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The expansion of the fireball created in Au-Au collisions at
√

sNN = 200 GeV is described in (3 + 1)-
dimensional viscous hydrodynamics with shear and bulk viscosities. We present results for the transverse
momentum spectra, the directed and elliptic flow, and the interferometry radii.
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I. INTRODUCTION

Heavy-ion collisions at ultrarelativistic energies performed
at the BNL Relativistic Heavy Ion Collider (RHIC) and the
CERN Large Hadron Collider (LHC) [1] have shown that
dense matter is formed in the interaction region. The fireball
expands, and a sizable collective flow develops. Effects of
the flow are observed in particle spectra, elliptic flow, and
interferometry radii. Nuclear modification of high p⊥ particle
spectra is understood as the energy loss of partons in the dense
medium.

The dynamics of the dense and hot matter can be quantita-
tively described in terms of relativistic hydrodynamics [2]. A
further refinement of the hydrodynamic approach involves a
finite shear viscosity of the fluid [3–8]. Finite shear viscosity
reduces the elliptic flow in the system. The comparison of the
experimental data to model predictions for the elliptic flow
could be used to estimate the value of the shear viscosity
coefficient. Most of the relativistic viscous hydrodynamic
calculations for heavy-ion collisions are done in (2 + 1)
dimensions. Such a simplification requires the assumption
of boost invariance of the matter created in the collision.
Experimental data on particle spectra at RHIC show that no
boost-invariant region is formed, even for central rapidities [9].
Only recently, the first results from a full (3 + 1)-dimensional
[(3 + 1)D] viscous hydrodynamic code have become available
[8].

We present the results of a relativistic viscous (3 + 1)D code
with shear and bulk viscosities applied to Au-Au collisions at√

sNN = 200 GeV. Hydrodynamic calculations are preformed
starting from Glauber model initial conditions, with the freeze-
out at 135 MeV and subsequent resonance decays. The use
of a realistic bulk viscosity in the hadronic phase allows us
to lower the acceptable freeze-out temperature, improving the
agreement of the spectra of pions, kaons, and protons and of the
Hanbury Brown-Twiss (HBT) correlation radii with the data.
A low value of the shear viscosity to entropy ratio η/s = 0.08
is consistent with the observed elliptic flow. The expansion
with finite viscosity yields HBT radii closer to the data than
that from ideal fluid hydrodynamics. We present results on the
directed flow in (3 + 1)D viscous hydrodynamics.

*piotr.bozek@ifj.edu.pl

II. VISCOUS HYDRODYNAMICS

The relativistic second-order viscous hydrodynamics [10]
is based on the extension of the energy-momentum tensor of
the perfect fluid,

T
μν

0 = (ε + p)uμuν − pgμν, (2.1)

by the stress corrections from shear π and bulk � viscosities,

T μν = T
μν

0 + πμν + ��μν . (2.2)

The fluid energy density, pressure, and four-velocity are
denoted by ε, p, and uμ, respectively. The viscous corrections
are solutions of the dynamical equations

�μα�νβuγ ∂γ παβ = 2ησμν − πμν

τπ

− 4

3
πμν∂αuα (2.3)

and

uγ ∂γ � = −ζ∂γ uγ − �

τ�

− 4

3
�∂αuα . (2.4)

�μν = gμν − uμuν ,

σμν = 1
2

(∇μuν + ∇μuν − 2
3�μν∂αuα

)
, (2.5)

and ∇μ = �μν∂ν . We take for the relaxation time τπ = 3η

T s
and

assume τ� = τπ .
Hydrodynamic simulations show that the average value of

η/s must be small in order to describe the experimental data on
elliptic and triangular flows [3,8,11,12]. The extracted value
is close to the conjectured lower limit η/s = 0.08 [13] if the
Glauber model is used for the initial profile of the fireball.

The shear viscosity coefficient to entropy ratio is not
constant in our default calculations. One expects significant
dissipation and effective viscosity in the hadronic cascade in
the last stage of the collision [14,15]. In the hydrodynamic
model, without a hadronic cascade afterburner, it would mean
that in the hadronic phase η/s increases [7,16]. The viscosity
to entropy ratio is taken in the form

η

s
(T ) = ηHG

s
fHG(T ) + [1 − fHG(T )]

ηQGP

s
, (2.6)

with ηHG/s = 0.5, ηQGP/s = 0.08, and fHG(T ) =
1/(exp((T − THG)/�T ) + 1), where THG = 130 MeV
and �T = 30 MeV. Bulk viscosity is expected to be
negligible in the high temperature plasma phase and it must
be finite in the interacting gas of massive hadrons [17]. We
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FIG. 1. (Color online) Temperature dependence of the ratio of
shear and bulk viscosities to the entropy. The solid line represents
the default value, corresponding to η/s = 0.08 in the QGP phase
and increasing in the hadronic phase to 0.26 at the freeze-out, the
dashed line corresponds to a constant value of η/s = 0.08, and the
dashed-dotted line represents the bulk viscosity ζ/s = 0.04 in
the hadronic phase.

put a nonzero bulk viscosity coefficient in the hadronic phase

ζ

s
(T ) = ζHG

s
fζ (T ) (2.7)

with ζHG/s = 0.04 and fζ (T ) = 1/(exp((T − Tζ )/�Tζ ) + 1),
where Tζ = 160MeV, �Tζ = 4MeV. A similar value of the
bulk viscosity and of its temperature dependence has been
used in the description of the RHIC and LHC data with
(2 + 1)D viscous hydrodynamics [7,18,19]. The temperature
dependence of the viscosity coefficients is shown in Fig. 1. At
the freeze-out temperature Tf = 135MeV we have η/s = 0.26
and ζ/s = 0.04.

The equation of state relating the thermodynamical quanti-
ties is a necessary ingredient for the hydrodynamical evolution.
In recent years, it became customary for the hydrodynamical
calculations to use for the equation of state a parametrization of
the lattice QCD data combined with a noninteracting, hadron
resonance gas model at lower temperatures [3,20–23]. Such an
equation of state with a crossover transition from the plasma
to the hadronic phase yields a much better description of
the measured interferometry radii. The resolution of the HBT
puzzle is a strong argument in favor of the present quantitative
understanding of the dense-matter equation of state at zero
baryon density [21,22]. In the present paper we follow the
prescription of Ref. [20], connecting the velocity of sound in
the hadron gas below 145 MeV to lattice QCD values above
175 MeV. The interpolation between the two limiting forms is
such that the entropy from lattice QCD is reproduced at high
temperatures [20]. We use the recent lattice QCD results of
the Wuppertal-Budapest group [24]. The velocities of sound
and pressure as function of temperature are shown in Figs. 2
and 3.

The initial density profile ρ(η‖, x, y) for the hydrodynamic
evolution in the space-time rapidity η‖ and the transverse plane
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FIG. 2. (Color online) Temperature dependence of the velocity
of sound squared used in the hydrodynamic calculations compared to
lattice QCD results of Ref. [24].

(x, y) at an impact parameter b is taken in the form

ρ(b, η‖, x, y) = (yb + η‖)N+ + (yb − η‖)N−
yb(N+ + N−)

×
[

1 − α

2
ρpart + αρbin

]
f (η‖), (2.8)

and the entropy density is

s(η‖, x, y) = s0
ρ(b, η‖, x, y)

ρ(0, 0, 0, 0)
, (2.9)

where the density in the transverse plane is proportional to
a combination of participant nucleon ρpart = N+ + N− and
binary collision ρbin densities, with α = 0.125. The densities
of the right- and left-going participant nucleons N±(x, y) are
calculated from the Glauber model. The first factor on the
right-hand side of Eq. (2.8) gives a tilt of the source away
from the beam axis (yb is the beam rapidity). It is motivated
by the observed asymmetry of the emission of the participant
nucleons. A participant nucleon emits particles preferentially
in the same rapidity hemisphere [25]. The hydrodynamic
evolution of a tilted source generates the directed flow of
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FIG. 3. (Color online) Temperature dependence of the pressure
P/T 4 compared to lattice QCD results of Ref. [24].
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particles, as observed in Au-Au collisions at
√

sNN = 200 GeV
[26]. In the viscous hydrodynamic calculation we use the
participant eccentricity for the initial fireball [27]. The optical
Glauber model gives the standard eccentricity. We rescale
the density in the transverse plane (x → x/β, y → yβ) to
reproduce the participant eccentricity obtained from a Glauber
Monte Carlo model [28], with β = 1.02–1.03. The parameters
and the longitudinal profile

f (η‖) = exp

(
− (η‖ − η0)2

2σ 2
η

θ (|η‖| − η0)

)
(2.10)

are adjusted to reproduce the charged particle distribution in
pseudorapidity. We have η0 = 1.5, ση = 1.4 for the viscous
evolution and η0 = 1.7, ση = 1.4 for the perfect fluid evolu-
tion. The parameters of the Woods-Saxon density distribution
in Au nuclei,

ρ(x, y, z) = ρ0

1 + exp[(
√

x2 + y2 + z2 − RA)/a]
, (2.11)

are ρ0 = 0.17 fm−3, RA = 6.38 fm, and a = 0.535 fm, and the
nucleon-nucleon cross section is 42 mb. For the hydrodynamic
evolution starting at τ0 = 0.6 fm/c, the maximal entropy
density s0 corresponds to a temperature of 380 MeV, i.e., an
energy density of 33 GeV/fm3.

The hydrodynamic equation

∂μT μν = 0 (2.12)

together with the equations for the stress corrections (2.3) and
(2.4) is solved numerically in the x, y, η‖ coordinates starting
from τ0. The initial flow is the Bjorken scaling flow uμ =
(t/τ, 0, 0, z/τ ), the initial shear stress tensor takes the Navier-
Stokes form, and �(τ0) = 0. The evolution in τ = √

t2 − z2

is performed in a two-step method with spatial gradients cal-
culated on a grid with spacing �x = �y = 0.24 fm. At small
times, viscosity corrections to the pressure are substantial.
The formalism of second-order viscous hydrodynamics is not
applicable in that case [29]. To regularize πμν we use the
formula

πμν
reg = πμν

(
1 + 4(παβπαβ )2

9p4

)1/4
, (2.13)

assuring that the longitudinal pressure does not become
negative, even in the early phase of the evolution.

At the freeze-out temperature of 135 and 145 MeV for
viscous and ideal fluid hydrodynamics, particles are emitted
from the freeze-out hypersurface according to the Cooper-Frye
formula. Viscous corrections to the equilibrium momentum
distribution f0,

f = f0 + δfshear + δfbulk, (2.14)

yield a change in the energy-momentum tensor in hadronic
phase,

T μν =
∑

n

∫
d3p

(2π )3E
pμpν(f0 + δf ) = T

μν

0 + δT μν,

(2.15)

where the sum is over all the hadron species. The corrections
to the energy-momentum tensor fulfill the Landau matching

conditions

uμδT μνuν = 0 (2.16)

and

uμδN
μ

k = 0, (2.17)

where

δNμ =
∑

n

∫
d3p

(2π )3E
bkp

μδf (2.18)

is the change in the conserved charge bk (e.g., baryon number,
strangeness) in the system.

The form of the stress corrections to the energy-momentum
tensor and the matching conditions do not determine uniquely
the nonequilibrium corrections δf , either in the form of
the momentum dependence or the contribution of different
hadrons in a multicomponent system. We use a quadratic form
for the shear viscosity corrections,

δfshear = f0(1 ± f0)
1

2T 2(ε + p)
pμpνπμν, (2.19)

and an asymptotically linear form for the bulk viscosity based
on the relaxation time approximation [7,30],

δfbulk = Cbulkf0(1 ± f0)

(
c2
s u

μpμ − (uμpμ)2 − m2

3uμpμ

)
�,

(2.20)

with, in the local rest frame,

1

Cbulk
= 1

3

∑
n

∫
d3p

(2π )3

m2

E
f0(1 ± f0)

(
c2
s E − p2

3E

)
.

(2.21)

The form of the shear viscosity corrections is standard and
commonly used [31]; on the other hand, different expressions
for the bulk viscosity corrections are considered, e.g., Grad’s
expansion [32], exponential [33], and the relaxation time for-
mula [7,30,34]. The assumed form and the relative contribution
of different hadron species to the bulk viscosity corrections are
important as they influence the transverse momentum spectra
of produced particles and their relative yields. In general
the constraints imposed by the Landau matching conditions
lead to chemical nonequilibrium corrections from the bulk
viscosity. This is true for any form of the assumed momentum
dependence of the bulk viscosity corrections, linear, quadratic,
or exponential. Imposing chemical equilibrium would require
Landau matching conditions not for the conserved quantum
numbers, but separately for each particle species. The actual
choice of the bulk viscosity correction to be used needs a
specific assumption on the reequilibration rates for different
particles. The proposed forms of the bulk viscosity corrections
range from assuming a similar form for all hadrons [7,30,32] to
a different form for mesons, baryons, and strange particles [34]
to requiring the particle numbers to be unchanged [33]. We
use formula (2.21), assuming a common relaxation time for
all the particles, which leads to deviations from chemical
equilibrium due to bulk viscosity corrections. It is a minimal
assumption, but more elaborate Ansätze are possible with
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different relaxation times for different particles for both bulk
and shear viscosity corrections [34,35]. The modification of
the momentum distribution (2.21) fulfills the Landau matching
conditions due to the relation

∑
n

∫
d3p

(2π )3
Cbulkf0(1 ± f0)

(
c2
s E

2 − p2

3

)
� = 0.

(2.22)

To illustrate the effects of chemical nonequilibrium,
let us consider a system undergoing a fast, Hubble-like
expansion with a collective velocity uμ = xμ/τ3, τ3 =√

t2 − x2 − y2 − z2. If at some proper time τ3 = t0 the
interactions are turned off, the particle distributions at later
times are

f (p, x) = f0(
√

m2 + (pτ3/t0)2/Tdec) (2.23)

if at τ3 = t0 the momentum distributions f0(E/Tdec) are in
equilibrium at the temperature Tdec. The distributions (2.23)
are solutions of the Vlasov equation,

pμ∂μf (p, x) = 0. (2.24)

At times τ3 > t0 the energy density

ε(τ3) =
∑

n

∫
d3p

(2π )3
Efn(p, τ3) (2.25)

drops. In a real system rescatterings after t0 are still present, and
the particle distribution is driven toward the equilibrium with
the temperature Teq corresponding to the energy density εeq =
ε(τ3). This equilibration is incomplete, and one can use an
Ansatz for the distribution with bulk corrections at the freeze-
out of the form

f0 + δfbulk = f0(
√

m2 + p2λ/Teff), (2.26)

with the parameters Teff and λ adjusted to reproduce the
matching conditions

∑
n

∫
d3p

(2π )3
Ef0(

√
m2 + p2λ/Teff) = εeq (2.27)

and
∑

n

∫
d3p

(2π )3E

p2

3
f0(

√
m2 + p2λ/Teff) = peq + �.

(2.28)

The freeze-out temperature Teq corresponds to the energy
density εeq, but the particle ratios correspond to the temperature
Teff with Teq < Teff < Tdec. The equilibration processes drive
the momentum distribution function from the distribution
(2.23) toward the equilibrium one with the temperature Teq.
Ansatz (2.26) describes this effect of partial chemical and
kinetic reequilibration after t0. Using the simple two-parameter
formula (2.26), the effect of the deviations from equilib-
rium are taken into account. If the chemical reequilibration
processes are significantly slower than the kinetic ones,
the particle ratios get fixed at some chemical freeze-out
temperature Tch, with Teff < Tch < Tdec. Even in that case using
Teff instead of forcing the particle ratios to be fixed at the
temperature given by the energy density Teq reduces the error.

The difference between Teff and the true chemical freeze-out
temperature Tch is not big if reequilibration processes are
defined by the energy scales, which means that it is as
difficult to repopulate a pion state with momentum 800 MeV
as an ω state with momentum 220 MeV. The momentum
distribution with bulk viscosity corrections (2.26) is in
chemical equilibrium at the temperature Teff . But because
we compare it to the reference equilibrium distributions
corresponding to the temperature Teq given by the energy
density, the particle ratios are off equilibrium for Teq; the
reason is that equilibration processes are not fast enough to
repopulate high-momentum states and depopulate high-mass
states relative to the instantaneous, approximate equilibrium
state defined by the Landau matching condition. Extensive
calculation in (2 + 1)D viscous hydrodynamics with the bulk
viscosity corrections of the form (2.26) or (2.21) gives almost
indistinguishable results for the final spectra [18,19,36]. In
both cases, due to the shift in the temperature from Teq to Teff

the particle ratios appear as off chemical equilibrium for the
freeze-out temperature Teq.

Particle emission and resonance decay is performed using
the Monte Carlo generator THERMINATOR2 [37]. The hydro-
dynamic expansion is done using the equation of state at
zero baryon density. At RHIC in the central rapidity region,
the baryon chemical potential is nonzero, yielding �0.8
for the ratio of antiprotons to protons. We reintroduce the
nonzero chemical potentials at the freeze-out with the ratio
μ/T taken from thermal model fits [38]. This procedure
violates the baryon number flow at the freeze-out hypersurface
and approximately is equivalent to multiplying the final
proton spectra by exp(μ/T ) and the antiproton spectra by
exp(−μ/T ). The justification for this procedure is that the
equation of state is expected be moderately changing with μ at
small baryon densities [39] and that the energy is conserved at
the freeze-out to the order μ2/T 2. The net effect is mainly the
rescaling of the relative numbers of protons and antiprotons,
which is crucial for comparing with experimental spectra at
central rapidities.

III. RESULTS

The distribution of charged particles in pseudorapidity is
shown in Fig. 4 for different centralities. The width of the
initial distribution of matter for the hydrodynamic evolution
in Eq. (2.8) is adjusted to reproduce the final charged hadron
distribution. It is interesting to compare the parameters for the
viscous and perfect fluid evolutions. The initial width for
the viscous hydrodynamics is smaller. A similar behavior of the
matter distribution in the longitudinal direction in the (3 + 1)D
evolution has been observed in Ref. [42]. It is contrary to the
expectations from simple (1 + 1)D viscous hydrodynamic
calculations [43]. The reduced longitudinal pressure in the
initial stage of the evolution

p + πzz (3.1)

should lead to a reduced expansion of the matter in space-time
rapidity. Such a reduced expansion is observed in (1 + 1)D
calculations, using narrow initial distributions in space-time
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FIG. 4. (Color online) Pseudorapidity distribution of charged
hadrons for centrality classes 0–6%, 6–15%, 15–25%, 25–35%,
35–45%, and 45–55% calculated in the viscous and perfect fluid
hydrodynamics (solid and dashed lines, respectively) compared to
PHOBOS Collaboration data (dots) [40]. The squares represent the
BRAHMS Collaboration data for centrality 0–5% [41].

rapidity [43,44]. In (3 + 1)D evolution, the initial distribution
has a broad plateau in space-time rapidity, where no expansion
occurs at early times. In the tails, outside of the plateau, the
expansion is faster in the ideal fluid case (see the tails of the
distributions in Fig. 4).

The centrality dependence of dN/dηPS is reproduced using
the initial entropy density scaled with a combination of
participant nucleons and binary collisions. The parameter
α = 0.125 for the admixture of binary collisions is smaller
than seen in the final density at ηPS = 0 (α = 0.145 [45]). The
difference comes from the interplay of the longitudinal and
transverse expansions and from the entropy production in the
viscous hydrodynamics.

Pion spectra in transverse momentum are well reproduced
at different centralities (Fig. 5) for p⊥ < 1.2 GeV. The role of
the bulk viscosity is essential in reproducing the spectra, as it
reduces the effective thermal motion of the emitted particles.
The collective component is larger, corresponding to a lower
freeze-out temperature. Very similar results are obtained using
ideal hydrodynamics, but at a higher freeze-out temperature of
145 MeV. It means that the p⊥ distributions in the perfect fluid
case are obtained using a smaller collective flow but larger
thermal motion.

Kaon spectra are well reproduced in central collisions
(Fig. 6). In semiperipheral collisions the number of kaons is
overpredicted. It may be a sign of the incomplete equilibration
of strangeness in peripheral collisions [47]. The same as for
pions, the perfect and viscous fluid hydrodynamics give similar
results. Hydrodynamic calculations describe the proton spectra
up to p⊥ < 2 GeV (Fig. 7). Small differences can be observed
between perfect fluid and viscous calculations. Viscosity leads
to harder spectra for protons, as heavy particles are more
sensitive to the collective flow. Another difference is that
the number of protons is larger in the viscous calculations,
although the freeze-out temperature is lower, and one would
expect a smaller thermal rate of production. This is an effect
of the bulk viscosity, which drives the system out of chemical
equilibrium. In an expanding system with bulk viscosity the
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FIG. 5. (Color online) The π+ transverse momentum spectra for
centralities 0–5%, 5–10%, 10–15%, 15–20%, 20–30%, 30–40%, and
40–50% (successively scaled down by powers of 0.1) from viscous
hydrodynamic calculations (solid lines). The dashed lines for the
centralities 0–5% and 20–30% represent the results of the perfect
fluid hydrodynamics. Data are from the PHENIX Collaboration [46].

ratio of the number of heavy to light particles is larger than
predicted in chemical equilibrium at Tf (Sec. II). The spectra
for pions, kaons, and protons are very similar as obtained
in (2 + 1)D viscous hydrodynamics with bulk and shear
viscosity [7].

A characteristic for which viscous evolution in (3 + 1) di-
mensions may be important is the pseudorapidity dependence
of the elliptic flow. Ideal fluid hydrodynamics gives a flat de-
pendence, unlike measured in experiments. Dissipative effects
in the hadronic cascade bring the results of the simulations
closer to the data [14]. In terms of the viscous hydrodynamics,
one expects stronger shear viscosity corrections at forward
rapidities, where the matter freezes out earlier [48]. The
(3 + 1)D viscous hydrodynamic calculations by Schenke et al.
give a flat dependence of v2 on the pseudorapidity [8,42], using
both the average and fluctuating initial conditions. The same
can be observed in our calculation (Fig. 8). We study the effect
of the increase of the shear viscosity in the hadronic phase
(solid line) as compared to a calculation using a constant
η/s (dashed line). We observe a minor improvement of the
agreement with the data when the viscosity increases, as
would have been expected if the effect determining the shape
of v2(ηPS) were the dissipation in the hadron cascade; it is
not enough to remove the discrepancy with the PHOBOS
measurements. In the simulation with constant η/s we start the
evolution with the standard eccentricity, given by the optical
Glauber model. When using fluctuating initial conditions,
the initial eccentricity is the participant eccentricity, but the
expansion of lumpy initial conditions reduces the final flow [8].
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FIG. 6. (Color online) The same as Fig. 5 but for K+.

These effects depend on the centrality, the coarse-graining of
the initial fluctuations, and the viscosity [42,50].

The elliptic flow of charged particles as a function of p⊥ is
shown in Figs. 9 and 10 for three different centrality classes.
Viscous hydrodynamics gives a satisfactory description for
p⊥ < 1.5 GeV. The reduction of the elliptic flow from
viscosity happens in the hydrodynamic phase (dashed-dotted
line versus dashed line in Fig. 10). An additional reduction of
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FIG. 7. (Color online) The same as Fig 5 but for protons.
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FIG. 8. (Color online) Pseudorapidity dependence of the elliptic
flow coefficient for charged particles for centralities 15–25% for the
viscous hydrodynamic expansion with increasing (solid line) and
constant (dashed line) shear viscosity to entropy in the hadronic phase;
data from the PHOBOS Collaboration are denoted by dots [49].

the azimuthal asymmetry happens due to the shear viscosity
corrections at freeze-out (dotted line in Fig. 10). The inclusion
of bulk viscosity corrections increases the elliptic flow slightly,
as noted in Ref. [32]. The reason is that bulk viscosity reduces
the thermal motion of the emitted particles and the momenta
are more aligned with the collective flow of the fluid. The fluid
velocity is transverse to the shear stress tensor uμπμν = 0, so
the shear viscosity correction in Eq. (2.19) is reduced.

The expansion of the tilted source [Eq. (2.8)] gives a
sizable negative directed flow (Fig. 11). The perfect fluid
dynamics gives a larger v1, as predicted in Ref. [54]. The
formation of the directed flow from the tilted source involves
the simultaneous action of the transverse and longitudinal
pressures in the fluid [26], and it happens early in the evolution.
Shear viscosity corrections reduce the longitudinal pressure
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FIG. 9. (Color online) Elliptic flow of charged particles as
a function of transverse momentum from viscous hydrodynamic
calculations for centralities c = 10–20% (lower line) and c = 30–
40% (upper line) compared to PHENIX Collaboration data [51].
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FIG. 10. (Color online) Elliptic flow of charged particles as
a function of transverse momentum from viscous hydrodynamic
calculations for centralities c = 20–30% (solid line), from perfect
fluid hydrodynamics (dashed-dotted line), from the viscous hydro-
dynamics without δfshear and δfbulk corrections at the freeze-out
(dashed line), and from the viscous hydrodynamics without δfbulk

corrections at the freeze-out (dotted line). Data are from the PHENIX
Collaboration [51].

[Eq. (3.1)] and increase the transverse one; as a result less
directed flow is generated. The directed flow observable is
potentially a very sensitive measure of the pressure imbalance
at the early stage. However, significant uncertainties are still
present and are related to the initial conditions, the starting
time of the evolution, and the nature of the initial pressure
imbalance [55].

The HBT radii are calculated from the correlations of
identical pions. Correlated pairs are generated from the Monte
Carlo events [37]. The interferometry radii as a function of the
momentum pair k⊥ are shown in Fig. 12. The calculations are in
good agreement with STAR data, with viscous hydrodynamics
being slightly better. The size of the emitting source Rside is

PSη
-4 -2   0              2                4

-2

-1

0

1

2 PHOBOS  c=0-40%
STAR  c=5-40%

Au-Au  200 GeV  charged particles

1v

(%)

ideal fluid

visc. hydro

FIG. 11. (Color online) Directed flow in Au-Au collisions; perfect
fluid (dotted line) and viscous fluid hydrodynamics (solid line)
are compared to experimental data from the PHOBOS and STAR
collaborations [52,53].
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FIG. 12. (Color online) HBT radii for Au-Au collisions at central-
ities 0–5%. Ideal fluid results (dashed lines), viscous hydrodynamic
results (solid lines), and STAR Collaboration data [56] (squares) are
shown.

correctly predicted. The larger collective flow in the calculation
involving both the shear and bulk viscosities yields a smaller
value of the ratio Rout/Rside. We find the role of bulk viscosity
important to obtain a common description of both the HBT
radii and the transverse momentum spectra. The results for
the HBT radii in the (3 + 1)D calculations are very similar
to (2 + 1)D results for both the viscous [7,18] and perfect
fluid [57] dynamics.

IV. CONCLUSIONS

We present a set of (3 + 1)D viscous hydrodynamic
calculations for Au-Au collisions at

√
sNN = 200 GeV. Using

an independently developed hydrodynamic code coupled to
a statistical emission and resonance decay event generator
[37], we evaluate several soft observables for final particles.
The measured spectra of pions, kaons, and protons are well
reproduced. The elliptic flow of charged particles as a function
of p⊥ is calculated for different centralities. A small value of
the shear viscosity η/s = 0.08 for calculations using Glauber
model initial conditions yields results compatible with the data.
The dependence of the flow coefficient v2 on pseudorapidity
is too flat, even when taking into account the increase of the
shear viscosity in the hadronic phase. The directed flow of
charged particles is calculated for the viscous fluid evolution,
finding a reduction compared to the perfect fluid case. The
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interferometry radii as a function of the momentum of the pair
of pions are calculated. Viscosity improves the agreement with
the data, especially for Rside and the ratio Rout/Rside.

The values for some of the observables studied, the
transverse momentum spectra, the elliptic flow as a function
of p⊥, and the HBT radii are similar as in (2 + 1)D viscous
hydrodynamic simulations. The elliptic flow as a function of
pseudorapidity is similar to previous (3 + 1)D calculations

using averaged initial conditions [8,42]. The reduction of the
directed flow from viscosity comes as expected [54].
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[48] P. Bożek and I. Wyskiel, PoS EPS-HEP 2009, 039 (2009).
[49] B. B. Back et al. (PHOBOS Collaboration), Phys. Rev. C 72,

051901 (2005).
[50] Z. Qiu and U. W. Heinz, arXiv:1108.1714 [nucl-th].
[51] A. Adare et al. (PHENIX Collaboration), Phys. Rev. Lett. 107,

252301 (2011).
[52] B. B. Back et al. (PHOBOS Collaboration), Phys. Rev. Lett. 97,

012301 (2006).
[53] B. I. Abelev et al. (STAR Collaboration), Phys. Rev. Lett. 101,

252301 (2008).

034901-8

http://dx.doi.org/10.1016/j.nuclphysa.2005.02.130
http://dx.doi.org/10.1016/j.nuclphysa.2005.02.130
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.084
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.084
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.085
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.085
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.086
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.086
http://dx.doi.org/10.1103/PhysRevLett.105.252302
http://dx.doi.org/10.1103/PhysRevLett.105.252302
http://dx.doi.org/10.1016/j.physletb.2010.12.053
http://dx.doi.org/10.1103/PhysRevLett.105.252303
http://dx.doi.org/10.1103/PhysRevLett.105.252303
http://dx.doi.org/10.1103/PhysRevC.84.024906
http://dx.doi.org/10.1103/PhysRevC.84.024906
http://dx.doi.org/10.1146/annurev.nucl.54.070103.181236
http://dx.doi.org/10.1146/annurev.nucl.54.070103.181236
http://dx.doi.org/10.1103/PhysRevC.78.034915
http://dx.doi.org/10.1103/PhysRevC.74.044904
http://dx.doi.org/10.1016/j.physletb.2007.11.019
http://dx.doi.org/10.1103/PhysRevC.77.034905
http://dx.doi.org/10.1103/PhysRevC.81.034909
http://dx.doi.org/10.1103/PhysRevLett.106.042301
http://dx.doi.org/10.1103/PhysRevLett.106.042301
http://dx.doi.org/10.1103/PhysRevLett.94.162301
http://dx.doi.org/10.1103/PhysRevLett.94.162301
http://dx.doi.org/10.1016/0003-4916(79)90130-1
http://dx.doi.org/10.1103/PhysRevC.82.054904
http://dx.doi.org/10.1103/PhysRevC.82.054904
http://dx.doi.org/10.1103/PhysRevC.82.034913
http://dx.doi.org/10.1103/PhysRevC.82.034913
http://dx.doi.org/10.1103/PhysRevLett.94.111601
http://dx.doi.org/10.1103/PhysRevLett.94.111601
http://dx.doi.org/10.1016/j.physletb.2006.03.060
http://dx.doi.org/10.1088/0954-3899/36/6/064030
http://dx.doi.org/10.1103/PhysRevC.83.024912
http://dx.doi.org/10.1103/PhysRevLett.106.212302
http://dx.doi.org/10.1103/PhysRevLett.103.172302
http://dx.doi.org/10.1103/PhysRevLett.103.172302
http://dx.doi.org/10.1103/PhysRevD.80.114015
http://dx.doi.org/10.1103/PhysRevLett.102.172302
http://dx.doi.org/10.1103/PhysRevC.83.044910
http://dx.doi.org/10.1016/j.physletb.2011.04.020
http://dx.doi.org/10.1103/PhysRevLett.101.022301
http://dx.doi.org/10.1103/PhysRevLett.102.232301
http://dx.doi.org/10.1016/j.nuclphysa.2010.02.015
http://dx.doi.org/10.1007/JHEP11(2010)077
http://dx.doi.org/10.1103/PhysRevC.81.054902
http://dx.doi.org/10.1103/PhysRevC.77.014906
http://dx.doi.org/10.1016/j.cpc.2008.07.016
http://dx.doi.org/10.1016/j.cpc.2008.07.016
http://dx.doi.org/10.1103/PhysRevC.79.014906
http://dx.doi.org/10.1103/PhysRevC.79.014906
http://dx.doi.org/10.1016/0375-9474(85)90190-3
http://dx.doi.org/10.1016/0550-3213(85)90499-7
http://dx.doi.org/10.1103/PhysRevC.79.055207
http://dx.doi.org/10.1103/PhysRevC.68.034913
http://dx.doi.org/10.1103/PhysRevC.80.054906
http://dx.doi.org/10.1103/PhysRevC.80.054906
http://dx.doi.org/10.1103/PhysRevC.82.044901
http://arXiv.org/abs/1109.5181
http://dx.doi.org/10.1103/PhysRevC.81.034907
http://dx.doi.org/10.1103/PhysRevC.81.034907
http://dx.doi.org/10.1088/0954-3899/38/12/124173
http://dx.doi.org/10.1088/0954-3899/38/12/124043
http://dx.doi.org/10.1016/j.cpc.2011.11.018
http://dx.doi.org/10.1016/j.nuclphysa.2006.03.012
http://dx.doi.org/10.1016/j.nuclphysa.2006.03.012
http://dx.doi.org/10.1103/PhysRevC.76.034901
http://dx.doi.org/10.1103/PhysRevLett.91.052303
http://dx.doi.org/10.1103/PhysRevLett.88.202301
http://dx.doi.org/10.1103/PhysRevLett.88.202301
http://dx.doi.org/10.1103/PhysRevC.85.024901
http://dx.doi.org/10.1103/PhysRevC.85.024901
http://dx.doi.org/10.1103/PhysRevC.77.034911
http://dx.doi.org/10.1016/j.physletb.2011.08.049
http://dx.doi.org/10.1103/PhysRevC.70.021902
http://dx.doi.org/10.1103/PhysRevC.70.021902
http://dx.doi.org/10.1103/PhysRevC.69.034909
http://dx.doi.org/10.1103/PhysRevC.69.034909
http://dx.doi.org/10.1103/PhysRevC.71.054901
http://dx.doi.org/10.1016/j.physletb.2009.01.066
http://dx.doi.org/10.1016/j.physletb.2009.01.066
http://dx.doi.org/10.1103/PhysRevC.72.051901
http://dx.doi.org/10.1103/PhysRevC.72.051901
http://arXiv.org/abs/1108.1714
http://dx.doi.org/10.1103/PhysRevLett.107.252301
http://dx.doi.org/10.1103/PhysRevLett.107.252301
http://dx.doi.org/10.1103/PhysRevLett.97.012301
http://dx.doi.org/10.1103/PhysRevLett.97.012301
http://dx.doi.org/10.1103/PhysRevLett.101.252301
http://dx.doi.org/10.1103/PhysRevLett.101.252301


FLOW AND INTERFEROMETRY IN (3 + 1)-DIMENSIONAL . . . PHYSICAL REVIEW C 85, 034901 (2012)
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[55] P. Bożek, Acta Phys. Pol. B 39, 1375 (2008);
R. Ryblewski and W. Florkowski, J. Phys. G 38, 015104 (2011);
M. Martinez and M. Strickland, Nucl. Phys. A 848, 183 (2010);
G. Beuf, M. P. Heller, R. A. Janik, and R. Peschanski,

J. High Energy Phys. 10 (2009) 043; M. P. Heller, R. A. Janik,
and P. Witaszczyk, arXiv:1103.3452 [hep-th].

[56] J. Adams et al. (STAR Collaboration), Phys. Rev. C 71, 044906
(2005).
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