtained for NL3 and
NL3ωρ can be interpreted as a consequence of the effect of
the density dependence of the symmetry energy. Both NL3
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FIG. 3. (Color online) Fractions of nucleons as a function of the
density, for the NL3 and NL3ωρ parametrizations at T = 5 MeV and
Ypg = 0.2.

and NL3ωρ have the same isoscalar properties. However,
they differ in the isovector channel; namely, the symmetry
energy and its slope at saturation are different, NL3ωρ having
a smaller symmetry energy and smaller slope at saturation.
Below ρ = 0.1 fm−3 the symmetry energy is larger for NL3ωρ

while the opposite occurs above that density [see Fig. 1(b)].
It is seen that both models behave in the same way below the
onset of the pasta phase: the proton, neutron, and light cluster
fractions are practically equal. However, there are noticeable
differences in the pasta phase. The most important ones are the
onset density of the pasta phase and the fraction of nucleons in
the cluster. A smaller symmetry energy slope shifts the onset
of the pasta phase of NL3ωρ to larger densities because it
gives rise to a larger surface energy that hinders the formation
of pasta structures. A larger surface energy also gives rise to
a smaller fraction of neutrons outside the cluster because it
is more difficult for neutrons to drip out. Since neutrons play
an important role in the cooling of the crust, the fraction of
free neutrons in the pasta phase range will certainly affect the
cooling and transport properties of the crust.

We plot in Fig. 4 the fractions of nucleons predicted by
the FSUGold and IU-FSU parametrizations compared to the
NL3 results. There are some similarities between these results
and those obtained with NL3ωρ. The onset of the pasta
phase density occurs for the IU-FSU parametrization at values
slightly higher than in FSUGold and much higher than in NL3,
due to its smaller L and, therefore, larger surface tension.
At low densities, the main differences among the three models
occur at ρ ∼ 0.001 fm−3 with different proton and light cluster
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FIG. 4. (Color online) Fractions of nucleons as a function of the
density, for the NL3, FSUGold, and IU-FSU parametrizations at T =
5 MeV and Ypg = 0.2.
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FIG. 5. (Color online) Fractions of nucleons as a function of
the density, for the IU-FSU parametrization at Ypg = 0.2 and three
different temperatures.

fractions. These differences are mainly due to differences in
the density dependence of the isoscalar channel of the EOS.
The FSUGold parametrization has the largest gs coupling, so,
since nucleons have a smaller effective mass, and a larger
binding energy per particle, the formation of light clusters
is not so favored as in a model where the nucleon effective
mass is larger. However, a small fraction of light clusters is
still observed in FSUGold, because the onset of the pasta phase
occurs at densities larger than in NL3.

The effect of the temperature on the nucleon ratios is
examined in Fig. 5, where the results for T = 3.5, 5, and
6.5 MeV are shown for the IU-FSU parametrization with
Ypg = 0.2. The main features of increasing the temperature
can be summarized in three points: (a) the onset of the pasta
phase (of the core) is shifted to higher (smaller) densities,
as already discussed in [34]; (b) the low-density gas of the
pasta phase has a larger number of particles; and (c) the light
clusters contribution is smaller at densities below the pasta
phase onset and larger in the low-density background gas
of the pasta phase. These behaviors all occur because when
the temperature increases the instability region decreases and
there is a larger number of nucleons that drip out of the dense
clusters.

The effect of the global proton fraction on the pasta phase is
clearly seen in Fig. 6, where the different constituent fractions
at densities below 0.1 fm−3 are plotted for Ypg = 0.2, 0.3,

and 0.5 for the IU-FSU parametrization at T = 5 MeV. The
onset of the pasta phase occurs at larger densities for the more
symmetric matter. This is possibly a trend due to the method
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FIG. 6. (Color online) Fractions of nucleons as a function of the
density, for the IU-FSU parametrizations at T = 5 MeV and several
proton fractions.
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used for the pasta phase clusters with a zero-thickness surface.
In fact, in the pasta calculation within the Thomas-Fermi
approach, where the surface is described in a self-consistent
way, the opposite occurs [34]. However, if we also consider
the light clusters, the onset of the clusterization starts at lower
densities for the larger proton fractions. In the pasta phase,
the larger proton fractions give rise to clusters with a larger
number of nucleons immersed in a gas of nucleons and light
clusters with a lower density.

These results allow us to make some comments on the
possible consequences of the evolution of a protoneutron
star. After the supernova explosion neutrinos are trapped
inside the star and we can consider that the lepton fraction
is approximately constant, taking a maximum value of 0.4 and
decreasing as neutrinos leave the star. A lepton fraction of 0.4
corresponds to a proton fraction of the order of 0.3. During
deleptonization the proton fraction of stellar matter decreases
and after total deleptonization at densities below 0.08 fm−3

the proton fraction is below 0.1. From the behavior obtained
in Fig. 6 we conclude that during deleptonization the number of
nucleons in the clusters decreases, the low-density background
gas of nucleons and light clusters increases, and the onset of
the clusterized phase shifts to larger densities.

Next we analyze the properties of the clusters formed in
the pasta phase. We consider the droplet geometry because
of the finite size of this structure. In particular, we discuss
the effects of temperature, isospin asymmetry, and the density
dependence of the symmetry energy on the number of nucleons
and protons in the droplets, on the onset density of this
geometry, and on the transition density to the rod geometry.

We denote by Adrop the number of nucleons belonging to a
droplet (the type of structure that appears at the lowest densities
in the nonhomogeneous phase). We first check whether we are
including correctly the light clusters: in fact, we have to check
that Adrop > 4, to confirm that classifying these droplets as
heavy clusters is correct. Second, we can compare our results
to those obtained in other approaches, [7,8]. We calculate this
quantity as

Adrop = 4π

3
R3

D [ρI − ρII (Y II
p + Y II

n )] . (38)

In a similar way, we can compute Zdrop, the charge content of
a droplet. Next we show several figures including our results
for both Adrop and Zdrop for various models, temperatures, and
proton fractions.

In Fig. 7 we display the results for different parametriza-
tions: NL3 and NL3ωρ in Fig. 7(a) and NL3, FSUGold, and
IU-FSU in Fig. 7(b). Here and in the following analogous
figures, the solid lines represent Adrop, and the dashed ones
represent Zdrop. The onset of the droplet phase is characterized
by a discontinuity in the number of nucleons inside the cluster:
it is necessary a minimum number of nucleons to compensate
the surface energy, which is larger for NL3ωρ. In a Thomas-
Fermi calculation, where the surface energy is calculated self-
consistently we may expect a less discontinuous behavior. A
change in the isovector channel of the model as in NL3ωρ leads
to a large effect on the number of nucleons, more than doubling
this number. As discussed before, a smaller symmetry energy
slope corresponds to a larger surface energy and neutrons do
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FIG. 7. (Color online) A and Z in a droplet at T = 5 MeV and
Ypg = 0.2: (a) NL3 and NL3ωρ parametrizations; (b) NL3, FSUGold,
and IU-FSU parametrizations.

not drip out so easily. The number of nucleons obtained within
NL3ωρ is consistent with the results of [7] within a statistical
model, based on the TMA parametrization [35]. We should
point out that for NL3 the separation that has been done in
light clusters and heavy clusters breaks down for a small proton
fraction because, at low densities, the size of the heavy clusters
equals the size of the light clusters. The models which include
an isoscalar-isovector coupling �v present larger nuclei, the
heaviest ones corresponding to IU-FSU. In these models, the
appearance of the heavy clusters occurs at similar densities,
larger than that obtained for NL3. This again is due to the
fact that NL3 has the largest symmetry energy slope at these
densities.

In Fig. 8 we plot the radius of the Wigner-Seitz cell together
with the droplet radius as a function of density for NL3,
NL3ωρ, FSUGold, and IU-FSU. The ordering of the radii
obtained in the different parametrizations reflects perfectly
the ordering of their surface tensions [cf. Fig. 1 (b)], which,
in turn, is closely linked to the symmetry energy density
dependence [cf. Fig. 1(a) and Table II]. NL3 has by far the
smallest surface energy at Ypg = 0.2, while IU-FSU has the
largest [see Fig. 1(b)]: correspondingly, NL3 has the smallest
Wigner-Seitz cell and droplets and IU-FSU the largest ones,
as shown in Fig. 8.
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FIG. 8. (Color online) Droplet and Wigner-Seitz cell radius of
the clusters for NL3, NL3ωρ, FSUGold, and IU-FSU calculated at
T = 5 MeV and Ypg = 0.2.
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FIG. 9. (Color online) The ratio Z/A in a droplet at T = 5 MeV
and Ypg = 0.2: (a) NL3 and NL3ωρ parametrizations; (b) NL3,
FSUGold, and IU-FSU parametrizations.

In Fig. 9 the ratio Zdrop/Adrop is plotted as a function
of density for the different models we are comparing. We
conclude that this ratio decreases with density and is model
dependent. A decrease of the proton fraction of the clusters
with density was also obtained in [8].

The models with a smaller symmetry energy slope have
smaller proton fractions. A smaller slope implies that neutrons
drip out of the cluster with more difficulty, giving rise to neu-
tron richer clusters. Also, a smaller slope results in a smaller
Esym(ρ) above 0.7ρ0 [� 0.1 fm−3, where approximately all
the curves cross; see Fig. 1(a)]. Since the density inside the
droplets is between 0.7ρ0 and ρ0, a smaller symmetry energy
favors less symmetric clusters.

The dependence of Adrop and Zdrop on the temperature
for Ypg = 0.2, and on the proton fraction, for T = 5 MeV is
plotted in Figs. 10(a) and 10(b), respectively, for the IU-FSU
parametrization. Decreasing the temperature increases slightly
the number of nucleons in the clusters and strongly decreases
the onset density. The transition to the rod geometry seems to
be temperature independent.

Isospin asymmetry affects the number of nucleons in the
cluster in a nonlinear way, as is seen in Fig. 10(b) for the
IU-FSU parametrization. At the onset of the pasta phase
the size of the clusters is smaller for the smaller proton
fractions. However, there is a faster increase of the cluster
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FIG. 10. (Color online) A and Z in a droplet for IU-FSU: (a)
Ypg = 0.2 and T = 3.5, 5, and 6.5 MeV; (b) T = 5 MeV and Ypg =
0.2, 0.3, and 0.5.
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FIG. 11. (Color online) Droplet and Wigner-Seitz cell radii of the
clusters for IU-FSU calculated at T = 5 MeV and Ypg = 0.2, 0.3,

and 0.5.

size with density when the proton fraction is smaller. In
particular, at the transition to the rod geometry we get smaller
droplets in symmetric matter. This behavior is also obtained for
FSUGold and NL3ωρ. However, for NL3, we get a systematic
behavior, with smaller proton fractions corresponding to
smaller numbers of nucleons in the cluster. In [8], using the
Skyrme interaction SKM∗ with a quite low symmetry energy
slope at saturation (L = 45 MeV), a cluster size independent
of the proton fraction was obtained. On the other hand, the
authors of [7] using TMA get at T = 1 MeV larger clusters for
Ypg = 0.3 and smaller ones for Ypg = 0.5, and at T = 5 MeV
larger clusters for Ypg = 0.3 and smaller ones for Ypg = 0.1.
It seems that the proton fraction is not affecting the size
of the clusters in a linear way, and this behavior is model
dependent. In fact, from Fig. 6 it is seen that the proton
fraction with the largest fraction of nucleons in the clusters
is Ypg = 0.5. However, the number of nucleons in the droplets
also depends on their size. In Fig. 11 we show how the size of
the Wigner-Seitz cell and droplet radius depend on the density
and proton fraction. The number of particles in the droplets is
strongly dependent on these two radii.

In Fig. 12 we show for IU-FSU how the proton fraction
in the droplets depends on the temperature and on the global
proton fraction. Temperature makes droplets richer in protons
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FIG. 12. (Color online) The ratio Z/A in a droplet for IU-FSU:
(a) Ypg = 0.2 and T = 3.5, 5, and 6.5 MeV; (b) T = 5 MeV and
Ypg = 0.2, 0.3, and 0.5.
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FIG. 13. (Color online) HPC case, showing the various contri-
butions to Ylight explicitly for the IU-FSU parametrization at T = 5
MeV, Ypg = 0.2.

and greater isospin asymmetry reduces the proton fraction
in the droplets. In fact, temperature helps the evaporation of
neutrons from the droplets, increasing the proton fraction in
the clusters. On the other hand, increasing the neutron fraction
leads naturally to an increase of neutrons in the clusters. These
two effects were also obtained in the formalism developed
in [8] within a grand-canonical ensemble approach (see left
panels of Fig. 25 in Ref. [8]).

To complete the discussion, we now distinguish the con-
tribution of each type of light cluster; i.e., we decompose
Ylight. In Fig. 13 we show the fractions of nucleons belonging
to α particles, helions, tritons, and deuterons for IU-FSU at
T = 5 MeV and Ypg = 0.2, as a choice that exemplifies the
results we obtain.

Two typical sequences can be identified in the abundances
of the various clusters: d, t, h, α at low baryonic density and
d, t, α, h at the higher total baryonic density at which clusters
are still present. Deviations from this behavior are found for
lower temperature (T = 3.5 MeV) or higher proton fraction
(Ypg = 0.5). In general, the dominant contribution comes from
the deuterons. At very low density, the sequence reflects the
ordering in size: the smaller clusters are more abundant. The
difference between t and h, and more precisely the finding that
tritons are more abundant than helions, is due to two effects:
globally there are more neutrons available and, moreover, the
triton is more bound. This last point explains why we find a
difference among them also at Ypg = 0.5.

For a given temperature, the fraction of α particles at
very low density increases with density much faster than
the other clusters: this is due to their large binding energy.
As a consequence, the fraction of α particles may overcome
the fraction of other type of clusters at larger densities. At
sufficiently low temperatures, they are the most abundant
cluster in HC matter, even for the lowest densities. In HPC
matter, their abundance is determined by the density, proton
fraction, and temperature of the background gas.

Concerning the dissolution density of each cluster, we find
that it increases with increasing temperature; on the other hand,
the effect of a larger proton fraction is just to increase slightly
the abundance of the clusters (except for tritons); it does not
alter their dissolution.
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FIG. 14. (Color online) The average size and charge of the
constituents present in HC and HPC for the IU-FSU parametrization
at T = 5 MeV, Ypg = 0.2.

Finally, we show in Fig. 14 the average number of nucleons
and the average charge of the constituents in the HC and HPC
cases. We consider as constituents the protons, neutrons, α

particles, helions, tritons, deuterons, and the droplets. In the
low-density limit, the system is composed by free nucleons:
in fact, 〈A〉 = 1 and 〈Z〉 = 0.2 in this limit. At intermediate
densities, 〈A〉 increases slightly because of the formation of
light clusters. At even higher densities, the behavior is different
for the HC and HPC constructions. In the HC case, the clusters
dissolve at some density and we get again 〈A〉 = 1, which
means a gas of free nucleons. In the HPC case, droplets form,
and the average number of nucleons in a cluster increases
very rapidly with the density. Concerning the average charge,
from the figure it is seen that for the droplets it also increases,
but more slowly than 〈A〉: as already discussed, the isospin
asymmetry of the droplets increases with the density.

V. CONCLUSIONS

In the present paper we have investigated the effects caused
by the explicit inclusion of four light clusters, namely, α

particles, deuterons, tritons, and helions, in homogeneous and
nonhomogeneous nuclear matter at low densities. This study
is particularly important for understanding the composition of
the inner crust of protoneutron stars.

We have chosen to calculate the above-mentioned effects
with four different parametrizations of the NLWM because
they are characterized by different symmetry energy density
dependencies, as seen from the values of their slopes L in
Table II.

We have checked that the influence of the light clusters in
the free energy per particle is only noticeable at very small
densities (up to 0.0025 fm−3) both in homogeneous and pasta
phase matter. The inclusion of light clusters lowers the free
energy and their effect is smaller in the pasta phase range.

We have analyzed the fractions of nucleons at different
temperatures and different proton fractions. The results are
model dependent, as expected, and some of the differences are
related to the density dependence of the symmetry energy. In
the following we identify some of the trends that were found:
(a) when temperature increases, the pasta phase appears at
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higher densities, an effect already seen without the inclusion
of the light clusters; (b) the pasta phase low-density gas,
including light clusters, has a larger number of particles at
larger temperatures; (c) larger abundances of light clusters
occur at densities below the pasta phase onset and their
fractions are larger for more symmetric matter; before the onset
of the pasta phase their abundances decrease with temperature,
and the opposite occurs in the pasta phase; (d) within the
coexisting-phases method adopted in the present work, the
onset of the pasta phase occurs at lower densities for more
asymmetric matter; we believe this is due to the zero-thickness
surface approximation and a lack of self-consistency in the
calculation of the surface properties. An opposite trend was
obtained within a Thomas-Fermi approach [34]. However, if
we also consider the light clusters, the onset of clusterization
starts at lower densities for the larger proton fractions.

The number of nucleons and the number of charged
particles inside the pasta droplets were calculated. It was
shown that (a) models with a smaller symmetry energy slope
have larger clusters, inside a larger Wigner-Seitz cell, with
a larger number of particles and smaller proton fraction;
(b) the number of nucleons in the droplets has no linear
relation with the global isospin asymmetry of matter and
density, showing a strong dependence on the properties of
the symmetry energy; (c) the number of nucleons in the
clusters decreases if temperature increases; and (d) the fraction
of protons in the clusters decreases with density, decreases
for more asymmetric matter, and increases when temperature
increases.

We have shown that the composition and structure of the
pasta phase is quite sensitive to the symmetry energy behavior
at low densities. It would be interesting to study the transport
properties and neutrino opacity in the pasta phase with light

clusters, because these are important quantities in the cooling
mechanism of protoneutron stars.
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APPENDIX

The surface tension is obtained by fitting the Thomas-Fermi
results with the formula

σ (x, T ) = σ̃ (x)[1 − a(T )xT − b(T )T 2 − c(T )x2T ], (A1)

where

σ̃ (x) = σ0 exp (−σ1x
3/2)(1 + a1x + a2x

2

+ a3x
3 + a4x

4 + a5x
5 + a6x

6),

a(T ) = a0 + a1T + a2T
2 + a3T

3 + a4T
4 + a5T

5,

b(T ) = a0 + a1T + a2T
2 + a3T

3 + a4T
4 + a5T

5,

c(T ) = a0 + a1T + a2T
2 + a3T

3 + a4T
4 + a5T

5. (A2)

Clearly, σ̃ (x) is the surface tension at T = 0, and σ0 is
its value at T = 0 for symmetric matter. Notice moreover
that there are a few more terms in these parametrizations as
compared to those used in Ref. [19].
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