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Ground-state, radially excited, and exotic scalar, vector, and flavored-pseudoscalar mesons are studied in
rainbow-ladder truncation using an interaction kernel that is consonant with modern Dyson-Schwinger equation
and lattice-QCD results. The inability of this truncation to provide realistic predictions for the masses of excited
and exotic states is confirmed and explained. However, its application does provide information that is potentially
useful when working beyond this leading-order truncation, e.g.: assisting with the development of projection
techniques that ease the computation of excited-state properties; placing qualitative constraints on the long-range
behavior of the interaction kernel; and highlighting and illustrating some features of hadron observables that do
not depend on details of the dynamics.

DOI: 10.1103/PhysRevC.85.035202 PACS number(s): 12.38.Aw, 14.40.Be, 14.40.Rt, 24.85.+p

I. INTRODUCTION

Meson spectroscopy is a keystone of extant and forth-
coming programs at numerous facilities worldwide, e.g.: the
Beijing Spectrometer; the Common Muon and Proton Appa-
ratus for Structure and Spectroscopy (COMPASS) detector
at CERN; Hall-D at Jefferson Laboratory; the Japan proton
accelerator research complex (J-PARC); and the Anti-Proton
Annihilation at Darmstadt (PANDA) detector at Gesellschaft
für Schwerionenforschung (GSI). Each identifies an essen-
tially identical primary motivation; namely, seeking answers
to two fundamental questions within the standard model: What
matter is possible and how is it constituted? The subtext is
quantum chromodynamics (QCD), the strongly interacting
part of the standard model, and the unique nature of the
forces it seems to produce. With QCD, nature has prepared
the sole known example of a strongly interacting quantum
field theory that is defined by degrees of freedom that cannot
directly be detected; i.e., they are confined. One of the greatest
challenges in modern physics is to comprehend and explain
the phenomenon of confinement.

Following Ref. [1], confinement in mesons has typically
been associated with a linearly rising potential between the
quark-antiquark pair [2]. There are sound reasons for using
such potential model phenomenology in the study of heavy
quarkonia [3]. However, this is not true for light-quark systems.
The static potential measured in simulations of lattice QCD is
not related in any known way to the question of light-quark
confinement. Light-quark creation and annihilation effects
are fundamentally nonperturbative. Hence it is impossible in
principle to compute a potential between two light quarks [4,5].
However, confinement can be related to the analytic properties
of QCD’s Schwinger functions [6–14], so the question of
light-quark confinement may be translated into the challenge
of charting the infrared behavior of QCD’s β function.

To a large degree this is also true of explaining dynamical
chiral symmetry breaking (DCSB), a phenomenon that has an
enormous impact on the measurable properties of mesons and

baryons [12,13]. It is known that DCSB, namely, the generation
of mass from nothing, does occur in QCD [15–18]. It arises
primarily because a dense cloud of gluons comes to clothe a
low-momentum quark [11,19]. This is readily seen by solving
the Dyson-Schwinger equation (DSE) for the dressed-quark
propagator; i.e., the gap equation. However, the origin of the
interaction strength at infrared momenta, which guarantees
DCSB through the gap equation, is currently unknown. This
relationship ties confinement to DCSB. The crucial role of
DCSB means that reliable information about the β function can
only be obtained via a symmetry-preserving treatment of the
bound-state problem that is capable of veraciously expressing
DCSB. The DSEs provide such a framework [7–13] and will
be employed herein.

A considerable body of recent work (e.g., Refs. [11,12,20–
31]) has shown that to gain sensitivity to the long-range part
of the interaction one should minimally study the properties
of mesons with significant rest-frame quark orbital angular
momentum, such as scalar and pseudovector mesons, the
radial excitations of pseudoscalar and vector mesons, and
tensor mesons. A challenging aspect of this problem is that
the leading order (rainbow ladder) in the most widely used
symmetry-preserving DSE truncation scheme [32,33] fails to
adequately express the full power of DCSB in the kernels of
the bound-state Bethe-Salpeter equations (BSEs) [26,29,34].
Consequently, the results produced for systems other than
ground-state flavored-pseudoscalar and vector mesons have
most often been qualitatively and quantitatively incorrect.

Is there any reason then to revisit the problem of the
spectrum of excited and exotic mesons using the rainbow-
ladder truncation? The answer is “no” if the goal is to extract
quantitatively reliable information about the infrared behavior
of QCD’s β function. However, the answer is “yes” if one
can exploit the truncation’s simplicity to identify features of
excited and exotic states that are plausibly independent of
the truncation or techniques that can be useful in connec-
tion with more sophisticated truncations. Such is our aim
herein.
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In Sec. II we present the gap and Bethe-Salpeter equa-
tions in the symmetry-preserving rainbow-ladder truncation,
explain the structure of their solutions, and define their kernels.
Section III reports and interprets our numerical results, which
include masses and decay constants, an investigation of the
relative importance of various Dirac structures within meson
Bethe-Salpeter amplitudes, and an exploration of the point-
wise behavior and sign of the leading invariant amplitudes.
Section IV is an epilogue.

II. GAP AND BETHE-SALPETER EQUATIONS

The renormalized rainbow-gap and ladder-Bethe-Salpeter
equations are, respectively,

S(p)−1 = Z2 (iγ · p + mbm)

+Z2
2

∫ �

�

G(�)�2Dfree
μν (�)

λa

2
γμS(p − �)

λa

2
γν,

(1)

�M (k; P ) = −Z2
2

∫ �

q

G[(k − q)2] (k − q)2 Dfree
μν (k − q)

× λa

2
γμS(q+)�M (q; P )S(q−)

λa

2
γν, (2)

where: we use a Euclidean metric [12];
∫ �

�
:= ∫ � d4�

(2π)4

represents a Poincaré-invariant regularization of the integral,
with � the ultraviolet regularization mass scale; Z2(ζ,�) is the
quark wave-function renormalization constant whose location
and strength in these equations may be understood from
Refs. [33,35]; Dfree

μν (�) is the Landau-gauge free-gauge-boson
propagator1; one can choose q± = q ± P/2 without loss of
generality in this Poincaré covariant approach; and

�2G(�2) = �2GIR(�2) + 4πα̃pQCD(�2) (3)

specifies the interaction, with α̃pQCD(k2) a bounded, monotoni-
cally decreasing regular continuation of the perturbative-QCD
running coupling to all values of spacelike �2, and GIR(�2)
an Ansatz for the interaction at infrared momenta, such
that GIR(�2) � α̃pQCD(�2) ∀�2 � 2 GeV2. The form of GIR(�2)
determines whether confinement and/or DCSB are realized in
solutions of the gap equation.

The solution of the gap equation is a dressed-quark
propagator

S(p) = 1

iγ · p A(p2, ζ 2) + B(p2, ζ 2)
= Z(p2, ζ 2)

iγ · p + M(p2)
,

(4)

1Landau gauge is used for many reasons [36,37], for example: it
is a fixed point of the renormalization group; that gauge for which
sensitivity to model-dependent differences between Ansätze for the
fermion–gauge-boson vertex are least noticeable; and a covariant
gauge, which is readily implemented in simulations of lattice
regularized QCD (see, e.g., Refs. [14,16,17,38–42] and citations
therein and thereto).

which is obtained from Eq. (1) augmented by a renormalization
condition. A mass-independent scheme is a useful choice and
can be implemented by fixing all renormalization constants
in the chiral limit. Notably, the mass function M(p2) =
B(p2, ζ 2)/A(p2, ζ 2) is independent of the renormalization
point ζ and the renormalized current-quark mass is given by

mζ = Zm(ζ,�) mbm(�) = Z−1
4 Z2 mbm, (5)

wherein Z4 is the renormalization constant associated with the
Lagrangian’s mass term. Like the running coupling constant,
this “running mass” is a familiar concept. However, it is not
commonly appreciated that mζ is simply the dressed-quark
mass function evaluated at one particular deep spacelike point,
viz.,

mζ = M(ζ 2) . (6)

The renormalization-group invariant current-quark mass
may be inferred via

m̂f = lim
p2→∞

[
1

2
ln

p2

�2
QCD

]γm

Mf (p2) , (7)

where f specifies the quark’s flavor, γm = 12/(33 − 2Nfα
),

Nfα
is the number of quark flavors employed in computing the

running coupling, and �QCD is QCD’s dynamically generated
renormalization-group-invariant mass scale. The chiral limit
is expressed by

m̂f = 0 . (8)

Moreover,

∀ζ 2 � �2
QCD,

Mf1 (p2 = ζ 2)

Mf2 (p2 = ζ 2)
= m

ζ

f1

m
ζ

f2

= m̂f1

m̂f2

. (9)

We would like to emphasize, however, that in the presence
of DCSB the ratio Mf1 (p2)/Mf2 (p2) is not independent of p2:
in the infrared (i.e., ∀p2 � �2

QCD) it then expresses a ratio
of constituent-like quark masses, which, for light quarks, are
two orders of magnitude larger than their current masses and
nonlinearly related to them [43,44]. [See, e.g., the discussion
following Eq. (15).]

The BSE is an eigenvalue problem for the meson masses
squared; i.e., in a given channel Eq. (2) has solutions
only at particular, isolated values of P 2 = −m2

M . At these
values, solving the equation produces the associated meson’s
Bethe-Salpeter amplitude, which can then be used in the
computation of observable properties. Herein we consider2

flavored-pseudoscalar, scalar, and vector meson ground, radi-
ally excited, and exotic states, so that the following amplitudes
arise:

�JP =0− (k; P ) =
4∑

i=1

γ5τ
i
0− (k, P ) F i

0− (k; P ), (10)

2Masses and other properties of charge-neutral pseudoscalar mesons
are affected by the non-Abelian anomaly. In the BSE context, this is
discussed in Ref. [45]. Since the non-Abelian anomaly is a correction
to rainbow-ladder truncation that is qualitatively different from the
focus of our study, herein we specialize to flavored pseudoscalars.
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�0+(k; P ) =
4∑

i=1

τ i
0+ (k, P ) F i

0+ (k; P ), (11)

�1−(k; P ) =
8∑

i=1

τ i
1− (k, P ) F i

1− (k; P ), (12)

with (aT
μ := aμ − Pμ a · P/P 2)

τ 1
0− = iτ 1

0+ = iID, (13a)

τ 2
0− = γ · P, τ 2

0+ = k · P τ 2
0− , (13b)

τ 3
0− = k · P τ 3

0+ , τ 3
0+ = P 2γ · k − k · Pγ · P, (13c)

τ 4
0− = τ 4

0+ = σμνPμkν, (13d)

τ 1
1− = iγ T

μ , (13e)

τ 2
1− = i

[
3kT

μγ · kT − γ T
μ kT · kT

]
, (13f)

τ 3
1− = ikT

μ k · P γ · P, (13g)

τ 4
1− = i

[
γ T

μ γ · P γ · kT + kT
μγ · P

]
, (13h)

τ 5
1− = kT

μ , (13i)

τ 6
1− = k · P

[
γ T

μ γ T · k − γ · kT γ T
μ

]
, (13j)

τ 7
1− = (kT )2

(
γ T

μ γ · P − γ · Pγ T
μ

) − 2kT
μγ · kT γ · P,

(13k)

τ 8
1− = kT

μγ · kT γ · P. (13l)

The canonical normalization condition (see, e.g., Eq. (27) in
Ref. [20] or, more generally, Ref. [46]) constrains the bound
state to produce a pole with unit residue in the quark-antiquark
scattering matrix.

It remains only to specify the interaction to proceed. We
use that explained in Ref. [31]; viz.,

G(s) = 8π2

ω4
D e−s/ω2 + 8π2γm F(s)

ln[τ + (1 + s/�2
QCD)2]

, (14)

where γm = 12/25, �QCD = 0.234 GeV; τ = e2 − 1; and
F(s) = {1 − exp(−s/[4m2

t ])}/s, mt = 0.5 GeV. This interac-
tion preserves the one-loop renormalization-group behavior
of QCD in the gap and Bethe-Salpeter equations [20], and the
infrared behavior can serve to ensure confinement and DCSB.
Moreover, it is consistent with modern DSE and lattice studies,
which indicate that the gluon propagator is a bounded, regular
function of spacelike momenta that achieves its maximum
value on this domain at s = 0 [38–40,47,48], and the dressed-
quark-gluon vertex does not possess any structure that can
qualitatively alter this behavior [49,50]. Notably, as illustrated
in Ref. [31], the parameters D and ω are not independent: with
Dω = constant, one can expect computed observables to be
practically insensitive to ω on the domain ω ∈ [0.4, 0.6] GeV.

III. NUMERICAL RESULTS FOR BOUND-
STATE PROPERTIES

A. Ground states

Using the method of Ref. [51], we solve the gap equation
for light u = d quarks and the s quark, with their current-
quark masses fixed by requiring that the pion and kaon
BSEs produce mπ ≈ 0.138 GeV and mK ≈ 0.496 GeV. This
is straightforward in rainbow-ladder truncation because there
is no coupling between the separate gap equations and no
feedback from the BSEs [52]; and yields

m
ζ

u=d = 3.4 MeV, mζ
s = 82 MeV (15)

quoted at our renormalization point ζ = 19 GeV, a value
chosen to match the bulk of extant studies. These values cor-
respond to renormalization-group-invariant masses of m̂u,d =
6 MeV, m̂s = 146 MeV, one-loop-evolved masses of m1 GeV

u=d =
5 MeV, m1 GeV

s = 129 MeV and give ms/mu = 24. They
are consequently comparable with contemporary estimates
by other means [53]. With ω = 0.6 GeV, ME

s /ME
u = 1.52

� m̂s/m̂u, where the constituent-quark mass ME
f := {√s|s >

0, s = M2
f (s)}.

In Table I we report selected results related to ground-
state pseudoscalar, scalar, and vector mesons. The meson
masses are obtained in solving the BSEs. Regarding the other
meson quantities, in terms of the canonically normalized

TABLE I. Results obtained using the interaction in Eq. (14)
with Dω = (0.8 GeV)3. The current-quark masses at ζ = 19 GeV
are given in Eq. (15). Dimensioned quantities are reported in
GeV. For comparison, some experimental values are [53]: fπ =
0.092 GeV, mπ = 0.138 GeV; fK = 0.113 GeV, mK = 0.496 GeV;
fρ = 0.153 GeV, mρ = 0.777 GeV; and fφ = 0.168 GeV, mφ =
1.02 GeV. NB. The scalar mesons listed here are not directly
comparable with the lightest scalars in the hadron spectrum because
the rainbow-ladder truncation is a priori known to be a poor
approximation in this channel: nonresonant corrections [26,29] and
resonant final-state interactions are both important [44].

ω 0.4 0.5 0.6 0.7

A(0) 2.07 1.70 1.38 1.16
M(0) 0.62 0.52 0.42 0.29
mπ 0.139 0.134 0.136 0.139
fπ 0.094 0.093 0.090 0.081
ρ1/2

π 0.49 0.49 0.49 0.48
mK 0.496 0.495 0.497 0.503
fK 0.11 0.11 0.11 0.10
ρ

1/2
K 0.55 0.55 0.55 0.55

mσ 0.67 0.65 0.59 0.46
ρ1/2

σ 0.53 0.53 0.51 0.48
mκ 0.89 0.88 0.85 0.77
fκ+ 0.035 0.036 0.037 0.042
ρ1/2

κ 0.59 0.59 0.58 0.56
mρ 0.76 0.74 0.72 0.67
fρ 0.14 0.15 0.14 0.12
mφ 1.09 1.08 1.07 1.05
fφ 0.19 0.19 0.19 0.18

035202-3



QIN, CHANG, LIU, ROBERTS, AND WILSON PHYSICAL REVIEW C 85, 035202 (2012)

Bethe-Salpeter amplitudes and with

χJP
12

(k; P ) = Sf1 (k+)�JP (k; K)Sf2 (k−), (16)

where f1, f2 are the meson’s valence quark and antiquark,
respectively, one has [20,54,55]

f0−
12
Pμ = Z2 trCD

∫ �

k

iγ5γμχ0−
12

(k; P ) , (17)

iρ
ζ

0−
12

= Z4 trCD

∫ �

k

γ5χ0−
12

(k; P ) , (18)

f0+
12
Pμ = Z2 trCD

∫ �

k

iγμχ0+
12

(k; P ) , (19)

ρ
ζ

0+
12

= −Z4 trCD

∫ �

k

χ0+
12

(k; P ) , (20)

f1−
12
m1−

12
= 1

3
Z2 trCD

∫ �

k

γμχ1−
12

(k; P ) . (21)

The table confirms that, with Dω = constant, observable prop-
erties of ground-state scalar, vector, and flavored-pseudoscalar
mesons computed with Eq. (14) are practically insensitive to
variations of ω ∈ [0.4, 0.6] GeV.

It is noteworthy, and readily verified using entries in the
table, that the pseudoscalar- and scalar-meson masses satisfy
the following identities, exact in QCD [20,54]:3

f0−
12
m2

0−
12

= (
m

ζ

f1
+ m

ζ

f2

)
ρ

ζ

0−
12
, (22)

f0+
12
m2

0+
12

= −(
m

ζ

f1
− m

ζ

f2

)
ρ

ζ

0+
12
. (23)

Furthermore, the products f0±
12
ρ0±

12
describe in-meson conden-

sates [20,54,58].

B. Radial excitations and exotics

In addition to properties of the ground states, we have
computed selected quantities associated with J = 0, 1 radial
excitations and exotics. In the Poincaré covariant DSE treat-
ment, exotic states appear as poles in vertices generated by
interpolating fields with “unnatural time parity” [59]. Results
are presented in Table II. The last column in the table was
prepared as follows. We fitted the entries in each row to both
m(ω) = constant and

m(ω) = ω(c0 + c1ω), (24)

then computed the standard deviation of the relative error in
each fit, σ0 for the constant and σ2 for Eq. (24), and finally
formed the ratio σ20 = σ2/σ0.

In preparing the table we used Dω = (1.1 GeV)3. This has
the effect of inflating the π - and ρ-meson ground-state masses
to a point wherefrom corrections to rainbow-ladder truncation
can plausibly return them to the observed values [60,61]. It

3Notwithstanding complexities associated with the structure of
light-quark scalars [44,56,57], the identity written here applies to
any scalar meson that can be produced via e+e− annihilation. It is
not of experimental significance, however, if the pole is deep in the
complex plane.

TABLE II. Masses obtained with Eq. (14), Dω = (1.1 GeV)3.
The subscript “1” indicates first radial excitation. The last column
measures sensitivity to variations in rω := 1/ω: σ20 � 1 indicates
strong sensitivity and σ20 ≈ 1 immaterial sensitivity. Dimensioned
quantities reported in GeV.

ω 0.4 0.5 0.6 σ20

mπ 0.214 0.155 0.147 0.83
m0−− 0.814 0.940 1.053 0.03
mπ1 1.119 1.283 1.411 0.02
mσ 0.970 0.923 0.913 1.25
m0+− 1.186 1.252 1.323 0.34
mσ1 1.358 1.489 1.575 0.14
mρ 1.088 1.046 1.029 1.22
m1−+ 1.234 1.277 1.318 0.60
mρ1 1.253 1.260 1.303 0.03

is therefore notable that, in contrast to Table I, the value
reported for mσ in Table II matches estimates for the mass
of the dressed-quark-core component of the σ meson obtained
using unitarized chiral perturbation theory [56,57].

A comparison between the ω dependence of ground-state
properties and those of excited and exotic states was drawn
in Ref. [31] and we only summarize it here. Ground-state
masses of light-quark pseudoscalar and vector mesons are
quite insensitive to ω ∈ [0.4, 0.6] GeV. Any minor variation
is described by a decreasing function. In the case of exotics
and radial excitations, the variation with ω is described by an
increasing function and the variation is usually significant. This
is readily understood. The quantity rω := 1/ω is a length scale
that measures the range over which the infrared part of Eq. (3),
GIR, is active. For ω = 0 this range is infinite, but it decreases
with increasing ω. One expects exotic and excited states to
be more sensitive to long-range features of the interaction
than ground states and, additionally, that their masses should
increase if the magnitude and range of the strong piece of the
interaction is reduced because there is less binding energy.

Table II confirms a known fault with the rainbow-ladder
truncation; viz., while it binds in exotic channels, it produces
masses that are too light, just as it does for axial-vector
mesons. It is similarly noticeable that mπ1 is far more sensitive
to variations in ω than is mρ1 ; and although mπ1 < mρ1

for ω = 0.4 GeV, the ordering is rapidly reversed. Thus, in
conflict with the experiment, one usually finds mπ1 > mρ1

in rainbow-ladder truncation. This is also a property of the
truncation, which is insensitive to the details of G(k2); e.g.,
the same ordering is obtained with a momentum-independent
interaction [61].

C. Structure of bound states

In order to develop insight, both into the structure of
excited and exotic states, and for progressing beyond rainbow-
ladder truncation, it is useful to know which of the invariant
amplitudes in Eqs. (10) to (12) are dominant. One useful
measure of an amplitude’s importance is the contribution it
makes to a given meson’s mass. Figure 1 displays the result
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τ i

FIG. 1. (Color online) Pseudoscalar mesons. Relative difference
between the mass computed with all the amplitudes in Eq. (10) and
that obtained when the identified i � 2 amplitude is omitted. Circles:
ground-state pion; Squares: J PC = 0−− exotic; and Diamonds: first
pseudoscalar radial excitation. In all cases, ω = 0.6 GeV, Dω =
(1.1 GeV)3. There is only minor quantitative variation with ω ∈
[0.4, 0.6] GeV. The i = 1 amplitude is never omitted, it specifies
the reference value.

for pseudoscalar mesons: In all cases a good approximation
is obtained by retaining F 1

0− and F 2
0− . This outcome is in

agreement with extant ground-state computations [20], but
extends those rainbow-ladder conclusions to excited and exotic
states. Evidently, there is little here to distinguish between the
exotic and the radial excitation. Curiously, F 2

0− plays a role of
similar magnitude in each state and the amplitudes F 3

0− and
F 4

0− are always largely unimportant. These last two, in this
instance small, amplitudes are those most directly associated
with nonzero quark orbital angular momentum in the meson’s
rest frame.

For scalar mesons, on the other hand, one reads from
Fig. 2 that F 1

0+ , F 3
0+ , and F 4

0+ should be included if a reliable
approximation is to be obtained. The latter two amplitudes are
directly associated with significant rest-frame quark orbital
angular momentum. Notably, in quantum mechanical models,
scalar mesons are identified as 3P0 states, in contrast to 1S0 for
pseudoscalar mesons.

The vector meson (3S1) situation is displayed in Fig. 3. In
agreement with Ref. [62], a good approximation for the vector-
meson ground state is obtained by retaining F 1

1− , F 4
1− , F 5

1− . The
last two amplitudes are associated with P -wave components
in the rest frame. However, for the first radial excitation, F 2

1−
is also important: This amplitude is directly associated with a
D-wave component in the radially excited vector meson’s rest
frame. These observations suggest that a BSE might be built
that projects selectively onto the first radially excited state.

The additional information contained in these figures
indicates that the shortcomings identified above, of the
rainbow-ladder truncation for states other than ground-state
vector and flavored-pseudoscalar mesons, can be attributed to
this truncation’s inadequate expression in the Bethe-Salpeter
kernels of effects which in quantum mechanics would be
described as spin-orbit interactions. Namely, treating the
quark-gluon vertex as effectively bare in both the gap and

τ i

FIG. 2. (Color online) Scalar mesons. Relative difference be-
tween the mass computed with all the amplitudes in Eq. (11)
and that obtained when the identified i � 2 amplitude is omitted.
Circles: ground state u = d scalar; Squares: J PC = 0+− exotic;
and Diamonds: first pseudoscalar radial excitation. In all cases
ω = 0.6 GeV, Dω = (1.1 GeV)3. There is only minor quantitative
variation with ω ∈ [0.4, 0.6] GeV. The i = 1 amplitude is never
omitted, it specifies the reference value.

Bethe-Salpeter equations leads to the omission of critically
important helicity-flipping interactions that are dramatically
enhanced by DCSB, as discussed in Refs. [26,29,34].

One may readily expand on this. For example, vector
meson bound states possess nonzero magnetic and quadrupole
moments [63]. This fact, Fig. 3, and the associated discussion
together indicate that there is appreciably more dressed-
quark orbital angular momentum within these states than
within pseudoscalar mesons. Hence, spin-orbit repulsion could
significantly boost mρ1 and thereby produce the correct
level ordering, viz., mρ1 > mπ1 . Moreover, since exotic states

τ i

FIG. 3. (Color online) Vector mesons. Relative difference be-
tween the mass computed with all the amplitudes in Eq. (12)
and that obtained when the identified i � 2 amplitude is omitted.
Circles: ground state u = d vector; Squares: J PC = 1−+ exotic; and
Diamonds: first vector radial excitation. In all cases ω = 0.6 GeV,
Dω = (1.1 GeV)3. While there are quantitative changes with ω, the
pattern of amplitude importance is unchanged. The i = 1 amplitude
is never omitted, it specifies the reference value.
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FIG. 4. (Color online) Pseudoscalar mesons. ω dependence of low-order Chebyshev projections of leading invariant amplitude for ground,
radially excited, and exotic states. Upper four panels, ground and radial; lower four panels, ground and exotic. In all panels, solid line—zeroth
moment, ground state; dashed line—leading moment, comparison state; dash-dotted line—subleading moment, comparison state. Row-1, left,
ω = 0.4 GeV; Row-1, right, ω = 0.5 GeV; Row-2, left, ω = 0.6 GeV; and Row-2, right, ω = 0.7 GeV. This pattern is repeated in the next two
rows. The normalization is chosen such that 0Eπ0 (k2 = 0) = 1 and Dω = (1.1 GeV)3.

appear as poles in vertices generated by interpolating fields
with “unnatural time parity,” the importance of orbital an-
gular momentum within these states is magnified. These
comments apply with equal force to tensor mesons, which
cannot be formed without rest-frame quark orbital angular
momentum.

At present the best hope for a realistic description of the
meson spectrum within a Poincaré covariant approach4 is

4A lattice-QCD perspective on the meson spectrum may be drawn
from Ref. [64].
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FIG. 5. (Color online) Vector mesons. ω dependence of low-order Chebyshev projections of leading invariant amplitude for ground,
radially excited, and exotic states. Upper four panels, ground and radial; lower four panels, ground and exotic. In all panels, solid line—zeroth
moment, ground state; dashed line—leading moment, comparison state; dash-dotted line—subleading moment, comparison state. Row-1, left,
ω = 0.4 GeV; Row-1, right, ω = 0.5 GeV; Row-2, left, ω = 0.6 GeV; and Row-2, right, ω = 0.7 GeV. This pattern is repeated in the next two
rows. The normalization is chosen such that 0Eρ0 (k2 = 0) = 1 and Dω = (1.1 GeV)3.

provided by the essentially nonperturbative DSE truncation
scheme whose use is illustrated most fully in Ref. [29].
That symmetry-preserving scheme deeply embeds effects
associated with DCSB into the Bethe-Salpeter kernel.

D. Connecting amplitudes with observables

Whilst not directly observable, the momentum dependence
of meson Bethe-Salpeter amplitudes is a crucial determinative
factor in the computation of measurable quantities. In Figs. 4
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and 5, therefore, we depict the ω dependence of a few low-order
Chebyshev moments of the leading invariant amplitude for the
pseudoscalar and vector mesons

nFM (k2) := 2

π

∫ 1

−1
dx

√
1 − x2 Un(x) FM (k2, x; P 2) , (25)

where k · P = x
√

k2P 2 and Un(x) is a Chebyshev polynomial
of the second kind. N.B. For pseudoscalar and vector states
with natural C parity, only the even moments are nonzero,
whereas it is the odd moments that are nonzero for the exotic
partners of these states.

The upper four panels in Fig. 4 compare the amplitudes
of the ground-state and first radially excited pseudoscalar
mesons. The ground state is clearly insensitive to ω. However,
as hoped for and anticipated, the radial excitation reacts
strongly to variations in ω. Most notable is the suppression
of 0Eπ1 with decreasing ω, to be replaced by an increasingly
large 2Eπ1 . Indeed, at ω = 0.4 GeV, 0Eπ1 is almost negligible
and possesses two zeros, instead of the single zero expected
in the amplitude of a first radial excitation since the work
of Ref. [21]. In such circumstances, the radial excitation
may even possess a smaller charge radius than the ground
state [22].

In our view these features signal that values of ω � 0.5 GeV
in Eq. (14) are unphysical; i.e., the long-range behavior of a
realistic β function cannot dramatically suppress the radial
excitation’s leading amplitude nor induce it to have a second
zero. This perspective is supported by the following consid-
erations. Neither the homogeneous BSE nor the canonical
normalization condition fix the sign of the Bethe-Salpeter
amplitude at k2 = 0. As in quantum mechanics, this is arbitrary
and cannot affect observables. Another parallel with quantum
mechanics is also relevant. Namely, for a ground state, the
sign of the radial wave function at the origin in configuration
space is the same as that of its analog at the origin in
momentum space, whereas these signs are opposite for the
first radial excitation. This pattern repeats for higher even-
and odd-numbered radial excitations. Here a direct solution of
the inhomogeneous BSE is instructive because this equation
does determine signs. For example, consider the pseudoscalar
vertex: Fig. 6 of Ref. [25] illustrates a case in which the residue
associated with the pseudoscalar meson ground state is positive
and that connected with the first radial excitation is negative,
which is the behavior found herein for ω � 0.5 GeV. The
residue is a product of the pseudoscalar meson’s bound-state
Bethe-Salpeter amplitude at k2 = 0, �0−(0; P 2), and ρ0− . This
last is the expression in quantum field theory for the value of
the Bethe-Salpeter wave function at the origin in configuration
space. Thus the pattern exposed by the inhomogeneous BSE
parallels that in quantum mechanics.

It is straightforward to see that this pattern is realized in
the second, third, and fourth panels of Fig. 4, which depict
results obtained with ω � 0.5 GeV. Therein, the k2 = 0 values
of the leading amplitudes’ lowest Chebyshev projections are
positive; and whilst that for the ground-state remains positive,
that for the first radial excitation changes sign, so that it is
a negative-definite function for k2 � 1 GeV2. In performing
a Fourier transform, large k2 maps onto small x2 and hence

FIG. 6. (Color online) ω dependence of leptonic decay con-
stants for pseudoscalar and vector mesons. Ground-state pion,
solid line; radially excited pion, dashed line; ground-state ρ me-
son, dotted line; and radially excited ρ meson, dash-dotted line.
[Dω = (1.1 GeV)3.]

this behavior guarantees that the Bethe-Salpeter wave function
for the first radial excitation is negative at the origin in
configuration space.

These observations reemphasize the peculiar character of
the ω = 0.4 GeV solution in the top-left panel of Fig. 4 and
explain our choice of sign for all Bethe-Salpeter amplitudes.
The ground-state amplitude is positive at large k2, the first
radial excitation is negative at large k2, and so on. With this
convention one necessarily finds ρζ

π0
> 0, ρζ

π1
< 0, etc., and

hence, from Eq. (22), fπ0 > 0, fπ1 < 0. We depict the ω

dependence of the leptonic decay constants in Fig. 6.
The bottom four panels of Fig. 4 display low-order

moments of the exotic-pseudoscalar meson’s leading invariant
amplitude, contrasted with the ground state’s zeroth moment.
So long as ω � 0.5 GeV, the first moment of the exotic
amplitude is bounded above by 0Eπ0 and the third moment
is negative-definite. This is the first time these features
have been exposed but we expect them to be characteristic
of the rainbow-ladder truncation. It will be important to
learn whether this pattern persists beyond rainbow-ladder
truncation.

The top four panels in Fig. 5 compare the amplitudes of
the ground-state and first radially excited vector mesons. The
ground state is insensitive to ω so long as ω � 0.5 GeV but
again the radial excitation reacts strongly to variations in ω.
In this case, natural behavior for the excited state’s amplitudes
is only obtained for ω � 0.6 GeV. For smaller values, the
zeroth moment is negative-definite and the second moment
exhibits a zero. The sign of the amplitudes is fixed via the
same prescription used for pseudoscalar mesons and hence
fρ0 > 0, fρ1 < 0.

The bottom four panels of Fig. 5 display low-order moments
of the exotic-vector meson’s leading invariant amplitude,
contrasted with the ground state’s zeroth moment. In this
case, so long as ω � 0.6 GeV, the first moment of the
exotic amplitude is bounded above by 0Eρ0 and the third
moment is negative-definite. The similarity to the lower
panels of Fig. 4 encourages us in the expectation that these
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features are characteristic of the rainbow-ladder truncation.
Moreover, they suggest again that there is too much similarity
between natural and exotic C-parity states in rainbow-ladder
truncation.

In Fig. 6 we depict the ω dependence of pseudoscalar-
and vector-meson leptonic decay constants. Those for the
ground states are positive whilst those for the first radial
excitations are negative. The origin of this outcome in an
internally consistent treatment of bound states was explained
above. Notable, too, is the small magnitude of the decay
constant for the pion’s first radial excitation: fπ1 ≈ −1 MeV.
This was predicted in Ref. [21] and is a consequence of
the axial-vector Ward-Takahashi identity. It is consistent with
data on τ → π (1300)ντ [65] and numerical simulations of
lattice-regularized QCD [24].

IV. CONCLUSION

Using an interaction kernel that is consonant with modern
DSE and lattice-QCD results, we employed a rainbow-
ladder truncation of QCD’s Dyson-Schwinger equations in
an analysis of ground-state, radially excited, and exotic scalar,
vector, and flavored-pseudoscalar mesons. We confirmed that
rainbow-ladder truncation is incapable of providing realistic
predictions for the masses of excited and exotic states; e.g.,
the ordering between pseudoscalar and vector radially excited
states is incorrect, and computed masses for exotic states
are too low in comparison with other estimates. Indeed, in
rainbow-ladder truncation it appears that exotic states are in
most respects too much like their C-parity partners.

On the other hand, much can still be learnt about ground-
state baryons using the rainbow-ladder truncation [66–68].
It also provides information that is useful when working
beyond this leading order. For example, in each channel

the rainbow-ladder truncation indicates those invariant am-
plitudes which are likely to dominate in any solution of
the Bethe-Salpeter equation. This knowledge can be used
in developing integral projection techniques that suppress
ground-state contamination when searching for excited states.
Moreover, the response of observables, and the Bethe-Salpeter
amplitudes which produce them, to changes in the infrared
evolution of the interaction kernel can be used effectively
to demarcate the domain of physically allowed possibilities
for that evolution. This is valuable in qualitatively constraining
the long-range behavior of QCD’s β function. In addition,
the symmetry-preserving character of the rainbow-ladder
truncation and the ready access it provides to Bethe-Salpeter
amplitudes for bound states enable one to highlight and
illustrate features of hadron observables that do not depend
on details of the dynamics.

There are many indications that dynamical chiral symmetry
breaking (DCSB), of which the momentum dependence of
the dressed-quark mass function is a striking signal, has an
enormous impact on hadron properties. This study is one of
a growing body which indicates that the veracious expression
of DCSB in the bound-state problem is essential if one is to
reliably predict and understand the spectrum and properties
of excited and exotic hadrons. Achieving this will provide the
power to use extant and forthcoming data as a tool with which
to chart the nonperturbative evolution of QCD’s β function.
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Roberts, Phys. Rev. C 77, 042202(R) (2008).

[61] H. L. L. Roberts, L. Chang, I. C. Cloët, and C. D. Roberts,
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