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Partial-wave expansion for photoproduction of two pseudoscalars on a nucleon
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The amplitudes for photoproduction of two pseudoscalars on a nucleon are expanded in the overall center-of-
momentum (c.m.) frame in a model-independent way with respect to the contribution of the final-state partial
wave of total angular momentum J and its projection on the normal to the plane spanned by the momenta of
the final particles. The expansion coefficients, which are analogs to the multipole amplitudes for single-meson
photoproduction, contain the complete information about the reaction dynamics. Results of an explicit evaluation
are presented for the moments Wjm of the inclusive angular distribution of an incident photon beam with respect
to the c.m. coordinate system defined by the final particles, taking photoproduction of π0π 0 and π 0η as an
example.
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I. INTRODUCTION

The study of multiple-meson production is essential for un-
derstanding the properties of baryonic resonances, especially
of those having sizable inelasticities and for which only a
weak evidence from elastic πN scattering exists. According
to the quark model calculation of [1], at least below 2 GeV,
some of these resonances must be strongly coupled to ππN

and πηN channels. Therefore, present experiments on ππ

and πη photoproduction have become a center of attention in
programs discussed at various research centers, and a number
of new accurate data have already been reported [2–12].

Improvements in the quality of the data have made it
possible to perform rather detailed theoretical analyses of
photoproduction of two pseudoscalars. The ππ as well as
πη models have already been the object of several studies
[13–22]. Mainly, they cover the second and third resonance
regions describing with varying degrees of success the existing
data and predicting the results of new measurements. A
typical analysis is based on an isobar model approach. Its
key assumption is that the amplitude is a coherent sum of
background and resonances usually parametrized in terms of
effective Lagrangians. As a rule, the resonance part contains
s-channel resonances via intermediate formation of meson-
nucleon and meson-meson isobars decaying into ππN or
πηN . For the adjustable parameters, one usually takes the
masses and partial decay widths of the resonances as well as
their electromagnetic coupling constants.

Thus, in this approach, one assumes that the disconnected
parts of the amplitude, coming from two-body interactions
in the final state, may be described via formation and decay
of resonances. A typical shape of the Dalitz plot for ππ and
πη production clearly exhibits the presence of π� and η�

components in the corresponding final states, thus lending
support to this method. At the same time, within such an isobar
model, angular momentum decomposition of the amplitude is
ruled by partial-wave transitions of a particular JP state to
quasi-two-body states, such as π� or η�. Therefore, such
an approach can hardly be used as a formal basis for a
general partial-wave analysis since it crucially depends on
the assumptions about the production mechanism.

It is worth to note that one of the main reasons for the
lack of a rigorous partial-wave analysis for ππ and πη

photoproduction is that there is no general recipe to deal with
reactions involving three particles in the final state. In contrast
to single-meson photoproduction, one faces here the technical
problems associated with three-body kinematics, where the
particle energies and angles are distributed continuously. As
a consequence, a conventional partial-wave decomposition of
the final state does not provide a multipole representation for
practical applications, primarily since there exist a variety
of ways to successively couple angular momenta of the
participating particles to a total angular momentum.

The issue of a model-independent determination of the
amplitude for the production of two pseudoscalars has also
been discussed in Ref. [23]. In this work, the various
polarization observables are expanded in terms of helicity
or transversity amplitudes without making a partial-wave
decomposition. For these two representations, the authors
obtained general expressions for those observables on which
a complete experiment may be based.

In this paper, we present a partial-wave expansion for the
photon-induced production of two pseudoscalars on a nucleon,
which should be of minimal model dependence. It is based
on the correct determination of the partial-wave amplitudes
for these reactions with no built-in prejudices concerning the
production mechanism. Similar methods have been used to
analyze pion production in πN collisions (see, for example
Refs. [24,25]). General formal developments may also be
found in Ref. [26].

The paper is organized as follows. In the next section,
we introduce the partial-wave expansion and construct the
transition amplitude for photoproduction of two pseudoscalar
mesons. In Sec. III, we use the so far developed formalism to
discuss some gross features of π0π0 and π0η photoproduction.
Finally, some general conclusions are drawn in Sec. IV.

II. THE FORMALISM

In this section, we collect the formulas used in the present
analysis. As a starting point, the formal results of Ref. [27] are
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used. There, the formal expressions for the helicity amplitudes
as well as for the cross section and the recoil polarization
were derived, including various polarization asymmetries with
respect to polarized photons and nucleons.

A. T matrix

We consider here the photoproduction of two pseudoscalar
mesons, denoted m1 and m2 with masses M1 and M2,
respectively. First, we determine the T -matrix elements of the
electromagnetic m1m2 production current �Jγm1m2 between the
initial nucleon and the final m1m2N state. The four-momenta
of incoming photon, outgoing mesons, and initial and final
nucleons are denoted by (ωγ , �k ), (ω1, �q1 ), (ω2, �q2 ), (Ei, �pi ),
and (E, �p ), respectively. The helicities of photon and initial
and final nucleons are denoted by λ, μ, and ν, respectively. In
a general frame, the transition matrix element is given by

Tνλμ = −(−)〈 �p, �q, ν | �ελ · �Jγm1m2 (0)| �pi, μ〉, (1)

where for the description of the final state we choose the
final nucleon momentum �p = (p, θp, φp) and the relative
momentum of the two mesons �q = 1

2 (�q1 − �q2 ) = (q, θq, φq).
For the following formal considerations, the knowledge of the
specific form of the current �Jγm1m2 is not needed.

After separation of the overall center-of-momentum (c.m.)
motion, the general form of the T matrix is given by

Tνλμ = −(−)〈 �p, �q, ν |Jγm1m2, λ(�k )|μ〉. (2)

It is convenient to introduce a partial-wave decomposition of
the outgoing final state according to

(−)〈 �p, �q, ν|
= 1

4π

∑
lpjpmplqmqJM

l̂p l̂q

(
lp0

1

2
ν|jpν

)
× (jpmplqmq |JM) D

jp

νmp
(φp,−θp,−φp)

×D
lq
0mq

(φq,−θq,−φq) (−)

〈
qp;

[(
lp

1

2

)
jplq

]
JM

∣∣∣∣,
(3)

where the “hat” symbol means, for example, l̂q = √
2lq + 1.

Furthermore, lq and mq denote total angular momentum and
projection, respectively, of the two mesons, lp, jp, and mp

orbital and total nucleon angular momentum and its projection,
respectively, and J and M the total angular momentum of
the partial wave and its projection. All projections refer to
a quantization axis to be determined later. For the rotation
matrices D

j

m′m, we follow the convention of Rose [28].
The multipole decomposition of the current reads with �k =

(k, θγ , φγ ) as

Jγm1m2,λ(�k ) = −
√

2π
∑
LML

iLL̂OλL
ML

(k) DL
MLλ(φγ , θγ ,−φγ ),

(4)

where OλL
ML

contains the transverse electric and magnetic
multipoles

OλL
ML

= EL
ML

+ λML
ML

. (5)

For the initial nucleon state, we have∣∣∣∣1

2
μ

〉
= (−1)

1
2 +μ

∑
m=±1/2

∣∣∣∣1

2
m

〉
D

1/2
m−μ(φγ , θγ ,−φγ ) . (6)

Using the Wigner-Eckart theorem and the sum rule for rotation
matrices∑

MLm

(
J L 1

2

−M ML m

)
D

1/2
m−μ(R)DL

ML λ(R)

= (−1)λ−μ−M

(
J L 1

2
μ − λ λ −μ

)
DJ

M λ−μ(R) , (7)

one obtains

Tνλμ = (−1)ν+λ

2
√

2π

∑
LlpjpmplqmqJM

(−1)lp+jp+lq+J−M iL L̂ Ĵ l̂q l̂p ĵp

(
lp

1
2 jp

0 ν −ν

)

×
(

jp lq J

mp mq −M

)(
J L 1

2

μ − λ λ −μ

) 〈
p q;

[(
lp

1

2

)
jplq

]
J ||OλL||1

2

〉
×D

jp

ν mp
(φp,−θp,−φp) D

lq
0 mq

(φq,−θq,−φq) DJ
M λ−μ(φγ , θγ ,−φγ ). (8)

Parity conservation results in the following symmetry relation:

T−ν−λ−μ(�q,�p,�γ ) = (−1)λ−μ−νTνλμ(�̄q, �̄p, �̄γ ), (9)

where for � = (θ, φ) we have introduced the notation �̄ =
(θ,−φ) .

Now we turn to the choice of our coordinate system in
the overall center-of-momentum frame. We use the so-called
“rigid body” system Kf s , associated with the final-state plane

spanned by the final three particles, in which the z axis is taken
to be the normal to this plane and parallel to �p × �q1. Thus, the
x and y axes are in the final scattering plane (see Fig. 1).

At a given three-particle invariant energy W , the relative
orientation of the final particles within the final-state plane is
characterized by three independent variables for which we take
the angle φp of the final nucleon momentum and the energies
of the two mesons ω1 and ω2 (see Fig. 1). After straightforward
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FIG. 1. Definition of the coordinate system in the c.m. system.

algebra, one obtains for the final nucleon momentum p

p = | �p | =
√

(W − ω1 − ω2)2 − M2
N, (10)

and for the relative momentum q of the two mesons

q2 = 1

2

(
ω2

1 + ω2
2 − M2

1 − M2
2

) − p2

4
. (11)

The orientation of the chosen coordinate system with respect to
the beam axis may be specified by �γ = (φγ , θγ ), the spherical
angles of the photon momentum �k with respect to Kf s . One
readily notes that in this coordinate system, one has θp = θq =
π/2 and therefore

D
jp

νmp
(φp,−θp,−φp) = (−1)ν−mpd

jp

νmp
(π/2) e−i(ν−mp)φp ,

(12)

D
lq
0mq

(φq,−θq,−φq) = (−1)mq d
lq
0mq

(π/2) eimqφq . (13)

As will be shown soon, instead of φq , only φqp = φq − φp is
needed. It is related to ω1 and ω2 by

cos φqp = 1

2qp

(
ω2

2 − ω2
1 − M2

2 + M2
1

)
, (14)

with p and q from Eqs. (10) and (11), respectively. Thus,
we will take as independent variables besides the photon
angles �γ = (θγ , φγ ) and φp the energies of the two mesons
ω1 and ω2 instead of p and φqp and obtain the following
representation of the T -matrix element making the angular
dependence explicit:

Tνλμ(φp, ω1, ω2,�γ )

= ei(λ−μ)φγ e−iνφp

×
∑
JM

tJM
νλμ(ω1, ω2) e−iMφγpdJ

M λ−μ(θγ ), (15)

with the contribution of the final partial wave

tJM
νλμ(ω1, ω2) = tJM

νλμ(φqp)

=
∑

lpjpmpL

(
lp

1
2 jp

0 ν −ν

)(
J L 1

2

μ − λ λ −μ

)

× d
jp

ν mp
(π/2) ei(M−mp)φqp OλLJ

M (lpjpmp),

(16)

which shows the explicit dependence on φqp. Furthermore, we
have introduced for convenience the notation

OλLJ
M (lpjpmp)

= (−1)1+J Ĵ

2
√

2π

∑
lqmq

iL(−1)lp+jp+lq l̂p ĵp l̂q L̂ d
lq
0 mq

(π/2)

×
(

jp lq J

mp mq −M

) 〈
p q;

[(
lp

1

2

)
jplq

]
J ||OλL||1

2

〉
.

(17)

The following symmetry properties hold for the
OλLJ

M (lpjpmp):

O−λLJ
M (lpjpmp) = (−)L+lp+M−mpOλLJ

M (lpjpmp), (18)

OλLJ
−M (lpjp − mp) = (−)jp+JOλLJ

M (lpjpmp), (19)

where the first one is a consequence of parity conservation.
The symmetry relation of Eq. (9) leads to the following

symmetry property of the amplitudes tJM
νλμ:

tJM
−ν−λ−μ(φqp) = (−1)ν+MtJ−M

νλμ (−φqp). (20)

This means that for each J , the number of independent
amplitudes is 4(2J + 1).

The complex functions tJM
νλμ, depending on the meson

energies ω1 and ω2 only, provide a complete description of
the process in a manner analogous to the description of a
single-meson photoproduction in terms of multipoles. It is
worth to point out that, in contrast to the binary reactions, the
partial amplitudes are functions of the c.m. energies of the final
particles and, therefore, are to be determined for every point
of the Dalitz plot.

B. Differential cross section

For the unpolarized differential cross section, one obtains,
with the T matrix of Eq. (15),

d4σ0

dω1dω2d cos θγ dφγp

= c(W )
1

4

∑
νλμ

|Tνλμ|2

=
∑
jm

Sjm(ω1, ω2)Yjm(θγ , φγp),

(21)
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where we have defined

Sjm(ω1, ω2)

=
√

π

2
c(W ) ĵ

∑
J ′M ′JM

(−1)−M ′
(

J ′ J j

M ′ −M −m

)
×

∑
νλμ

(−1)λ−μ

(
J ′ J j

λ − μ μ − λ 0

)
tJ

′M ′
νλμ (ω1, ω2)∗

× tJM
νλμ(ω1, ω2) (22)

with

c(W ) = M2
N

4(2π )4(W 2 − M2
N )

(23)

as a kinematical factor. One should note that the differential
cross section depends on the relative angle φγp only besides
on ω1, ω2, and θγ as is immediately evident in the absence of
polarization effects.

In terms of the electromagnetic multipole contributions,
one finds

Sjm(ω1, ω2) =
√

π

2
c(W ) ĵ

∑
JpMp

Ĵ 2
p d

Jp

0Mp
(π/2) ei(m+Mp)φqp

×
∑

l′pj ′
pm′

plpjpmp

(−1)j
′
p−jp−mp

(
l′p lp Jp

0 0 0

)(
j ′
p jp Jp

m′
p −mp −Mp

){
l′p lp Jp

jp j ′
p

1
2

}

×
∑

J ′M ′JML′L

(−1)J
′+J+M ′+L′+L′

(
J ′ J j

M ′ −M −m

){
J ′ J j

L L′ 1
2

}

×
∑

λ

(−)λ
(

L L′ j

λ −λ 0

)
OλL′J ′

M ′ (l′pj ′
pm′

p)∗ OλLJ
M (lpjpmp). (24)

If, with respect to the fixed final-state plane, only the direction of the final nucleon is detected, one obtains a semi-inclusive
differential cross section by integrating the expression in Eq. (21) over ω1 and ω2 (setting without loss of generality φp = 0,
which means that φγ is measured relative to the direction of the nucleon momentum):

dσ2/d�γ =
∫

dω1dω2
d4σ0

dω1dω2d�γ

=
∑
jm

S̃jmYjm(�γ ) (25)

as an expansion in terms of spherical harmonics in �γ with

S̃jm =
∫

dω1dω2Sjm(ω1, ω2)

=
√

π

2
c(W ) ĵ

∑
J ′M ′JM

(−1)−M ′
(

J ′ J j

M ′ −M −m

) ∑
νλμ

(−1)λ−μ

(
J ′ J j

λ − μ μ − λ 0

) ∫
dω1dω2t

J ′M ′
νλμ (ω1, ω2)∗ tJM

νλμ(ω1, ω2),

(26)

or in terms of the multipoles

S̃jm =
√

π

2
c(W ) ĵ

∑
JpMp

Ĵ 2
p d

Jp

0Mp
(π/2)

∑
l′pj ′

pm′
plpjpmp

(−1)j
′
p−jp−mp

(
l′p lp Jp

0 0 0

) (
j ′
p jp Jp

m′
p −mp −Mp

){
l′p lp Jp

jp j ′
p

1
2

}

×
∑

J ′M ′JML′L

(−1)J
′+J+M ′+L′+L′

(
J ′ J j

M ′ −M −m

) {
J ′ J j

L L′ 1
2

}

×
∑

λ

(−)λ
(

L L′ j

λ −λ 0

) ∫
dω1dω2 ei(m+Mp)φqp OλL′J ′

M ′ (l′pj ′
pm′

p)∗ OλLJ
M (lpjpmp). (27)

Since d2σ0/d�γ is a real quantity, one has the property

S̃∗
jm = (−)mS̃j−m. (28)

Furthermore, the cross section should be invariant under the
simultaneous inversion of �k and �p, i.e., under the transforma-
tion θγp → π − θγp. Thus, one finds as additional symmetry
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property

S̃jm = (−)j+mS̃jm, (29)

from which the selection rule S̃jm = 0 for j + m = odd
follows. This property can also be shown straightforwardly
using Eq. (26) with the help of Eq. (19). For identical mesons,
one finds from Eq. (20) an additional symmetry, namely,

S̃j−m = (−)mS̃jm, (30)

which leads in conjunction with Eq. (28) to Im S̃jm = 0.
It is more convenient to use instead of the differential cross

section the corresponding normalized quantity

W (�γ ) ≡ 1

σ0

d2σ0

d�γ

= 1

4π
+

∑
jm,j�1,j+m=even

ĵ√
4π

WjmYjm(�γ ), (31)

where the total cross section σ0 is given by

σ0 = 2
√

πS̃00

= π c(W )
∫

dω1dω2

∑
νλμJM

1

2J + 1

∣∣tJM
νλμ(ω1, ω2)

∣∣2
, (32)

and the expansion coefficients by

Wjm = 2
√

π

σ0 ĵ
S̃jm = π

σ0
c(W )

∫
dω1dω2

×
∑

νλμJ ′JM

(−1)λ+M+μ

(
J ′ J j

M −M 0

)

×
(

J ′ J j

λ − μ μ − λ 0

)
tJ

′M
νλμ (ω1, ω2)∗ tJM

νλμ(ω1, ω2).

(33)

Using the spherical harmonics expansion (31) should en-
able one to interpret the experimental results without resorting
to a particular model. This expression is an analog to the
expansion of the single-meson photoproduction cross section
in terms of Legendre polynomials. The coefficients Wjm are
hermitean forms in the partial amplitudes tJM

νλμ. They obviously
contain the whole information on the dynamics of the reaction
with unpolarized particles and their values may in principle be
extracted from the measurements and compared with model
predictions. The selection rule Wjm = 0 for j + m = odd may
be used for a model-independent partial-wave analysis in the
low-energy region of the reaction, where usually only the first
few waves contribute.

Otherwise, an integration over the angles θγ and φγ gives
the distribution of the events over the Dalitz plot

d2σ

dω1dω2
= π c(W )

∑
νλμJM

1

2J + 1

∣∣tJM
νλμ(ω1, ω2)

∣∣2
. (34)

Thus, as is well known, the partial waves of different J do
not interfere in the Dalitz plot. In spite of its simplicity,
the expression in Eq. (34) can hardly be very useful in
reconstructing even the moduli of the amplitudes tJM

νλμ. Its

use implies that one is able to establish a correspondence
between variation of the amplitude as function of (ω1, ω2) and
a specific value of the total angular momentum J . Obviously,
for this purpose, a detailed model is needed which relates J

to particular decay channels. In this sense, using the moments
Wjm should be more promising.

It is clear that the information on the unpolarized differential
cross section only is insufficient for a model-independent
determination of the amplitudes tJM

νλμ. In the general case
of photoproduction of two pseudoscalars, eight independent
complex functions are required to fix the spin structure of the
amplitudes. Since the overall phase is always arbitrary, one has
to measure 15 independent observables at each kinematical
point. This issue is discussed in detail in Ref. [23].

Apart from technical difficulties associated with measuring
and handling such a large number of observables, the practical
realization of the partial-wave analyses is complicated since
the number of important amplitudes tJM

νμ , which should be
included into the analysis, grows rapidly as the energy
increases. Furthermore, as already discussed above, these
amplitudes depend not only on the total c.m. energy but also
on the energies of the final particles and therefore should in
general be determined at each point (ω1, ω2).

In this respect. the complete experiment allowing a model-
independent determination of tJM

νμ seems very complicated.
Therefore, at least in the foreseeable future, different versions
of the isobar model will probably remain the major tool
to study double-meson photoproduction. In the ideal case,
to make a step beyond the limitations of the isobar model
approach, one can try to embody unitarity and analyticity
of the reaction matrix. The most natural and technically
manageable way to treat these issues is to use the multichannel
three-body scattering model (in the energy region where the
production of three or more mesons may be neglected). In
particular, such an approach will allow one to take exactly
into account the disconnected parts of the overall amplitude.
As already mentioned in the Introduction, the latter come
from the interaction in the two-body subsystems in the final
state. In the isobar model, they are approximated by the
known two-body resonances, such as, e.g., �(1232) for πN

pair and ρ(770) or f0(600) for ππ . Once completed, the
three-body approach should significantly improve the quality
of the phenomenological ansatz, which then may be used to
study double-meson production in a more model-independent
way. Some important steps toward this goal have already been
done in Ref. [29].

Furthermore, in certain cases, e.g., when the reaction is
dominated by a single partial wave, using the moments Wjm

enables one at least to draw a qualitative conclusion with
respect to the partial-wave structure. As an illustration, we
consider in the next section the theoretically interesting case
of π0π0 and π0η photoproduction on a proton.

III. APPLICATION TO γ p → π 0π 0 P AND γ p → π 0ηP

The measured total cross section for γp → π0π0p exhibits
a rather steep rise in the energy region below the D13(1520)
resonance (see, e.g., [30]). At the same time, the existing
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models with a dominant contribution from D13(1520) and a
moderate role of the Roper resonance predict a cross section
which increases rather slowly with increasing energy and is,
therefore, far below the data. It is reasonable to assume that
the almost linear energy dependence of the data indicates
a contribution of a large fraction of s waves in the final
state. The main mechanism providing the s-wave part in ππ

photoproduction is the � Kroll-Ruderman term, appearing
after minimal substitution of the electromagnetic interaction
into the πN� vertex. This term, however, vanishes in the
neutral channel. The situation is similar to that in single π0

photoproduction at low energies. Here, the Kroll-Ruderman
does not enter the amplitude, thus leading to a visible
suppression of the cross section for γp → π0p in comparison
to the π+ or π− case.

A possible large contribution of the Roper resonance
P11(1440) in the region Eγ = 500–600 MeV as assumed in
Ref. [14] seems to be excluded by more recent analyses.
Furthermore, this assumption should be in disagreement with
the experimental results of Ref. [31] for the helicity-dependent
total cross section �σ = σ3/2 − σ1/2. There, it was found that,
in the energy region up to at least Eγ = 800 MeV, the 3/2 part
dominates over the 1/2 part. This means that the P11 wave,
which contributes only to σ1/2, should be overwhelmed by the
waves with higher spins.

Thus, the question concerning the partial-wave structure
of the amplitude for γN → π0π0N is still open. In order to
reveal in this case the mechanism responsible for an unusually
large fraction of the s-wave part in the π0π0 amplitude, it
is useful to analyze the moments Wjm throughout the energy
range from threshold up to the D13(1520) peak. In order to
keep the number of parameters limited, one can use only the
lowest partial waves. Their choice is inspired by the previous
isobar model analyses of Refs. [13,15,18], showing that only
waves with J � 5/2 are important below Eγ = 1 GeV.

As an example, we show in Fig. 2 the variation of Wjm for
j � 3 as predicted by the ππ model of Ref. [18]. The model
[18] is based on a traditional phenomenological Lagrangian
approach with Born and resonance amplitudes calculated on
the tree level. The interaction within the πN and ππ pairs
is effectively taken into account via �, ρ, and σ . The ππN

state is then produced through intermediate formation of π�,
ρN , and σN channels. The contributions from the resonances
are parametrized in the usual way in terms of a Breit-Wigner
ansatz with energy-dependent widths. For the parameters of
the model, i.e., masses, partial widths, and electromagnetic
couplings of resonances, the corresponding average values
from the compilation of the Particle Data Group were
used.

In the case of π0π0 production due to the identity of the
two mesons, we have an additional symmetry relation

W (θγ , φγ ) = W (θγ , 2π − φγ ), (35)

which is a consequence of the symmetry property in Eq.
(30). The moments for j = 3, 4 are small as are those for
higher values of j , which are not shown. In the region
Eγ = 650–800 MeV, the moments W11 and W20 exhibit a
crucial energy dependence due to the D13(1520) resonance,
dominating the reaction γp → π0π0p at this energy. Large
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FIG. 2. The moments Wjm for γp → π 0π 0p as functions of the
photon laboratory energy, normalized such that W00 = 1.

values of the moments with j odd indicate the presence of
waves with opposite parities. In particular, the structure in
W11 is due to an interference between the wave JP = 3/2−
dominated by D13(1520) and the waves JP = 1/2+ and 3/2+.
The latter are saturated, apart from the Roper resonance, by
the Born terms. The contribution of W11 becomes minimal in
magnitude in the region around Eγ = 650 MeV, where the real
part of the D13(1520) propagator vanishes, and it interferes
weakly with the predominantly real Born amplitudes. Thus,
if our notion about the π0π0 photoproduction mechanism is
correct, we expect a rather small value of the moments W20

and W22 and a relatively large value of W11 in the region below
the D13(1520) peak.

In this respect, we would like to note that according to the fit
in Ref. [20], there must be a large contribution of the resonance
D33(1700) to the channel π0π0p in a wide energy range
from the lowest energies up to Eγ = 1.4 GeV. In particular,
inclusion of this resonance into the amplitude explains both
the steep rise of the total cross section below Eγ = 700
MeV and the second peak observed at Eγ = 1.1 GeV. If
the resonance D33(1700) is indeed so important in the π0π0

channel, it should increase the values of W20 and W22. All
in all, a measurement of these moments will help us to
understand the role of d-wave resonances with J = 3/2 in
π0π0 photoproduction.

As for π0η photoproduction, the partial-wave structure
of the corresponding amplitude was investigated in detail in
Refs. [3,4,19,21]. There, it was shown that the JP = 3/2−
wave, containing D33(1700) and probably D33(1940), appar-
ently dominates the reaction in a wide region from threshold
to about Eγ = 1.7 GeV. Other waves, primarily 1/2+ and
5/2+, manifest themselves in angular distributions of the
final particles mostly via interference with the dominant 3/2−
wave.

035502-6



PARTIAL-WAVE EXPANSION FOR PHOTOPRODUCTION OF . . . PHYSICAL REVIEW C 85, 035502 (2012)

-0.05

 0

 0.05

 0.1

 1  1.1  1.2  1.3  1.4

Re W11
Im W11

-0.02

-0.01

 0

 0.01

 0.02

 1  1.1  1.2  1.3  1.4

W20

-0.04

-0.02

 0

 0.02

 0.04

 1  1.1  1.2  1.3  1.4

Re W22
Im W22

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 1  1.1  1.2  1.3  1.4

Eγ [GeV]

Re W31
Im W31

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 1  1.1  1.2  1.3  1.4

Eγ [GeV]

Re W 33
Im W 33

-0.01

-0.005

 0

 0.005

 0.01

 1  1.1  1.2  1.3  1.4

Eγ [GeV]

W40

FIG. 3. Same as in Fig. 2 for γp → π 0ηp. The dashed lines represent the imaginary parts.

In Fig. 3, we present the energy dependence of the
expansion coefficients for γp → π0ηp obtained using the
isobar model of Ref. [21]. Here, the relation (30) does
not hold, so that the moments Wjm with m 
= 0 have
nonvanishing imaginary parts (dashed lines in Fig. 3). The
calculation follows the same line as for the π0π0 case.
Namely, the final π0ηN state results from the two-step decay
of baryon resonances via the intermediate quasi-two-body
channels η� and π0S11(1535). The parameters of the model
were fitted to the angular distributions of the final particles
measured in Ref. [9]. The fitting procedure is described
in [21] and the reader is referred to this work for more
details.

First, as one can see in Fig. 3, in spite of the mentioned
dominance of the 3/2− wave, the values of W20 and W22 are
small. This is because of the closeness of the 3/2 and 1/2
helicity couplings of the resonance D13(1700) (see, e.g., the
discussion in Ref. [21]). As a result, the hermitean forms in
t

3/2M

νλμ entering W20 and W22 according to (33) almost cancel
each other. At the same time, we obtain a rather large value
of the coefficient W11, mainly determined by the interference
between the resonances D33(1700) and P31(1750). According
to these results, we may expect that the data for π0η will
show relatively small values of all moments except for W11.
If this prediction is not confirmed by measurements, one
has to critically review the existing conceptions about the
dynamics of π0η photoproduction, based on the results from
Refs. [3,10,12,21,22].

IV. CONCLUSION

Practical methods for the analysis of the partial-wave
structure of reactions with three particles in the final state
are obviously needed for the study of the dynamical features

of two-meson photoproduction. The formalism used in this
paper specifies the final ππN states by means of two c.m.
energies and two angles, determining the orientation of the
final-state momentum triangle (final-state three-particle plane)
with respect to the beam axis. The partial-wave decomposition
may then be performed via a transition from the continuum
variables (angles) to the set of discrete variables JM being
the total angular momentum J and its projection M on
the normal to the three-particle plane. The corresponding
partial-wave amplitudes tJM

νλμ contain the whole information
on the production dynamics. We would like to stress the fact
that this method does not involve a decomposition with respect
to the angular momenta of the final two-body subsystems and
is in principle free from any assumptions about the production
mechanism.

In this paper, we have considered only the unpolarized
differential cross section. Although this quantity does not
allow a unique determination of the amplitudes tJM

νλμ, the
information on the angular distribution of the participating
particles can serve to place restrictions on contributions of
states with definite angular momentum and parity. This in turn
is crucial for our understanding of the resonance content of
the reaction. For this purpose, the differential cross section
has been expanded in terms of spherical harmonics with
coefficients or moments Wjm in a manner similar to the
representation of the binary cross section in terms of Legendre
polynomials.
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