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15Universitá di Genova, 16146 Genova, Italy
16The George Washington University, Washington, DC 20052, USA

17Idaho State University, Pocatello, Idaho 83209, USA
18INFN, Sezione di Ferrara, 44100 Ferrara, Italy

19INFN, Laboratori Nazionali di Frascati, 00044 Frascati, Italy
20INFN, Sezione di Genova, 16146 Genova, Italy

21INFN, Sezione di Roma Tor Vergata, 00133 Rome, Italy
22Institut de Physique Nucléaire ORSAY, Orsay, France
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We report the first extraction of the pion-nucleon multipoles near the production threshold for the nπ+ channel
at relatively high momentum transfer (Q2 up to 4.2 GeV2). The dominance of the s-wave transverse multipole
(E0+), expected in this region, allowed us to access the generalized form factor G1 within the light-cone sum-rule
(LCSR) framework as well as the axial form factor GA. The data analyzed in this work were collected by the nearly
4π CEBAF Large Acceptance Spectrometer (CLAS) using a 5.754-GeV electron beam on a proton target. The
differential cross section and the π -N multipole E0+/GD were measured using two different methods, the LCSR
and a direct multipole fit. The results from the two methods are found to be consistent and almost Q2 independent.

DOI: 10.1103/PhysRevC.85.035208 PACS number(s): 25.30.Rw, 13.40.Gp

I. INTRODUCTION

Pion threshold photo- and electroproduction has a long
history with continuous interest from both experimental
and theoretical sides. These studies are of interest because
the vanishing pion mass approximation in chiral symmetry,
supplemented by current algebra, allows exact predictions to
be made for the threshold cross sections, so-called low-energy
theorems (LET) [1–3]. As a prominent example, the LET
establish a connection between charged pion electroproduction
and the axial form factor of the nucleon. In the real world, the
finite pion mass cannot be ignored (mπ/mN ∼ 1/7). The study
of finite pion mass corrections to LET was a topical field in
high-energy physics in the late 1960s and early 1970s before
the discovery of Bjorken scaling in deep inelastic scattering
(DIS) and the advent of quantum chromodynamics (QCD) [4].
(A monograph on pion-electroproduction [5] addresses many
of these developments.)

In the 1980s and 1990s, a renewed interest in threshold
pion production was triggered by the extensive data that
became available on γp → π0p [6,7] and γ ∗p → π0p at
Q2 = 0.04-0.1 GeV2 [8] (q = pe − pe′ ,Q2 = −q2). At the
same time, the advent of chiral perturbation theory (CHPT)
has allowed the systematic expansion of physical low-energy
observables in powers of the pion mass and momentum. The
new insight brought by CHPT calculations is that certain
loop diagrams produce nonanalytic contributions to scattering
amplitudes that are lost in the naive expansion in the pion
mass [4,9]. The expansion at small photon virtualities Q2

has to be done with care as the limits mπ → 0 and Q2 → 0
do not commute in general [10]. The LET predictions that
include CHPT corrections seem to be in good agreement with
experimental data on pion photoproduction [11]. Experimental
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results on the s-wave electroproduction cross section for
Q2 ∼ 0.1 GeV2 are also consistent with CHPT calculations
when chiral loops are taken intoaccount [12,13].

We report the extraction of the multipole E0+ near the pion
threshold in the charged single-pion electroproduction channel
(ep → e′nπ+) with a nearly 6-GeV electron beam incident on
a proton target. This experimental data set allowed us to study
near-threshold pion production at photon virtualities Q2 up
to ∼4.2 GeV2. This experiment is a major step forward and
requires very good energy resolution in order to approach the
pion production threshold, where the p-wave contribution of
the M1+ multipole is suppressed.

II. LIGHT CONE SUM-RULE MODEL

In the traditional derivation of LET using the partially
conserved axial current (PCAC) approximation and current
algebra, Q2 is not assumed to be small and the expansion in
powers of the pion mass involves two parameters: mπ/mN

and mπQ2/m3
N [4,9]. At high Q2, the second parameter can

still be kept small but, in this case, the pion is not soft in
the target rest frame, even though at threshold it is soft in
the π -N final-state center-of-mass frame. For the threshold
kinematics, this affects, in particular, the contribution of pion
emission from the initial state [14]. The LET is formally valid
(modulo CHPT loop corrections [10]) for momentum transfers
as large as Q2 ∼ m2

N . However, no dedicated experimental
study of threshold pion production in the Q2 ∼ 1 GeV2 region
has been carried out so far. For mπQ2/m3

N = O(1), the
LET breaks down: The initial state pion radiation occurs at
time scales of the order 1/mN rather than 1/mπ , requiring
additional contributions of hadronic intermediate states other
than the nucleon. Finally, at very large momentum transfers
(Q2 � 1 GeV2), one can factorize hard-scale contributions
as coefficient functions in front of soft contributions involving
small momenta, allowing the use of current algebra (or CHPT)
for the latter but not for the amplitude as a whole [14].

For asymptotically large Q2, the standard perturbative QCD
(pQCD) collinear factorization technique [15,16] becomes
applicable, and the helicity-conserving E0+ multipoles can
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be calculated (at least for mπ = 0) in terms of chirally rotated
nucleon distribution amplitudes. Resolving the onset of the
pQCD regime at very large momenta is difficult because of the
competition between the factorized contribution, proportional
to [αs(Q)/2π ]2 (which runs with Q2), and the nonperturbative
soft contributions. The latter are nominally suppressed by extra
powers of Q2 but are susceptible to end-point contributions
that cause them to contribute even at very high Q2.

The light-cone sum-rule (LCSR) approach has addressed
this problem, and a realistic QCD-motivated model for the Q2

dependence of both the transverse E0+ and the longitudinal
L0+ s-wave multipoles has been developed [17] for the Q2 ∼
1–10 GeV2 near-threshold region that can now be accessed by
the presented experimental data. A technique was developed
[18] to calculate baryon form factors for moderately large Q2

using LCSR [19,20]. The same technique [18] is applied to
pion electroproduction. This approach is attractive because in
LCSR, soft contributions to the form factors are calculated in
terms of the same nucleon distribution amplitudes that enter the
pQCD calculation without double counting. Thus, the LCSR
provide the most direct relation of the hadron form factors
and nucleon distribution amplitudes that is currently available,
without using other nonperturbative parameters.

The relevant generalized form factors were estimated in
the LCSR approach [21] for the range of momentum transfers
Q2 ∼ 5–10 GeV2. For this work, the sum rules have been
rederived in Ref. [21], taking into account the semidiscon-
nected pion-nucleon contributions in the intermediate state.
The applicability of the sum rules can be extended to the
lower Q2 region, and the LET are indeed reproduced at
Q2 ∼ 1 GeV2 to the required accuracy O(mπ ). The results
presented here essentially interpolate between the large Q2

limit considered in Ref. [21] and the standard LET predictions
at low momentum transfers. Two generalized form factors
are introduced that describe the Q2 dependence of the s-
wave multipoles of pion electroproduction at the threshold
kinematics. In a simplified approach, the LCSR correlation
function for the electroproduction close to threshold shows
dominance of s-wave form-factor-like contributions.

III. THE GENERALIZED FORM FACTORS G1 AND G2

FROM LCSR

A. Differential cross sections and form factors

In the one-photon-exchange approximation, the single pion
electroproduction cross section factorizes as

d4σ

dQ2dWd�∗
π

= |J |�v

d2σu

d�∗
π

, (1)

where

|J |�v = α

2π2Q2

(
W 2 − M2

p

)
Ef

2MpEi(1 − ε)
,

ε =
[

1 + 2

(
1 + ν2

Q2

)
tan2 θe

2

]−1

,

and

d2σu

d�∗
π

= σT + εσL + εσT T cos 2φ∗
π +

√
2ε(1 + ε)σLT cos φ∗

π .

The parameter ε represents the virtual photon polarization
and �v is the flux of virtual photons. Ei and Ef are energies
of the initial and scattered electrons, respectively. The angle
φ∗

π is the azimuthal rotation of the nπ+ plane with respect
to the electron-scattering plane (e, e′), ν (=Ei − Ef ) is the
energy transfer of electron, θe is the polar angle of the scattered
electron in the Lab system, �∗

π is the solid angle of pion in
the center-of-mass frame, and W is the invariant mass. In the
absence of a transverse polarization of the target nucleon, the
cross section does not depend on φe. For an electron beam and
a proton target, the center-of-mass differential cross section
d2σu depends on the virtual photon polarization (ε) through
four structure functions: σT + εσL and the interference terms
σT T and σLT . Four structure functions are determined by a
fit to the φ∗

π -dependent differential cross section. The partial
wave decomposition by Legendre polynomials of the structure
functions in the limit of angular momenta l � 2 is given by [17]

σT + εσL =
n∑

l=0

DT +L
l Pl(cos θ∗

π ),

σT T = sin2 θ∗
π

n−2∑
l=0

DT T
l Pl(cos θ∗

π ), and (2)

σLT = sin θ∗
π

n−1∑
l=0

DLT
l Pl(cos θ∗

π ),

where the coefficients (DT +L
0 , DT +L

1 , DT +L
2 , DT T

0 , DLT
0 , and

DLT
1 ) depend on seven complex multipoles since the Legendre

coefficients are directly related to multipole decomposition.
The quantity θ∗

π is the π+ polar angle in the center-of-mass
frame. In the LCSR approach in the pion threshold region
with vanishing pion mass, the Legendre coefficients can be
described in terms of the generalized form factors by

DT +L
0 = 1

f 2
π

[
4 �ki

2
Q2

m2
N

∣∣Gnπ+
1

∣∣2 + cπ
2gA

2 �kf

2

W 2 − m2
N

Q2m2
NGn

M
2

+ ε

(
�ki

2∣∣Gnπ+
2

∣∣2 + 4cπ
2gA

2 �kf

2

W 2 − m2
N

m4
NGn

E
2

)]
,

DT +L
1 = 1

f 2
π

4cπgA|ki ||kf |
W 2 − m2

N

(3)

× [
Q2Gn

MRe
(
Gnπ+

1

) − εm2
NGn

ERe
(
Gnπ+

2

)]
, and

DLT
0 = − 1

f 2
π

cπgA|ki ||kf |
W 2 − m2

N

×QmN

[
Gn

MRe
(
Gnπ+

2

) + 4Gn
ERe

(
Gnπ+

1

)]
,

where Gn
M and Gn

E are the magnetic and electric Sachs form
factors of the neutron (due to pion emission off the initial
proton), cπ = √

2 is the isospin factor, fπ = 93 MeV is the
pion decay constant, and gA = 1.267 is the axial coupling.
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For charged pion production additional contributions, G
n,π+
1,2

arise from the chiral rotation of the electromagnetic current.
These are not present for neutral pion production. The
Legendre moment DT T is zero since d waves are absent.
Parametrizations developed previously [22] for the electric
and magnetic neutron form factors (Gn

M and Gn
E , respectively)

are used in this analysis.

B. Gn
E dependence on G1 and G2

As described above, experimental data for Gn
E at high

momentum transfers are lacking. The quality of predictions
for Gn

E at high momentum transfers also remains poor. Thus,
the generalized form factor will be extracted here under the
assumption of mπ ∼ 0 with and without taking Gn

E into
account. At first, if we take Gn

E ∼ 0, Eq. (3) can be rewritten
as

DT +L
0 = 1

f 2
π

[
4 �ki

2
Q2

m2
N

∣∣Gnπ+
1

∣∣2 + cπ
2gA

2 �kf

2

W 2 − m2
N

Q2m2
NGn

M
2

+ ε
( �ki

2∣∣Gnπ+
2

∣∣2)]
,

DT +L
1 = 1

f 2
π

4cπgA|ki ||kf |
W 2 − m2

N

[
Q2Gn

MRe
(
Gnπ+

1

)]
,

and

DLT
0 = − 1

f 2
π

cπgA|ki ||kf |
W 2 − m2

N

QmN

[
Gn

MRe
(
Gnπ+

2

)]
. (4)

Here ki , kf are the center-of-mass momenta in the initial
and final states, respectively [17]. The LET relate the s-wave
multipoles, or, equivalently, the form factors G1 and G2 at the
pion threshold, to the nucleon electromagnetic and axial form
factors for the nπ+ channel as follows:

Q2

m2
N

Gnπ+
1 = gA√

2

Q2

Q2 + 2m2
N

Gn
M + 1√

2
GA

(5)

Gnπ+
2 = 2

√
2gAm2

N

Q2 + 2m2
N

Gn
E

since Gn
E ∼ 0 in Eq. (5) and Gnπ+

2 is negligible. Therefore,
only two terms survive from Eq. (4), since in the nπ+ channel
DLT

0 = 0 (being Gn
E = 0) and DT T

0 = 0 (due to absence of d

waves),

DT +L
0 = 1

f 2
π

[
4 �ki

2
Q2

m2
N

∣∣Gnπ+
1

∣∣2 + cπ
2gA

2 �kf

2

W 2 − m2
N

Q2m2
NGn

M
2

]

DT +L
1 = 1

f 2
π

4cπgA|ki ||kf |
W 2 − m2

N

[
Q2Gn

MRe
(
Gnπ+

1

)]
.

In this case, we can extract the Enπ+
0+ amplitude by using its

relation to the form factor (Gnπ+
1 ) [17] both normalized by the

dipole form factor (GD = 1/(1 + Q2/μ0)2, μ0 = 0.71):

Enπ+
0+

GD

=
√

4παem

8π

Q2
√

Q2 + 4m2
p

m3
pfπ

Gnπ+
1

GD

. (6)

Alternatively, we could take a nonzero value of Gn
E into

account, but there are no constraints on the imaginary parts of
G1 and G2, since only electron-helicity independent data are
available. The real parts of G1 and G2 can still be determined
from DT +L

1 and DLT
0 , but to solve for the imaginary parts of

G1 and G2, further assumptions are required.

IV. EXPERIMENT

The measurement was carried out with the CEBAF Large
Acceptance Spectrometer (CLAS) [23]. A schematic view of
CLAS is shown in Fig. 1. CLAS utilizes a magnetic field

Drift Chambers
Region 1
Region 2
Region 3

TOF Counters Cerenkov Counters

Large-angle Calorimeter
Electromagnetic Calorimeter

1 m

Drift Chambers
Region 1
Region 2
Region 3

TOF Counters

Main Torus Coils

Mini-torus Coils
1 m

FIG. 1. (Color online) Schematics of the CLAS detector system.
The top panel shows a horizontal cut through sectors 1 (upper
hemisphere) and 4 (lower hemisphere) along the beam line. The
beam enters from the left into CLAS. A GEANT-simulated event is
shown with an electron bending toward the beam line and a positive
particle in the opposite sector bending away from the beam. The
bottom panel shows a cut perpendicular to the beam line through the
center of CLAS.
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generated by six flat superconducting coils (main torus) in
an azimuthally symmetric arrangement. The coils generate an
approximately toroidal field distribution around the beam axis.
The six sectors of the magnet are independently instrumented
with 34 layers of drift cells for particle tracking, plastic
scintillation counters for time-of-flight (TOF) measurements,
gas threshold Cherenkov counters (CC) for electron/pion
separation and triggering purposes, and a scintillator-lead
sampling array (electromagnetic calorimeter or EC) for photon
and neutron detection, as well as triggering. To aid in
electron/pion separation, the EC is segmented into an inner
part facing the target and an outer part further away from the
target.

CLAS covers on average 80% of the full 4π solid angle
for the detection of charged particles in the laboratory frame.
Azimuthal angle acceptance is maximum at large polar angles
and decreases at forward angles. Polar angle coverage ranges
from about 8◦ to 140◦ for the detection of π+. Electrons are
detected in the CC and EC for polar angles from 15◦ to 55◦,
with this range being somewhat dependent on the momentum
of the scattered electron and the magnetic field strength.

The target is surrounded by a small toroidal magnet
(minitorus) with nonsuperconducting coils. This magnet is
used to shield the drift chambers closest to the target from the
intense low-energy electron background resulting from Møller
electron-scattering processes. In the current experiment, only
two charged particles need to be detected, the scattered
electron and the produced π+, while the full final state is
reconstructed using four-momentum conservation constraints.
The continuous electron beam provided by CEBAF is well
suited for measurements involving two or more final-state
particles in coincidence, leading to very small accidental
coincidence contributions of <10−3 for the instantaneous
luminosity of 1034 cm−2s−1 used in this measurement.

The specific experimental data set used for this analysis
was collected from October 2001 to January 2002, during the
CLAS e1-6 run period. The incident beam had an average
intensity of 7 nA and an energy of 5.754 GeV. The liquid
hydrogen target was 5 cm long and located 4 cm upstream
from CLAS center. The main torus magnet was set at 90% of its
maximum field. Empty-target runs were performed to measure
contributions from the target cell windows. We compared
our optimized beam energy of 5.754 GeV with the energy
calibrated by Hall-A, which is based on concurrent high-
resolution elastic electron-proton-scattering measurements.
Both beam energies agree within less than 6 MeV.

Raw data were subjected to the calibration and reconstruc-
tion procedures that are part of the standard CLAS data-
analysis chain. The reaction studied in this paper contributed
to only a small fraction of the total event sample, and a more
stringent event selection (“skimming”) was applied to select
events with one electron candidate and only one positively
charged track. These events were subject to further selection
criteria described in the following sections. The kinematic
range and bin size were optimized according to the available
statistics in the covered kinematic range. Table I reports
the kinematic range, bin size, and number of bins for the
relevant variables. Acceptance and radiative corrections were
specifically calculated for each bin given in Table I. The cross

TABLE I. The ranges of kinematical bins used in this analysis.

Variable Number Range Bin size
of bins

W 3 1.11–1.15 GeV 20 MeV
Q2 5 2.12–4.16 GeV2 Variable
cos θ∗

π 10 −1.0 to +1.0 0.2
φ∗

π 12 0◦ ∼ 360◦ 30◦ (cos θ∗
π � −0.1)

6 0◦ ∼ 360◦ 60◦ (cos θ∗
π < −0.1)

section is calculated by multiplying by the radiative correction
factors and dividing by the acceptance correction factors. The
θ∗
π is the polar angle of the detected positive pion in the

center-of-mass frame.

V. DATA ANALYSIS

A. Particle identification and corrections

For the particle identification (PID) and kinematic cor-
rections we applied the standard PID cuts for the near-
threshold physics regime. The total number of single-pion
events with W � 1.2 GeV (see Fig. 2) is approximately
4.55 × 104. Since PID and kinematic corrections have a strong
dependence on event statistics, our PID and corrections were
investigated before applying the W � 1.2 GeV cut to avoid
large uncertainties from such small statistics. Therefore, most
of the correction procedure for electrons and pions follows the
method described in the previous analysis [24] with optimized
parameters.

1. Electron identification

Electrons were tentatively identified in CLAS at the trigger
level during data acquisition by requiring a minimum amount

2

2.5

3

3.5

4

4.5

5

1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
1

10

ENTRIES           45539

W [GeV]
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2
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2 ]

0

50
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ENTRIES           45539
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*

φ π*
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eg
]

FIG. 2. (Color online) The kinematical coverage for pions used
in this analysis in terms of the momentum transfer Q2 versus the
center-of-mass energy W (top) and φ∗

π versus cos θ∗
π (bottom).
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FIG. 3. (Color online) Optimized sampling fraction constant
of EC versus electron momentum with W � 1.2 GeV for the
experimental data (left) and Monte Carlo simulation (right). The solid
lines (left) show the ±3σ cuts from all electron fit. P 1 is the sampling
fraction from fit.

of energy deposited in the electromagnetic calorimeters (EC)
in coincidence with a signal in the Cherenkov counters (CC).
This tentative identification was then improved by applying
additional requirements in the off-line analysis. Coincident
hits between the EC and CC were also matched with a track
reconstructed in a drift chamber (DC) in the appropriate
sector of CLAS. The direct correlation between the energy
deposited in the EC and the momentum obtained from the
track reconstruction in the DC was used to remove the residual
pion contamination.

About 30% of the total energy deposited in the EC is directly
measured in the active scintillator material; the remainder of
the energy is deposited mostly in the lead sheets interleaved
between the scintillator sheets as showering materials. To
improve the separation of electrons and pions, the ratio Etot/p

was used, where Etot and p are the total energy deposited in
the calorimeter and the deduced momentum for the particle,
respectively. This ratio, which is called the sampling fraction
(α), is nearly momentum independent for the range of electron
momenta (2.5 to 4 GeV) in this analysis. The sampling fraction
for electrons (determined by all electrons over the full W

range) was found to be 0.291 for this experiment, a value
roughly comparable with the estimate of 0.231 for that ratio
determined in a Monte Carlo simulation. Figure 3 shows the
application of the sampling fraction cut to experimental (left)
and simulated (right) data. The solid lines represent the ±3σ

sampling fraction cuts for the experimental data and the Monte
Carlo simulation in this analysis.

Most of the produced pions that passed through the EC were
minimum ionizing particles. These pions deposited energy
both in the inner and the outer stacks of the calorimeter
in amounts almost independent of their kinetic energy and
only related to the detector thickness. Pions were identified
by the precise correlation between the minimum total energy
deposited in the calorimeter, Etot, and the energy deposited
in the inner part of the calorimeter, Ein. To avoid continuous
triggering on noise, a minimum signal threshold was set for
the calorimeter. For this experiment, the threshold was set at a
level of 172 mV, such that only electrons with momenta greater
than about 640 MeV were detected.

A GEANT simulation (GSIM) was used to determine the
response of the electromagnetic calorimeter as a function of

FIG. 4. (Color online) z-vertex distribution for sector 3 before
(black solid line) and after (red solid line) vertex correction (left). The
vertex cuts are illustrated by the vertical dashed lines. Reconstructed
X and Y target positions, showing an offset of Xtgt = 0.90 mm and
Ytgt = −3.45 mm, respectively (right).

electron energy. When an electron hit is close to the calorimeter
edges, part of the shower leaks outside the device; in this case,
the energy cannot be fully reconstructed from the calorimeter
information alone. This problem was avoided by selecting
only those electrons lying inside a fiducial volume within the
electromagnetic calorimeter that excludes the detector edges.

Tracking information from the drift chambers was used
to reconstruct for each event an originating vertex location
in the target region. Particle identification was improved by
eliminating events from the analysis that had reconstructed
vertex positions outside the known volume of the target (which
included a small target misalignment from the beam axis).
For this experiment, these vertex requirements demanded that
the reconstructed z-vertex position (distance along the beam
axis from the center of CLAS, with positive values indicating
downstream of the center) lie in −80 mm < Zvtx < −8 mm.
We corrected the x- and y-vertex positions for the beam
centering on the target and the z-vertex cut was imposed on
the reconstructed vertex locations based on the beam axis.
Since the beam position was not precisely centered on the
target, with offsets of Xtgt = 0.90 mm and Ytgt = −3.45 mm,
the z vertex was corrected for this small misalignment of the
beam position before the z-vertex cut was imposed on the
reconstructed vertex location. Figure 4 (left) shows the z-vertex
distribution for sector 3 before and after the vertex correction
and the z-vetex cuts that have been applied. Figure 4 (right)
shows the transverse beam position. We also take an empty
target contribution into account.

Coincident hits between the EC and CC were also matched
with a track characteristic for a negative particle that is
reconstructed in the drift chambers of the same CLAS sector.
A lower threshold on the number of photoelectrons detected
in the photomultiplier tubes of the CC for an event provided
an additional cut for improving electron identification. The
number of photoelectrons detected in the CC sectors follows
a Poisson distribution, modified for irregularities in light
collection efficiency for the individual elements of the array.
For this experiment, a good electron event was required to have
more than 2.5 photoelectrons detected in CC.
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FIG. 5. (Color online) The particle velocity distribution β versus
particle momentum. The pion velocity sample is fit by a function of
the form A + exp(B + Cpπ ) to generate the β cut for both simulation
(upper) and experimental data (lower).

2. Pion identification

For π+ identification a track characteristic for positive
particles has to match with a corresponding hit in the TOF
system. Pions are then separated from other positively charged
particles based on their hadron velocity βh = v/c, which is
obtained from the difference between the vertex start time and
the time-of-flight of the TOF counters (SC), and their hadron
momentum ph, which is determined by tracking the hadron
through the magnetic field in the drift chambers. To isolate
pions from protons, a ±2σ cut on βh versus ph is applied.

Figure 5 shows the particle’s velocity versus momentum
for positive tracks. A single Gaussian fit function was applied
to βh in each momentum bin to choose the proper velocity
cut for pion identification. The solid red lines superimposed
on the scatterplots in Fig. 5 show the βh cuts for both
simulation (upper) and data (lower). All remaining positrons
were considered as pions due to the limited momentum
resolution, which increases the background. However, the
missing mass and vertex cuts reduce the background to a few
percentages.

We observed that the other positive charged particles
(protons, kaons) contamination under the missing mass peak

is negligibly small, even at high pion momenta. Overall,
background contributions under the neutron missing mass
are negligible in our kinematic region; hence, no background
subtraction was performed.

B. Fiducial cuts

Due to the complexity of the CLAS geometry and edge
effects, we define a fiducial volume that is restricted to
detector regions with nearly full particle acceptance and
high reconstruction efficiency. We made individual CLAS
sector-dependent geometrical fiducial cuts and applied the
same cuts to the simulations and to the experimental data,
where those cuts select areas of uniform detector response that
can be reproduced by GEANT3-based simulation (GSIM) with
CLAS detetor geometric information. In order to implement
the sector fiducial cuts, the GSIM program requires knowledge
only of the momentum and charge of the particle, since the
curvature of the trajectory of the particle depends only on
the particle’s charge and momentum, and the strength of the
CLAS magnetic field. The fiducial cuts have been applied to
both electrons and pions in the same way as in the previous
analysis [24] using optimized parameters.

1. Electron sector fiducial cuts

Since the toroidal magnetic field bends the electrons inward,
the fiducial cut in polar angle θe and azimuthal angle φe de-
pends on the momentum of the electron pe [24]. The azimuthal
symmetry of the angular distribution for the electrons was con-
sidered when selecting these regions. Therefore, for fixed θe

and pe, one expects to find a flat distribution in φe. Several cut
functions to eliminate depleted regions in momentum pe and
angle θe were applied empirically. Figure 6 shows such a sector
centroidal electron angle φe distribution in a sample momen-
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FIG. 6. (Color online) The electron angular distribution in a
sample momentum bin pe = 3.02 ± 0.125 GeV for sector 4 (left).
The black solid curve indicates the fiducial cut boundary. The criterion
to determine the electron fiducial region in terms of φe for one
momentum bin is the detector efficiency. In order to eliminate the
depleted regions of the detector we chose the flat area by looking
through the θ -sliced φe distributions. The right plots show examples
of the φe distribution in two θe bins: 21◦ and 22◦ for sector 4. The
highlighted areas around the center indicate the selected fiducial
range.
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tum bin of 3.02 ± 0.125 GeV. The black solid curve in the left
plot shows the boundary of the fiducial region for the central
momentum in that bin. Only events with electrons inside the
black curve are used in the analysis. In addition, a set of θe ver-
sus pe cuts are used to eliminate the areas with a depleted num-
ber of events due to bad time-of-flight counters, Cherenkov
counter photomultiplier tubes, or drift chamber wires.

2. Pion sector fiducial cuts

Pion fiducial cuts are designed to exclude regions of
nonuniform acceptance due to interactions with the minitorus
coils, torus cryostat, or the edges of the drift chambers. The
onset of these regions is not symmetric about the sector
midplane but is sector as well as momentum dependent. This
cut is a function of the pion momentum pπ after selecting good
electrons.

The pion momentum was scanned with a 100 MeV bin
width from 0.3 to 1.7 GeV. The pion angular distribution
was investigated in each momentum bin. The π+ fiducial
cut functions are parametrized by the pion momentum and
the angles θπ and φπ . The same pion cuts are applied to
data as well as simulation. To define the reasonable detector
response region, the two-dimensional plot of φπ versus θπ

was sliced along θπ in 2◦ bins for 12◦ � θπ � 100◦, and
each φπ distribution was fit by a function which included
a trapezoidal shape and a constant. A fit example is shown
in Fig. 7. Each momentum and θπ bin in each sector has a
unique φπ plateau region. The corresponding fit parameters
are functions of sector, pπ , and θπ . The correlation between
φπ and θπ is described by an exponential and a third-order
polynomial function.

C. Kinematic corrections

The kinematic corrections from the previous analysis [24]
were applied in this analysis. The corrections are based on

FIG. 7. (Color online) An example of a φπ (deg) fit with a
trapezoidal function. The flat region was used to select the sector
fiducial cut for the kinematical bin with 0.35 GeV < pπ < 0.45 GeV
and a 23◦ < θπ < 25◦ bin for sector 4.
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FIG. 8. (Color online) An example of a neutron missing mass fit
for sector 1 by a single Gaussian function in the bin at cos θπ = 0.1,
W = 1.11 GeV, and Q2 = 2.44 GeV2 (left), and the neutron missing
mass φπ dependence for sector 1 (right). Dashed lines are defined in
the text.

the measured angles and momenta of the detected particles
(electrons and pions). Figure 8 (left) shows the neutron missing
mass for W = 1.11 GeV, which is the lowest W bin that we
can access in this data set. Overall, there is no systematic
φπ dependence on the inferred neutron mass. The central
horizontal dashed line in the right-hand plot of Fig. 8 indicates
the mean value found for the neutron mass in the left-hand
plot; the upper and lower horizontal dashed lines indicate ±3σ

of the missing mass distribution, where σ is the energy
resolution as defined by the standard deviation.

VI. MONTE CARLO SIMULATIONS

The detection efficiencies for various particles in CLAS
were estimated from Monte Carlo simulations of the detector.
We used the two different event generators, AAO-RAD (a
physics-model-based event generator [25]) and GENEV (a
phase-space event generator [26]). Both event generators
generate exclusive events, including radiative effects. The
AAO-RAD event generator uses the MAID2003 model [25].
The GENEV event generator allows us to generate several
exclusive electroproduction reactions, from pion production
to the production of vector mesons (ω, ρ0, and φ) including
their decays, as well as nonresonant multipion production.
Cross section tables for these processes are used that are
based on photoproduction data and extrapolated to the case
of electroproduction.

Several million (AAO-RAD) and ∼50 million (GENEV)
single-pion events were generated near the pion threshold
region between 1.1 GeV � W � 1.2 GeV and 1.0 GeV2 �
Q2 � 10.0 GeV2 with full angular coverage. Both generated
data sets were processed by the standard GEANT simulation
of the CLAS detector. The statistical uncertainties for both
simulations are less than 1% . Most steps closely followed the
previous analysis described in Ref. [24].

The comparison of the detection efficiency results using the
two different event generators indicates a 4% uncertainty in the
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FIG. 9. (Color online) Examples of Monte Carlo simulation
results: Q2 versus W and the angular distribution φ∗

π versus cos θ∗
π

for all W (left column) and yield versus Q2 and the angles φ∗
π

versus cos θ∗
π for W � 1.2 GeV (right column) as a snapshot after

GSIM reconstruction but still without the GPP step. The two vertical
solid lines on the top-left plot show the W region between 1.10 and
1.16 GeV of interest.

simulated efficiency prediction. Scattered electron events were
simulated by AAO-RAD and GENEV for exclusive single charged
pion electroproduction on a liquid hydrogen target in CLAS
for an incident electron energy of 5.754 GeV and a CLAS
torus current of 3375 A. Figure 9 shows examples of results
from the simulations of W , Q2, and angular distributions.

The GSIM POST-PROCESSOR (GPP) is used for fine adjust-
ments of the reconstructed GSIM data to better match the
measured data. GSIM simulates events in an ideal detector
system and GPP is used to adjust two quantities. One is the
drift chamber position resolution smearing factors that affect
the tracking momentum resolution. The other is the TOF
time-smearing factor that affects the timing resolution. The
optimized GPP settings were taken from Ref. [24].

The GPP output has been processed with the event recon-
struction software. In order to relate experimental yields to
cross sections, one needs to calculate the acceptance, including
the efficiency of the detector and radiative effects. Both
acceptance and radiative corrections are processed similarly
as in the previous analysis [24].

A. Acceptance correction

To calculate the acceptance for the π+n channel in the
CLAS detector system, one can define the acceptance in a
given kinematic bin i as

Acceptancei = NREC
i

NGEN
i
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FIG. 10. (Color online) Examples of the φ∗
π -dependent accep-

tances for the γ ∗p → nπ+ reaction at W = 1.13 GeV, Q2 =
2.12 GeV2, and cos θ∗

π = 0.1–0.5.

where NGEN
i is the number of events generated and NREC

i

is the number of events reconstructed after imposing all
cuts. Figure 10 shows typical examples of φ∗

π -dependent
acceptances using the AAO-RAD event generator.

B. Radiative corrections

The radiative corrections (RC) were calculated using
EXCLURAD [27]. EXCLURAD gives an estimate calculation of
radiative effects in given kinematic bins. The general definition
of the radiative correction factor is the ratio of radiative events
to events without radiative effects in a given kinematic bin. It
is defined in a fixed W , Q2, θ∗

π , and φ∗
π bin (j ) as follows:

RCj = (NRAD
j /

∫
σ RAD)(

∫
σ NORAD/NNORAD

j ), where RCj is
the radiative correction for bin (j ),

∫
σ RAD is the radiated

model cross section, and
∫

σ NORAD the unradiated model
cross section with integrated luminosity. NRAD

j and NNORAD
j

are event numbers for radiative and nonradiative events,
respectively. The detailed procedure of radiative corrections
is described in Ref. [24].

Since there are several models to describe the cross sections
near the threshold, it is important to verify whether EXCLURAD

gives consistent correction factors independent of the physics
models. In order to perform this study, we used two different
models, which are Sato-Lee2004 [28] (dynamic model) and
MAID2003 [25] (unitary isobar model) as EXCLURAD inputs.
Both cover the kinematic region of interest. Figure 11 shows
examples of the radiative-correction comparison between the
two models, as a function of cos θ∗

π at a fixed W = 1.15 GeV
and Q2 = 2.91 GeV2 but for different φ∗

π = 105◦, 135◦. As
Fig. 11 shows, the radiative corrections from both models are
consistent even where their cross sections differ substantially.

VII. RESULTS

A. Differential cross sections

In order to extract the differential cross sections, all previ-
ously described corrections, efficiencies, cuts, photon flux, and
luminosity normalizations have to be applied to the data. The
azimuthal angle φ∗

π is divided into 60◦ bins for cos θ∗
π < −0.1

(yielding 6 bins) and 30◦ bins for cos θ∗
π � −0.1 (yielding

12 bins). This binning and a minimum acceptance cut
(>0.6%) limit the statistical uncertainties. Figure 12 shows
an example of the φ∗

π -dependent differential cross section
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FIG. 11. (Color online) Cross sections (solid symbols) and
radiative correction factors (open symbols) as functions of cos θ∗

π

in a fixed bin centered at W = 1.15 GeV and Q2 = 2.91 GeV2. The
two plots are for different values of the azimuth, φ∗

π = 105◦ and 135◦.
Each plot shows the RC factor on the left y axis and differential cross
sections on the right y axis. The (red) triangles (open and closed)
are from the Sato-Lee2004 model [28]. The (blue) circles (open and
solid) are from the MAID2003 model.

(left) and the corresponding fit (right) in a W = 1.11 GeV
bin that is closest to the pion threshold in this analysis,
with comparisons to the Dubna-Mainz-Taipai (DMT) [29],
Sato-Lee 2004 [28], and MAID2003 [25] models. The χ2 is
calculated by χ2

0 /(Npts − 3), where χ0 is not normalized to the
degrees of freedom, Npts is the number of nonzero data points
in the φ∗

π -dependent histogram, and 3 is the number of free
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FIG. 12. (Color online) Examples of the differential cross sec-
tions as function of φ∗

π with 0.6% minimum acceptance cut at
W = 1.11, 1.13 GeV, Q2 = 2.12, 2.44, 2.92 GeV2, and cos θ∗

π = 0.1,
−0.3. The error bars of the data include only statistical errors and
the shaded bars show the systematic uncertainties. Results from the
DMT model [29] are indicated by the black line. Also shown are
the Sato-Lee 2004 model (red dashed-dot line) [28] and MAID2003
(blue dashed line) [25].
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FIG. 13. (Color online) Examples of fits to the differential cross
sections as function of φ∗

π at W = 1.11, 1.13 GeV, Q2 = 2.12,
2.44 GeV2, and cos θ∗

π = −0.3, 0.1. The corresponding fit is in Eq. (7).

parameters in the fit function Eq. (7). The overall averaged χ2

is 1.25 (Fig. 13).
Table II summarizes the systematic uncertainties in this

analysis averaged over all accessible kinematic bins shown
in Figs. 14–16. The average total systematic uncertainty is
about 11.5%. The major sources of the systematic uncertainty
are the bin effects, the particle identification (PID) for elec-
tron/pion separation, and the different physics event generator
calculation of the acceptances. The systematic uncertainty for
bin effects takes into account bin size, bin centering, and
different bin number of φ∗

π with qudrature sum. The radiative
corrections show little systematic dependence on different
physics models.

B. Extraction of structure functions

The fit of the φ∗
π -dependent cross sections allows us to ac-

cess the polarized structure functions. The fitting function has
three fit parameters, corresponding to the structure functions

TABLE II. Average systematic uncertainties from various sources
for the differential cross sections from this analysis.

Source Criterion Estimated
contribution

e− PID Sampling fraction cut in EC 4%
(3σ → 3.5σ )

e− fiducial cut Width (10% reduced) 2.2%
π+ PID β resolution change 1.3%

(2σTOF → 2.5σTOF)
π+ fiducial cut Width (10% reduced) 3%
Missing mass Neutron missing mass resolution 1%

cut (3σMMx → 3.5σMMx)
Vertex cut z-vertex width (5% reduced) 1%
Acceptance Event generator dependence 4%

correction AAO-RAD versus GENEV

Radiative Physics model dependence 0.5%
correction Sato-Lee2004 versus MAID2003

Mininum Applied 0.6% cut
acceptance cut and 6,12 φ∗

π 9%
and bin effect bins

Total 11.5%
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FIG. 14. (Color online) The structure function (σT + εσL) as a
function of cos θ∗

π at W = 1.11–1.15 GeV and Q2 = 2.12–4.16 GeV2

with model predictions: MAID2003 [(red bold dash) full multipoles;
(green bold dash) without S0+; and (black dash-dot) without E0+]
and MAID2007 (blue bold dot). The shaded bars show the estimated
systematic uncertainties.

σT + ε σL, σLT , and σT T ,

d2σ

d�∗
π

= A + C cos 2φ∗
π + D cos φ∗

π . (7)

FIG. 15. (Color online) The structure function σT T as a function
of cos θ∗

π at W = 1.11–1.15 GeV and Q2 = 2.12–4.16 GeV2 with
various model calculations. Curves as in Fig. 14.

FIG. 16. (Color online) The structure function σLT as a function
of cos θ∗

π at W = 1.11–1.15 GeV and Q2 = 2.12–4.16 GeV2 with
various model calculations. Curves as in Fig. 14.

The relation between the structure functions and fit pa-
rameters is given by A = σT + ε σL, C = ε σT T , and D =√

2ε(1 + ε) σLT [24]. Figure 14 shows the structure function
of σT + εσL as a function of cos θ∗

π in different Q2 bins
near the pion threshold region. Figures 15 and 16 show
the interference terms σT T and σLT , respectively. For the
three structure functions shown, several features are notable.
First, the E0+ multipole in the MAID2003 model plays a
dominant role (compare between red bold dash and black
dash-dot lines) in both σT + εσL and σT T in the forward
angles, and the lower values of Q2 show larger differences
between the results with and without E0+. Second, the
experimental results show a good consistency with the MAID
predictions at all Q2. Finally, most of the σT T results
particularly at high Q2 are close to zero in the W = 1.11 GeV
bin, which is the closest to threshold. It is expected that
the d-wave contribution is absent at threshold, although
the MAID calculations still indicate substantial d wave at
low Q2.

The LCSR calculations predict φ∗
π -independent differential

cross sections caused by a complete cancellation of the
contribution to σLT and σT T from G1 and G2 (see Sec. III) at
particular values of Q2. This analysis shows the θ∗

π dependence
for the longitudinal-transverse interference term σLT , as seen
in Fig. 16. σLT is especially strong for large angles and
relatively small Q2. However, this is still quite consistent
with the LCSR prediction if we focus on the highest Q2

bin, because the φ∗
π independence is expected only for large

Q2 in LCSR [17]. The experimental data for σLT and σT T

show small deviations from zero over all cos θ∗
π for all three

W bins at Q2 = 4.16 GeV2, which is possibly caused by
the previously mentioned cancellation of the G1 and G2

contributions.
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FIG. 17. (Color online) Q2 dependence of the Legendre moments
for σT + εσL, σT T , and σLT in the nπ+ channel at W = 1.11, 1.13,
and 1.15 GeV together with different model predictions: MAID2003
[(red bold dash-dot) full multipoles; (green bold dash-dot) without
S0+; and (black bold dash-dot) without E0+]. The shaded bars show
the estimated systematic uncertainties.

C. Extraction of Legendre moments

The Legendre moments for the components of the dif-
ferential cross sections were extracted by fitting the cos θ∗

π

distributions of the σT + εσL, σT T , and σLT structure func-
tions with first- and second-order Legendre polynomials.
As mentioned in Sec. III A [see Eq. (2)], Pl(cos θ∗

π ) is the
lth-order Legendre polynomial and D

(T +L)
l , D

(T T )
l , D

(LT )
l

are the Legendre moments for σT + εσL, σT T , and σLT ,
respectively. Each moment can be written as an expansion
of magnetic (Mlπ± ), electric (Elπ± ), and scalar (Slπ± ) πN

multipoles or as a factorization of generalized form factors in
the light-cone sum-rule framework. The expansion is truncated
at lπ = 1, because the s-,p-wave interference terms, particu-
larly those involving the multipole E0+, dominate near the
threshold.

Figure 17 shows the Q2-dependent Legendre moments for
σT + εσL, σT T , and σLT at W = 1.11, 1.13, and 1.15 GeV
with different model predictions. Our measurements cover
1.9 GeV2 < Q2 < 4.5 GeV2 with bin center values from 2.12
to 4.16 GeV2. Figure 17 reveals that the extraction of DT T

0
leads to values close to zero over all Q2, particularly in the
lowest W bin, whereas the MAID models predict a sizable
amplitude.

D. Extraction of the E0+ by use of the LCSR method

The extracted Legendre moments can be directly used
in Eqs. (3) or (4) depending on the parametrization of the
electric form factor of the neutron (Gn

E) and other kinematic
constants. Figure 18 shows the results of the Q2-dependent
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FIG. 18. (Color online) The extraction of the E0+ multipole
divided by the dipole form factor (GD) as function of Q2. The
left plot shows the comparison of E0+ results taking only statistical
or

√
stat2 + syst2 uncertainties into account. The right plot shows

the effect of setting Gn
E to zero. Shaded bars show the systematic

errors. Various models are presented: (blue solid line) MAID2007
for E0+/GD and (red solid-dash lines) LCSR (red solid is the LCSR
calculation using experimental electromagnetic form factors as input
and red dash is pure LCSR) [21].

E0+ multipole divided by the dipole form factor (GD) in
the W bin nearest to the threshold. The plot on the left of
Fig. 18 shows the comparison of E0+ with and without taking
systematic uncertainties into account under the assumption of
Gn

E = 0. The plot on the right shows the comparison of E0+
multipoles extracted with Gn

E = 0 or Gn
E 
= 0. MAID2007 [30]

and LCSR calculations are also shown.
The experimental results for E0+/GD are about 0.2–

0.3 GeV−1 and almost flat as a function of Q2. The amplitude
is larger than predicted by MAID2007 and similar to (or
a bit smaller than) the LCSR calculations, although LCSR
has a steeper Q2 dependence, which may be caused by the
extrapolation in the current LCSR calculations of the form
factors to the chiral limit (mπ → 0). The multipole was
extracted for two different Gn

E dipole parametrizations [31,32]
under the assumption of vanishing pion mass. Figure 19 (left)
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FIG. 19. (Color online) The extraction of the normalized
E0+/GD multipole by ignoring the pion mass with different neutron
electric form-factor parametrizations (left), (blue solid squares)
Platchkov 1990 [31], and (red solid circles) Kelly 2004 [32]. The
right plot shows the E0+/GD with different neutron magnetic form
factors; (blue solid triangles) CLAS measurement [33] and (red solid
circles) Kelly 2004 [32]. Curves as in Fig. 18.
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shows that the comparison of both Gn
E parametrizations leads

to negligible difference.
Since CLAS has published the measurement of the mag-

netic neutron form factor at high momentum transfers with
a level of accuracy of 3% [33], we can directly substitute
this result into our extraction instead of the parametrization.
Figure 19 (right) shows the results of E0+ at W = 1.11 GeV
for the measured CLAS Gn

M form factor.

E. Extraction of E0+ by multipole expansion

The relations between the invariant amplitudes fi and the
helicity and multipole amplitudes of the cross sections are
found in Ref. [34]. Near the pion threshold, the maximum
total pion angular momentum taken into account is up to p

wave. Therefore, all fi can be expressed in terms of

f1 = E0+ + 3 cos θ∗
π (E1+ + M1+),

f2 = 2M1+ + M1−, f3 = 3(E1+ − M1+),

f4 = 0, f5 = S0+ + 6 cos θ∗
πS1+,

and

f6 = S1− − 2S1+.

The corresponding helicity amplitudes (Hi) are given by

H1 = −1√
2

cos
θ∗
π

2
sin θ∗

π (f3 + f4),

H2 = −
√

2 cos
θ∗
π

2

[
f1 − f2 − sin2 θ∗

π

2
(f3 − f4)

]
,

H3 = 1√
2

sin
θ∗
π

2
sin θ∗

π (f3 − f4),

H4 =
√

2 sin
θ∗
π

2

[
f1 + f2 + cos2 θ∗

π

2
(f3 + f4)

]
,
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FIG. 20. (Color online) Q2 dependence of E0+ normalized by
the dipole form factor from the multipole fit. The red bullets are the
E0+/GD results based on LCSR without taking the pion mass into
account. The black bullets are the results of multipole. Curves as in
Fig. 18.

H5 = −
√

Q2

|kc.m.| cos
θ∗
π

2
(f5 + f6), and

H6 =
√

Q2

|kc.m.| sin
θ∗
π

2
(f5 − f6).

Here, kc.m. is the photon momentum in the center-of-mass
system. The structure functions that we measure can be
expressed by these helicity amplitudes,

σT + εσL = 1

2

4∑
i=1

|Hi |2 + ε(|H5|2 + |H6|2),

σT T = Re(H ∗
2 H3 − H ∗

1 H4),

and

σLT = −1√
2

Re[H ∗
5 (H1 − H4) + H ∗

6 (H2 + H3)].

Since we are interested in the threshold region, we focus
on the seven complex multipoles (E0+, E1+, M1+, M1−, S0+,
S1+, and S1−) with l � 1, and, hence, 14 quantities must be
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FIG. 21. (Color online) Q2 dependence of E0+ normalized by the
dipole form factor from the multipole fit (top) and the LCSR (bottom)
method (curves) for three W bins. Curves as in Fig. 18.
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fit to our data or determined from other data. In particular, the
multipoles M

3/2
1+ , E3/2

1+ , S3/2
1+ have large resonance contributions

from the �(1232). Their Q2 dependencies at the resonance
pole are well determined from the CLAS data [34] and are
used in this fit, whereas the W dependencies are taken from
SAID [35].

The other multipoles M1−, S1−, and M
1/2
1+ , E1/2

1+ , S1/2
1+ are fit

along with the dominant E0+, S0+ multipoles by using small
start values for M1− and S1−. Following this procedure, we
are able to fit the measured cross-section data and to extract
the E0+ multipole. Figure 20 shows the results of the E0+
multipole in terms of Q2 between 2.0 and 4.5 GeV2 for the
lowest W bin near pion threshold.

Figure 21 shows the Q2-dependent E0+ multipole extrac-
tion from both our multipole fit (top) and the LCSR (bottom)
method for three W bins with LCSR [17] and MAID2007 [30]
model. As soon as W is further above the threshold, s-wave
dominance becomes weaker and resonance and higher order
partial waves start to impact the E0+ extraction. This expected
impact is clearly visible in our multipole fit results and is
the reason why in the first place the measurement of the
generalized form factors has to be carried out at the pion
threshold.

VIII. SUMMARY

We extracted the E0+ multipole near pion threshold for
W = 1.11–1.15 GeV at high Q2 = 2.12–4.16 GeV2 with
vanishing and actual pion masses and by taking into account
different Gn

E form-factor parametrizations. The results for
vanishing pion mass show that E0+/GD is approximately
0.3 GeV−1 and almost Q2 independent at threshold. This
amplitude is larger than the MAID2007 prediction and a
little smaller than the LCSR prediction, which has a steeper
Q2 dependence. The Q2-independent behavior of the data
may be caused by the LCSR method, which is based on
the chiral limit mπ → 0. The results from the multipole fit
method are consistent with the LCSR method for the lowest
W bin. Independent of pion mass and Gn

E parametrization
considerations, the nπ+ channel is dominated by the transverse
s-wave multipole E0+. A lack of asymmetry data near the

FIG. 22. (Color online) Q2 dependence for nπ+ of G1 normalized
by the dipole form factor (left) and axial form factor GA. Curves as
in Fig. 18.

pion threshold does not allow us to extract the generalized
form factor G2, but the E0+ multipole extraction allows
us to obtain G1, and the axial form factor GA using
Eqs. (5) and (6). Figure 22 shows the Q2-dependent G1 (left)
and GA (right) near-pion threshold. These data give strong
constraints on theoretical developments, especially on the
extrapolation away from threshold and away from the chiral
limit.
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