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In hydrodynamical modeling of heavy-ion collisions, the initial-state spatial anisotropies are translated into
momentum anisotropies of the final-state particle distributions. Thus, understanding the origin of the initial-state
anisotropies and their uncertainties is important before extracting specific QCD matter properties, such as
viscosity, from the experimental data. In this work we review the wounded nucleon approach based on the
Monte Carlo Glauber model, charting in particular the uncertainties arising from modeling of the nucleon-
nucleon interactions between the colliding nucleon pairs and nucleon-nucleon correlations inside the colliding
nuclei. We discuss the differences between the black disk model and a probabilistic profile function approach
for the inelastic nucleon-nucleon interactions and investigate the influence of initial-state correlations using
state-of-the-art modeling of these.
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I. INTRODUCTION

In ultrarelativistic heavy ion collisions performed at Rel-
ativistic Heavy Ion Collider (RHIC) and Large Hadron
Collider (LHC) elliptic flow—the second Fourier coefficient
v2 that quantifies the azimuthal anisotropy in the measured
particle distributions—has been found to be large [1–3]. The
appearance of a significant v2 is a clear signature of pressure
formation in the system. It is also consistent with predictions
from relativistic hydrodynamics [4,5]: At nonzero impact
parameter the overlap area of the colliding nuclei is eccentric
in the transverse coordinate plane. This spatial anisotropy
is translated first into a flow-velocity anisotropy during the
hydrodynamical evolution and, finally, at the decoupling of the
system, into a measurable momentum-anisotropy of final-state
particle distributions.

Recently it was found out that geometrical fluctuations
in the nucleon transverse positions generate initial state
anisotropies [6] also for odd harmonics vn. Nowadays, the
experiments at RHIC and LHC have been able to measure
nonzero flow coefficients up to v6 [7–10]. In recent years there
have also been considerable developments in event-by-event
hydrodynamical modeling [11–16], thanks to which it has
become possible to study the higher harmonics [17–19] and v1

at midrapidity [20–22]. Studies based on hydrodynamics have
shown that all initial-state anisotropies are transferred to the
final measurable flow values in a similar way as eccentricity
is translated to elliptic flow.
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In the past few years, much effort has been put on
developing viscous hydrodynamics [23–36] and it has turned
out that the elliptic flow and especially the higher harmonics
are sensitive to the (shear) viscosity η [16,19,37,38]. Since the
final flow observables closely reflect the initial-state spatial
anisotropies, the uncertainties in the assumed (or computed)
initial state are transferred to the computed final-state flow
observables. In the studies where one has tried to estimate
the shear viscosity-to-entropy ratio, η/s, using elliptic flow
measurements, one has seen that the initial eccentricity
differences between different initial state models lead to
large uncertainties in the extracted value of η/s [27,32]. For
determining the shear viscosity from the flow measurements,
it is very important to chart all the relevant uncertainties in the
computation of the initial asymmetries.

The Glauber model [39] is usually a key element in
computing the initial states for hydrodynamical modeling of
ultrarelativistic heavy-ion collisions. Some years back, most
hydrodynamical calculations assumed smooth initial states
where the (energy or entropy) densities were assumed to scale
with the density of binary collisions or wounded nucleons
computed from the optical Glauber model; see, e.g., Ref. [40].
Now that the importance of the initial density fluctuations
has been realized, Monte Carlo Glauber (MCG) modeling has
become more frequently used. So far the black disk (hard-
sphere) modeling of the nucleon-nucleon (NN ) interactions
has been the standard choice [41–43] in these studies, although
also more involved probabilistic ways to model the NN

interactions have been known for a long time [39,44–46].
For MCG modeling, one needs the nucleon configurations

inside the colliding nuclei as an input for each event. In the
simplest approximation the nucleons are assumed point-like
and the nucleon positions are obtained by just randomly
sampling the Woods-Saxon number density distribution.
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However, to improve the modeling, NN correlations should
also be considered, as suggested in Refs. [47–51]. Experi-
mental evidence for the two-body NN correlations generating
high-momentum components of the nuclear wave function
[52,53], are discussed in Refs. [54–56]. Furthermore, recent
studies in Ref. [57] have shown that the effects from including
more realistic NN correlations are not negligible, e.g., in the
generated initial eccentricity.

In this paper we study for Au-Au collision at RHIC
energies, two different uncertainties in computing the initial-
state asymmetries from the MCG model: one related to the
modeling of the inelastic NN collisions between nucleons
from different nuclei, and one related to the NN correlations
in the nucleon configurations in each of the colliding nuclei.
The paper is organized as follows: In Sec. II A we outline
how the initial nucleon configurations can be obtained taking
the NN correlations into account. After that, in Sec. II B, we
present two different ways to model the inelastic NN primary
collisions. The studied initial-state anisotropies are defined in
Sec. II C, and results are presented in Sec. III. Finally, the
conclusions are drawn in Sec. IV.

II. MONTE CARLO GLAUBER MODEL FRAMEWORK

A. Nucleon configurations

The initial state of a nucleus in the MCG calculations is
usually taken as a collection of particles distributed according
to a probability distribution given by the corresponding
(Woods-Saxon) number density distribution measured in
electron scattering experiments. Given the complexity of the
nuclear many-body problem, the effects of spatial, spin- and
isospin-dependent correlations among the nucleons are usually
overlooked and the nucleons are positioned randomly for each
of the simulated events.

Recently, in Ref. [47] it was shown how such an approach
can be modified by including initial states, which are prepared
in advance, in the commonly used computer codes. Also, a
method to produce such configurations was introduced. The
method is based on the notion of a nuclear wave function
ψ , which contains the nucleonic degrees of freedom and
which is used to iteratively modify the positions of randomly
distributed nucleons using the Metropolis method so that the
final positions correspond to the probability density given by
|ψ |2. The method is constructed to reproduce the same nucleon
number-density distribution as the usual one and, in addition,
to reproduce the basic features of the two-nucleon density in
the presence of the NN correlations. The model wave function
is taken in the form

ψ(x1, ..., xA) =
A∏

i<j

f̂ij φ(x1, ..., xA), (1)

where φ is the uncorrelated wave function and f̂ij are
correlation operators; here, xi denotes the position, spin and
isospin projection of the ith nucleon. The correlation operator
contains a detailed spin-isospin dependence, which is as

follows:

f̂ij = f c(rij ) + f σ (rij )σ i · σ j + f τ (rij )τ i · τ j

+ f στ (rij )σ i · σ jτ i · τ j + f t (rij )Ŝij

+ f tτ (rij )Ŝijτ i · τ j + · · · , (2)

where rij is the relative distance between nucleons i and j , σ i

and τ i are the Pauli spin and isospin operators, respectively,
and Ŝij is the so-called tensor operator (see, e.g., Ref. [52]),
which depends on the spin and spatial variables of nucleons
i and j . In the most general case, the sum extends over a
number of channels that are the same as the one appearing
in modern nucleon-nucleon potentials used to successfully
describe a variety of properties of light and medium-heavy
nuclei within different ab initio approaches. When all the
correlation functions in Eq. (2), except the first one [f c(r)],
vanish, we have the central correlation case.

In this paper we will consider configurations produced both
with the central correlations only (denoted in the following by
central) and with a full set of the six correlation functions
of Eq. (2) (denoted by full), including the tensor operator.
These correlation functions [52] were developed by variational
method for nuclei lighter than 197Au considered in this paper;
nevertheless, they represent the best approximation that we can
offer, since no corresponding calculations exist for heavy nu-
clei. More specifically, we used correlation functions obtained
for 40Ca. Many recent theoretical works support the universal-
ity of NN correlations in nuclei [58–60]. We justify the use of
40Ca correlation functions by the observation that they differ
very little from those obtained for 16O; 40Ca is a large enough
nucleus to neglect additional differences with 197Au due to A

dependence in this context, as well as differences arising from
the fact that correlation functions were obtained for doubly
magic, symmetric nuclei such as 16O and 40Ca. Moreover,
as shown in Ref. [48], the two-body densities resulting from
configurations obtained using these correlations are clearly
more realistic than the completely uncorrelated ones.

The method developed in Ref. [47] allows in principle to
deal with any set of correlations; nevertheless, although the
state-dependent correlations introduce an extra computational
effort due to their noncommutative nature, they can be treated
up to a certain degree. In this paper we have used configurations
including two-body full correlations, and configurations of
three-body clusters surrounding each of the nucleons, induced
by full correlations. Genuine three-body correlations will also
be discussed in the following.

B. Modeling the inelastic interactions

We work in the Glauber model framework [39], neglecting
the effects of inelastic diffraction that lead to fluctuations of
the strength of the NN interactions [61,62]. To generate the
inelastic NN collisions of interest here, we use the following
two different approximations for deciding whether a collision
between the nucleons i and j from different nuclei takes place:

(i) Black disk approximation, used recently, e.g., in
Ref. [15], where one assumes the two nucleons to
interact inelastically with a probability one if their
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transverse separation bij is within a radius defined by
the inelastic NN cross section σ in

NN ,

b2
ij � σ in

NN

π
; (3)

(ii) Profile function approach, where the probability of an
inelastic interaction between the nucleons i and j is
given by

P (bij ) = 1 − |1 − �(bij )|2, (4)

and where the profile function � is expressed in terms
of the total and elastic NN cross sections as follows:

�(bij ) = σ tot
NN

4πB
e−b2

ij /(2 B), (5)

with B = (σ tot
NN )2/(16πσel

NN ).

The probability distribution P (bij ) can be derived in the
Born approximation of the potential-scattering formalism,
by parametrizing the NN elastic scattering amplitude
as [39,49,61]

f (q) = C(i + α)k

4π
e− 1

2 Bq2
, (6)

where C and B are constants to be determined, k ≈ E

and α ≈ 0 for ultrarelativistic energies. For the small-angle
scatterings of interest here, the vector q corresponds to the
difference between the incoming and scattered wave vectors
in the transverse plane, and q = |q| relates to the scattering
angle as q ≈ kθ . We fix C to the measured σ tot

NN on the basis
of the optical theorem,

σ tot
NN = 4π

k
Im[f (0)]. (7)

The profile function in Eq. (5) is obtained as a Fourier
transform,

�(bij ) = 1

2πik

∫
d2q e−i q·bij f (q), (8)

and the elastic NN cross section from this as

σ el
NN =

∫
d2bij |�(bij )|2. (9)

Thus, we have

σ el
NN =

(
σ tot

NN

)2

16πB
, (10)

σ tot
NN = σ el

NN + σ in
NN, (11)

and B can be fixed on the basis of measured cross sections.
For the current setup at

√
sNN = 200 GeV, we take B =

14 GeV−2 and σ tot
NN = 52 mb, which correspond to

σ in
NN = 42 mb and σ el

NN = 9.9 mb.
Finally, using Eqs. (7), (9), and (11), we arrive at the

probability function of Eq. (4), whose integral over the
transverse separation gives the inelastic NN cross section:

σ in
NN =

∫
d2bij [2 Re �(bij ) − |�(bij )|2]

=
∫

d2bij [1 − |1 − �(bij )|2]. (12)

C. Spatial asymmetries and their fluctuations

In this section we define the initial state anisotropies, which
are studied in this work. We focus on the first three harmonics
n = 1, 2, 3: dipole asymmetry, eccentricity, and triangularity.
Higher harmonics are left out since they are more complicated
due to the fact that they can be mainly originating from the
lower harmonics [63]. Also, from the experimental results we
know that the second and third harmonics are the largest ones.

We calculate the asymmetries from the wounded nucleon
positions which are obtained from the MCG model. In the
following, the angle brackets denote an average over wounded,
or participant, nucleons. The asymmetries are defined as

εn = −〈w(r) cos[n(φ − ψn)]〉
〈w(r)〉 , (13)

where w(r) is a weight and ψn is an orientation angle that is
obtained as

ψn = 1

n
arctan

〈w(r) sin(nφ)〉
〈w(r) cos(nφ)〉 + π

n
, (14)

where arctan is always placed in the correct quadrant. These
quantities are always calculated in the center-of-mass of the
wounded nucleon system. We choose to use w(r) = r3 for
n = 1, w(r) = r2 for n = 2, and w(r) = r3 for n = 3 [20].

We also study the fluctuations of the initial-state asymme-
tries since the current flow analysis methods are sensitive to
the fluctuations of the flow coefficients [64]. Since final flow
values reflect the initial-state asymmetries, the fluctuations of
the flow coefficients should follow the initial-state fluctuations.
We define the fluctuations of the anisotropies as

�εn =
√∑(

εi
n − 〈εn〉

)2

N
, (15)

where εni is the asymmetry in event i and 〈εn〉 denotes the
average over N events.

III. RESULTS

A. Number of wounded nucleons and binary collisions

First we look how the interaction models and NN correla-
tions affect the number of the participants (Npart) and binary
collisions (Ncoll). In Fig. 1 we have plotted these as a function
of the impact parameter. One can see that in central collisions
the results are the same with both interaction models, but when
impact parameter becomes large, b = 10 − 15 fm, i.e., when
only the edges of the nuclei collide and when the number of
participants and binary collisions are of the same order, the
difference between models is over 5%. This holds both for
wounded nucleons and binary collisions. From Fig. 1 it can
be seen that the effects of NN correlations on these quantities
are very small.

B. Effects of the interaction model on εn and their fluctuations

Next, we consider the two different interaction models dis-
cussed in Sec. II B and present their effects on the anisotropies
defined above. In these calculations the NN correlations are
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(a)

(b)

FIG. 1. (Color online) Number of wounded nucleons (a) and
binary collisions (b) as a function of impact parameter with different
interaction models and initial-state configurations. The results shown
correspond to the black disk approximation with uncorrelated
configurations (green dashed line); the profile function approach
�(bij ) with uncorrelated configurations (black solid line); the profile
function approach with central NN correlations (red squares); and the
profile function approach with full NN configurations (blue circles).
The insets show the ratios of the last three cases to the black disk +
uncorrelated one, with corresponding notations.

neglected for clarity; the effects of these correlations will be
studied in the next section. In Fig. 2 we have plotted the
anisotropies ε1, ε2, and ε3 as a function of Npart using the black
disk and profile function approaches to model the inelastic
NN collisions. The black disk approximation results in larger
dipole asymmetry ε1, eccentricity ε2, and triangularity ε3. In
all cases, the obtained asymmetries in the profile function
approach are slightly (�10%) smaller than in those in the
black disk case. Apparently, toward peripheral collisions, we
have more fluctuations and a less-well-defined shape with the
profile function approach, hence a smaller εn.

The difference between these two cases is negligible in most
central collisions for every n. When moving toward peripheral
collisions, the results start to deviate from each other and
the largest difference is approximately on the order of 10%.
In central collisions, most of the nucleons experience several
collisions and, thus, the details of the collision model are not
very important. In peripheral collisions, however, more and
more of the nucleons collide only once or twice, meaning that
the interaction model details start to play a role. One must also
remember that as we saw from Fig. 1, the events with the same
impact parameter are mapped to slightly smaller Npart values
with the black disk interaction model.

In Fig. 3 we plot the relative fluctuations of the initial-state
anisotropies. Here the order of the curves is opposite compared

(a)

(b)

(c)

FIG. 2. (Color online) First three harmonics εn as a function of
the number of participants. Results shown are for the two different
interaction models. In these plots no NN correlations are taken into
account.

to the εn when n = 2, 3. This means that at least partly the
difference in the relative fluctuations is explained simply by
the fact that the absolute value is slightly higher in the case
where the relative fluctuations are smaller. For ε1 the relative
fluctuations are larger with black disk interaction, indicating
that then also the absolute fluctuations are larger with black
disk than profile interaction.

The relative fluctuations of ε1 show a decreasing trend
when approaching central collisions but the impact-parameter
dependence is relatively weak. On the other hand, the relative
fluctuations of ε2 clearly depend on the impact parameter. In
central collisions the fluctuations are large, since the system is
azimuthally very symmetric, and toward peripheral collisions
the fluctuations decrease, since the collision area becomes
clearly eccentric. Triangularity ε3 has yet another behavior: its
relative fluctuations stay approximately constant when Npart >

100. Since the triangularity is created purely by the fluctuations
in the positions of wounded nucleons, we can expect that the
relative fluctuations have no centrality dependence. All in all,
�ε1/ε1 and �ε3/ε3 have only a mild centrality dependence,
while �ε2/ε2 exhibits a clear dependence on the centrality. In
addition, we conclude that for these relative fluctuations, the
NN interaction model uncertainties do not play a major role.

C. Effects of the NN correlations on εn and their fluctuations

Next, we investigate the effects of different models for the
initial state NN correlations. We have chosen to use the �(bij )
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(a)

(b)

(c)

FIG. 3. (Color online) Relative fluctuations of the first three
harmonics εn as a function of number of participants. Results are
shown with two different interaction models. In these plots, no NN

correlations are taken into account.

collision profile function in these calculations. In Fig. 4 we
have plotted the obtained anisotropies with three different NN

correlations: no correlations at all, only central correlations and
full correlations. From all panels we see that no correlations
and full correlations are very close to each other, but the central
correlations have a smaller anisotropy.

In all cases the difference between central correlations
and the two other cases is largest at central collisions and it
gets smaller toward peripheral collision. Nucleon correlations
are most important in the middle of the nucleus since the
nucleon density is largest there. Thus, in the central collisions,
where most of the wounded nucleons come from the middle
of the nuclei, the effect on anisotropies is largest. When
moving toward the peripheral collisions, the relative amount
of wounded nucleons coming from the edges of nuclei is
increasing. Thus, in very peripheral collisions where only the
edges are overlapping, the effect disappears.

We must bear in mind that central correlations have only
repulsive character; their effect can be mimicked by an ad-hoc
exclusion radius, as shown in Ref. [57]. Full state-dependent
correlations, instead, have a complex structure, which causes
nucleons to be at a given average distance in the nucleus and
results in nuclear binding and its saturation with increasing
A. Partially including these full correlations and disregarding
three-body repulsion, as it is explained below, produces the
net result of working in the opposite direction of repulsion, for
the considered quantities.

(a)

(b)

(c)

FIG. 4. (Color online) First three harmonics εn as a function
of number of participants. Results are shown with different NN

correlations and using the �(bij ) collision profile function approach.

Next, in Fig. 5, we plot the relative fluctuations of
anisotropies with different initial state NN correlations. We
can see that inclusion of full correlations brings the results back
toward the uncorrelated case; this is less evident for �ε3/ε3.
However, now the difference is small in the central collisions
and it is largest in the semiperipheral collisions. The difference
again vanishes at the most peripheral collisions.

The results obtained with realistic configurations deserve
some discussion. The production of configurations with full
realistic correlation functions differs substantially from the
central correlations case, since in the realistic description
there are several spatially dependent correlation functions
complemented with spin- and isospin-dependent operators, as
shown in Eq. (2). At this stage, we have performed a truncation
of the chains induced by realistic correlations at the level of
three-particle chains; in principle, due to the noncommutativity
of the operators in Eq. (2), the chains are A-body operators.
Moreover, we restricted our calculations to three particles
which are within a given radius from the active particle in the
Metropolis algorithm. It should be stressed that these kinds of
simplifications are not suggested by specific physics arguments
but are rather dictated by the enormously increasing computing
time. As a result, the truncation obviously induces some
amount of uncertainty in our results. The overall trend, that
the full correlations seem to bring the results back toward the
no correlation case, is nevertheless what we wish to emphasize
here.

In order to illustrate the effect of the truncation, we
have repeated the calculation with configurations including
only two-body, realistically correlated clusters (2b only), and
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(a)

(b)

(c)

FIG. 5. (Color online) Relative fluctuations of the first three
harmonics εn as a function of the number of participants. Results are
shown with different NN correlations and using the �(bij ) collision
profile approach.

compared with the three-body calculation outlined above
(3b chains). The results for �ε2/ε2 are compared with the
corresponding uncorrelated and central correlation case in
Fig. 6. Interestingly, it can be seen that the full correlations with
the 2b chains cause an effect into the opposite direction than
the more advanced 3b chains do. Although beyond the scope
of this paper, it would be interesting to study how sensitive
the considered anisotropies, and also the higher moments of
participant matter distribution, are to the higher-order chains

FIG. 6. (Color online) The effect of different models of realistic
correlations on the relative fluctations of eccentricity; see text for
explanation.

of two-body state-dependent correlations and to the genuine
three-body correlations, which we have not included here.
The outcome of such a study is, however, difficult to predict,
due to the complicated interplay of attraction and repulsion
between the three particles in different spin and isospin
states.

IV. CONCLUSIONS

In this paper we have charted some of the uncertainties in
the computation of the initial state anisotropies from the Monte
Carlo Glauber model. We used two different ways of modeling
the inelastic interactions between the colliding nucleons. The
difference between these two cases gives us an estimate about
the uncertainties related to this part of the model: in central
collisions the details of the interaction model play a minor
role, but in the peripheral collisions such details can cause
uncertainties up to 10% in the first three harmonics, ε1, ε2, and
ε3. We also checked that with these two interaction models
the difference in the number of wounded nucleons and binary
collisions remains small in central collisions, but at impact
parameters 10–15 fm the difference can be around 10%. We
also note that during the writing process of this article, a similar
nucleon interaction model study was released in Ref. [65].
The main differences to our study are the different form of the
elastic NN scattering amplitude as well as the treatment of the
NN correlations.

We also presented a study of the effects of NN correlations
with an update of correlated configurations and extended dis-
cussion as compared with the previous published papers on this
subject. We confirmed that the inclusion of centrally correlated
nucleon configurations produce the effects to eccentricity and
its relative variance as was claimed by Ref. [57]. As a new
result, we observed that the inclusion of realistically correlated
configurations (two-body full correlations, three-body chains)
seems to essentially cancel this effect and bring the results back
close to the no correlations case. The effect is similar for dipole
asymmetry and triangularity as for eccentricity. However, we
also showed that there are still uncertainties caused by the
truncation done in the nucleon configuration calculation with
full correlations and we expect three-body correlations to play
a role.

In this paper we studied two sources of additional un-
certainty in the Monte Carlo model calculations for the
initial-state anisotropies. The uncertainty caused by the studied
effects to these anisotropies was found to be maximally of the
order of 10%. Now that—thanks to the recent developments in
event-by-event hydrodynamics—more precise comparisons of
flow coefficients between the data and the theory are becoming
possible, it is important to chart all the relevant uncertainties
to this precision, so that the QCD matter properties could
eventually be determined from the measured particle spectra
and their azimuthal asymmetries.
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