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Methods of extraction of the symmetry energy (or enthalpy) coefficient to temperature ratio from isobaric
and isotopic yields of fragments produced in Fermi-energy heavy-ion collisions are discussed. We show that
the methods are consistent when the hot fragmenting source is well characterized and its excitation energy and
isotopic composition are properly taken into account. The results are independent of the mass number of the
detected fragments, which suggests that their fate is decided very early in the reaction.
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I. INTRODUCTION

In the past few years the importance of the symmetry energy
term in the nuclear equation of state has stimulated a growing
interest in isospin effects in nuclear reactions. Understanding
the properties of asymmetric nuclear matter both at normal
densities and at densities away from the saturation density has
an important impact on the study of nuclear structure close to
drip lines [1] and on the study of astrophysical processes [2].

Recent measurements of the giant dipole [3], pygmy
dipole [4] and giant monopole [5] resonances in neutron-rich
nuclei, neutron and proton emission [6], isospin diffusion
[7], and fragment isotopic ratio [8,9] have provided initial
constraints on the density dependence of the symmetry energy
at subsaturation densities. Refinement of these measurements
with both stable and rare isotope beams in the near future will
provide further stringent constraints. New crucial experimental
constraints on the symmetry energy at suprasaturation densi-
ties are expected from the recent measurement on neutron-
proton elliptic flow performed at GSI [10]. Nevertheless, the
conclusions are model dependent, different analysis methods
provide different results, and a consistent description of all
available experimental data employing one type of equation of
state is still lacking.

In this work, among the experimental observables com-
monly used to explore the symmetry energy at subsaturation
densities, we will concentrate on yield ratios of fragments
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produced in multifragmentation processes at Fermi energies.
Different methods to extract the “symmetry energy” coefficient
from this observable have been proposed. Among those, we
will focus on three seemingly different approaches: isoscaling
[11–16], m-scaling [17], and isobaric yield ratio method [18],
and we will show that consistent experimental results can be
extracted provided that the properties of the hot fragmenting
source, such as its isospin composition and excitation energy,
are properly taken into account. The paper is structured
as follows: Sec. II briefly describes the three methods.
Sections III and IV present the motivation that led to this work
and the experimental apparatus, respectively. The importance
of the source reconstruction and the results are presented
in Secs. V and VI, respectively, while Sec. VII presents
conclusions.

II. THEORETICAL BACKGROUND

The study of the multifragmentation process in violent
heavy-ion collisions at Fermi energies is important for the
investigation of the symmetry energy. During the multifrag-
mentation process, which has been related to a nuclear phase
transition [19–22], subsaturation density may be achieved
[23]. Free energies play an important role in mixed-phase
environments. Indeed, the isotopic distribution of fragments
produced in such collisions is governed by the free energy
at the pressure and temperature of the fragmenting source.
Thus, by assuming that the fragment production is governed
by a purely statistical process at constant temperature T and
pressure P , the yield of a fragment, with N neutrons and Z

protons, Y (N,Z, T , P ), can be related to the nuclear Gibbs
free energy G(N,Z, T , P ) [14]:

Y (N,Z, T , P )

= Y0A
−τ exp

{
− G(N,Z, T , P )

T
+ μn

T
N + μp

T
Z

}
, (1)
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where Y0 is a constant, μn and μp are the neutron and proton
chemical potentials, respectively, and T is the temperature
of the emitting source. The factor A−τ originates from the
entropy of the fragment, i.e., the Fisher entropy [24,25]. The
use of the Gibbs free energy [26] depends on the validity
of the assumption of fragment production via an equilibrium
mechanism at constant pressure. Other assumptions, and
therefore other thermodynamic state functions, could be used
[27,28], but it is undoubtedly true that the true fragment
production scheme requires a kinetic treatment. For instance,
if the volume is kept constant (freeze-out hypothesis), then
the Helmholtz free energy, F (N,Z, T , V ), should be used.
This ambiguity casts some doubts on the derived quantity, i.e.,
symmetry energy or enthalpy.

Within a liquid-drop description, the nuclear free energy,
F (N,Z, T , V ), can be parametrized as a sum of the bulk,
surface, Coulomb, and symmetry free energy contributions.
The symmetry energy term is usually expressed as [12,29]

Esym(N,Z, T , V ) = Csym(T , V )
(N − Z)2

A
, (2)

where Csym(T , V ) is the symmetry energy coefficient, V is
the volume, and A = N + Z. Similarly, starting from the
Gibbs free energy, G(N,Z, T , P ), the symmetry enthalpy
term could be expressed by introducing a symmetry enthalpy
coefficient Chsym, depending on (T , P ). The logic employed
in this work, in which an equilibrium process at constant
pressure is assumed [14], will lead to the extraction of the
symmetry enthalpy. The assumption of a constant volume [12]
would have led to the extraction of the symmetry energy.
Experimentally, whether the equilibrium process takes place
at constant pressure or volume (freeze-out hypothesis) is not
determined, and therefore the ambiguity on the extracted
quantity is retained. However, some estimates show that the
difference between the two quantities should be small below
the critical point of the phase transition [30]. Above it, the
PV product becomes finite, and the two quantities might
significantly differ. Nevertheless, in Ref. [27] it is shown that
the canonical and grand-canonical ensembles predict similar
results if one is only interested in the ratio of the population
of two adjacent isotopes, on which we will focus in this work.
Keeping in mind this ambiguity, from now on we will refer
to the experimentally extracted quantity as the “symmetry
energy.”

We now give a brief review of the three methods that we
will use in our experimental analysis.

It has often been experimentally observed that the ratio
of the yields of a fragment with N neutrons and Z protons
produced in two similar reaction systems with different
neutron-to-proton ratios is exponential in N and Z [11–16].
In the grand-canonical approximation, using Eq. (1) this ratio
can be written as

R21(N,Z, T , P ) = Y2(N,Z, T , P )

Y1(N,Z, T , P )

= Y0,2

Y0,1
exp{[(μn,2 − μn,1)N

+ (μp,2 − μp,1)Z]/T } (3)

= C exp(αN + βZ),

under the assumption that the thermodynamic state points
of the two equilibrated sources in the two reactions are the
same (where the indices 1 and 2 denote neutron-poor and
neutron-rich systems, respectively). This relation, known as
isoscaling, has been found to describe the measured ratios over
a wide range of complex fragments and light particles rather
well [12] and to be a phenomenon common to many different
types of heavy-ion reactions [8,13,15,16,31,32]. This suggests
that free energy components sensitive to the neutron-proton
concentration differences play a key role in the fragment
formation process.

Recently, the modified Fisher model of Ref. [24] has
been used to interpret multifragmentation data and extract
information on the symmetry energy [17,18,33]. In this model,
the free energy per particle is modified as [33]

�(mf ,A, T ,H ) ↔ G(N,Z, T , P ) − μnN − μpZ

A
, (4)

where mf (= N−Z
A

) is the relative isospin asymmetry of the
fragment. This is the Landau free energy. The ansatz here is that
near a critical point all the dependencies of the free energy are
contained in the order parameter mf and its conjugate field H

[17,33,34]. In principle, we do not need to specify whether the
system is at constant volume or pressure, as before. Comparing
to Eq. (1), we should notice that �(mf ,A, T ,H ) includes the
neutron and proton chemical potentials. Within this approach,
the ratio of the free energy per particle to the temperature near
the critical point is described by the expansion [33–35]

�(mf ,A, T ,H )

T
= 1

2
am2

f + 1

4
bm4

f + 1

6
cm6

f

− H

T
mf + O

(
m8

f

)
. (5)

The parameters a, b, and c, which depend on T and ρ [33],
are used for fitting. We stress here that the “external field” in
our case might be attributed to the difference in neutron and
proton chemical potentials of the source [17,34]. Indeed, in the
limit where μp = −μn, combining Eqs. (4) and (5), we obtain
2H = μn − μp. Other terms, such as the volume, surface,
Coulomb, and pairing contributions, might be negligible near
the phase transition, as suggested by experimental data [33].

An exponential dependence on mf has been experimentally
observed for the ratio, R21, of the yields of a fragment (mf ,
A) produced in two similar reactions with different neutron-
to-proton ratios [17]. This scaling has been referred to as m-
scaling, to distinguish it from the known isoscaling. Indeed,
the fragment yield ratio between two systems at the same
thermodynamic state point depends only on the external field
H/T :

R21(mf ,A, T ,H ) = C exp

(
�H

T
mf A

)
, (6)

where �H/T = H2/T − H1/T . Comparing Eq. (3) and (6)
and assuming that α = −β, we obtain �H

T
= α, as has

been suggested in Ref. [17]. Ignoring the isospin-symmetry-
breaking Coulomb effects is a reasonable approximation for
light nuclei, since we will show that the α = −β relationship
is approximately satisfied in our experimental data [33].
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Following the statistical interpretation of the isoscaling with
the Statistical Multifragmentation Model (SMM) [13] and with
the expanding emitting source model [12], it has been proposed
that the symmetry energy coefficient can be extracted from
the measured isoscaling parameters through the approximate
formula [12]

Csym(T )

T
= α

4�
. (7)

The two models of Refs. [12,13] are based on different
assumptions; therefore we restrain from stating explicitly the
Csym dependence on V or P , which is model dependent.

In the literature a variety of definitions of the quantity �

has been proposed [12,14]. Among those we will focus on two
commonly used expressions and on one recently suggested.

In the context of the SMM and the expanding emitting
source model, � is the difference of the asymmetries of the
equilibrated emitting sources, defined as [12]

�source =
[(

Z

A

)2

1

−
(

Z

A

)2

2

]
. (8)

In general, due to the phenomenon of fractionation, frag-
ments may not have the same isospin ratio of the fragmenting
source and this could affect the value of Csym obtained from
the isoscaling coefficient.

A study of the isospin fractionation and the isoscaling with
Antisymmetrized Molecular Dynamics simulations [36] has
shown a linear relation between α and (Z/A)2 of fragments.
The quantity � has then been expressed as

�liquid(Z) =
[(

Z

〈A〉
)2

1

−
(

Z

〈A〉
)2

2

]
, (9)

where Z/〈A〉 is the proton fraction of the most probable
isotope for fragments of a given Z with A > 4 (“liquid part”)
[14].

More recently, Tripathi et al. [37] have shown, in an
investigation of the nuclear phase transition using the Landau
free energy approach, that the position of the central minimum
of the free energy is related to the average isospin asymmetry
of the fragments produced in each event, excluding neutrons
and protons, mf . This suggests � may be written as

�〈mf 〉 =
(

1 − 〈mf 〉
2

)2

1

−
(

1 − 〈mf 〉
2

)2

2

, (10)

where 〈mf 〉 is the event average of the fragment relative isospin
asymmetry,

〈mf 〉 = 1

N

N∑
i=1

⎡
⎣ K∑

j=1

mfj

Ki

⎤
⎦ , (11)

where N is the number of events and K is the event multiplicity
excluding neutrons and protons.

We would like to stress here that the definitions of �

proposed in Eq. (8), (9), and (10) differ significantly. While
Eq. (8) relates � to the characteristics of the two sources,
Eqs. (9) and (10) express � as a function of the characteristics
of the fragments. Moreover, Eq. (10), as opposed to Eq. (9),
takes into account, event by event, the multiplicity in addition

to the composition of the fragments. Since the determination
of Csym/T from scaling parameters depends on �, the correct
determination of � is critical.

Recently, a different method to determine Csym/T has been
proposed that does not depend on the definition of �. Within
the modified Fisher model [24] it has been shown that the
isotope yield ratio between two isobars differing by 2 units
in the neutron excess I = N − Z and produced by the same
source can be written as [18]

R(I + 2, I, A, T , ρ)

= Y (I + 2, A, T , ρ)

Y (I, A, T , ρ)

= exp

{
W (I + 2, A, T , ρ) − W (I, A, T , ρ) + (μn − μp)

T

+ Smix(I + 2, A) − Smix(I, A)

}
, (12)

where W (I, A, T , ρ) is the free energy of the cluster at
temperature T , which in Ref. [18] was approximated by
the generalized Weiszäcker-Bethe semiclassical mass formula
[38,39], and Smix(I, A) is the cluster mixing entropy. Apart
the change of the notation for the free energy, we stress that a
similar formula could be derived at constant pressure, and thus
the ambiguity discussed above remains also in this case. Note
that the variable I , introduced for consistency with Ref. [18],
could be expressed as a function of the isospin asymmetry
mf as I = mf A. The authors show that the symmetry energy
coefficient to temperature ratio can be expressed as

Csym(T )

T
≈ − A

8
[ln R(3, 1, A) − ln R(1,−1, A) − δ(3, 1, A],

(13)

where δ(3, 1, A) is the difference in the mixing entropies and
can be neglected, being rather small compared to the other
terms in Eq. (13) [18].

Equation (13) can be derived within a Landau free energy
approach, which is used here to show that the dependence
of Csym/T on the source characteristics, contained in H/T ,
cancels out to first order. The yield of each fragment can be
expressed as a function of its free energy per particle, F , as
in Eq. (5). By neglecting O(m4) and choosing I = 1, −1, i.e.,
m1 = 1/A and m2 = −1/A, and I = 3, 1, i.e., m1 = 3/A and
m2 = 1/A, the logarithm of the two yields ratio can be written
as

ln R(1,−1, A) ≈ 2 A
H

T

1

A
,

ln R(3, 1, A) ≈ −A

[
1

2
a

8

A2
− 2

H

T

1

A

]
, (14)

where 1/2a, the fitting parameter defined in Eq. (5), is by
definition Csym/T [17,33,35,37]. The difference between the
two relations, as in Eq. (13), cancels out the dependence on H

T
,

removing the dependence on the characteristics of the source.
We would like to stress here that the main difference

between the first two methods of extracting Csym/T and
the third is that in the first two cases we are computing the
yield ratios of the same fragment produced by two different
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sources, while in the third case we consider different isobars
produced by a common source. Therefore, in the first two
cases the determination of Csym/T requires an estimation of
�H
T

, while in the third case the dependence on the source
characteristics is removed by computing the difference of
two yield ratios. However, the isobaric yield ratio method is
dependent on the selected isobars and vulnerable to secondary
decay effects. Isoscaling and m-scaling are less affected by
secondary de-excitation effects, since they are removed, to
first order, when taking the ratio of the yields of the same
fragment produced in two sources. We will show that the three
methods, which are consistent within the Landau free energy
approach [18,29], give Csym/T in good agreement. Moreover,
the agreement of the results could suggest the method of
determination of �.

III. MOTIVATION OF THE PRESENT WORK

In the present work, fragment yield data from quasiprojec-
tile fragmentation in 64Zn + 64Zn, 70Zn + 70Zn, and 64Ni +
64Ni at 35 A MeV have been analyzed using the isoscaling, the
m-scaling, and the isobaric yield ratio methods. There are three
issues for the determination of the Csym/T values in Eqs. (7)
and (13): the importance of the experimental conditions, the
effect of the secondary decay, and the method of determination
of �.

In a previous work, Wuenschel et al. [40] have presented
data from quasiprojectile fragmentation in 78,86Kr + 58,64Ni
at 35 A MeV, showing an independence of the isoscaling-
extracted Csym/T values from the charge of the analyzed
fragments. Stringent constraints were applied for a careful
characterization of the source with a well-defined neutron
(proton) concentration. The data were collected by a 4π

charged-particle detector array.
In the works presented in [17,18,29], data for the reactions

64,70Zn + 58,64Ni, 64,70Zn + 112,124Sn, 64,70Zn + 197Au,
64,70Zn + 232Th, 64Ni + 58,64Ni, 64Ni + 112,124Sn, 64Ni +
197Au, 64Ni + 232Th at 40 A MeV analyzed with isoscaling,
m-scaling, and isobaric yield ratio methods instead show a
strong dependence of Csym/T values on the charge of the
analyzed fragment. The data were collected with a detector
telescope placed at 20◦. The telescope allowed the clear
identification of typically 6–8 isotopes for atomic number Z

up to Z = 18. In contrast to the experimental conditions of
Wuenschel et al. [40], the information on the fragmenting
source was not available and the angular coverage was limited
(15◦ < θ < 25◦). Thus the yield of each isotope was evaluated
by using a moving-source fit, selecting fragments produced
in the fragmentation of the overlapping region of the two
colliding nuclei.

It should be mentioned here that, if compression effects
and/or higher order terms in Eq. (13) are important, the
isoscaling and the isobaric yield ratio methods might produce
different results. Moreover, a different beam energy and
different colliding nuclei could access different densities,
thereby providing complementary information. Thus inves-
tigations under precise experimental constraints for the source
properties are necessary, which is one of the goals of this paper.

Furthermore, the observation of an increasing behavior
of Csym/T as a function of the fragment mass raises the
question of the effects of the secondary decay process on the
observables. Indeed, in previous works, excitation energies of
the primary fragments estimated from the associated light-
charged-particle multiplicities [41,42] suggest that effects of
secondary evaporation could be important. Another possibility
could be that we are really measuring an enthalpy rather than
the internal symmetry energy and different nuclei could be
emitted at different volumes.

The third issue is the expression of the quantity � that
is used to extract Csym/T from the isoscaling and m-scaling
parameters. Indeed, while � from Eq. (8) has been widely
used after its introduction [12], the study of the isospin
fractionation suggests that the connection between Csym/T

and the scaling parameters should be found in the fragment
isotopic asymmetry [Eqs. (9) and (10)]. Whether the event
composition [Eq. (10)] or the average composition of each
fragment [Eq. (9)] is more relevant is still an open question,
which is specifically addressed in this work.

In this work we investigate the importance of the source
reconstruction and the calculation of � by comparing the
Csym/T values obtained with the three different methods.

IV. THE EXPERIMENT

The experiment was performed at the Texas A&M Univer-
sity K500 Superconducting Cyclotron. Beams of 64Zn, 70Zn,
and 64Ni at 35 A MeV beam energy were impinged on 64Zn,
70Zn, and 64Ni targets. The 4π NIMROD-ISiS array [44,45]
was used for the detection of charged particles, obtaining
isotopic resolution for Z � 17. The detector telescopes, ar-
ranged on 15 rings centered on the beam axis, were composed
of one silicon detector backed by a CsI(Tl) crystal with
photomultiplier tube (PMT) readout. Two telescopes per ring,
referred to as Super Telescopes, made use of two silicon wafers
in front of the CsI(Tl) crystal, in order to improve the isotopic
resolution. The charged-particle array was housed inside the
TAMU Neutron Ball [45], which measured the free neutron
multiplicity.

The mass identification of fragments is essential for
isospin physics analysis. For Z � 2, mass identification was
performed by pulse shape discrimination of the CsI(Tl) signal.
The �E-E method was used for Z � 3 on Si-Si and Si-CsI
telescopes. In Fig. 1 the isotopic distributions of Be and Si are
shown as examples. We can see that the global fit (red, solid
curve) reproduces the overall spectrum well. The individual
Gaussian fits (black, dashed curves) show the overlapping
of the mass distributions for different isotopes. Particles
were confidently assigned a mass if the contamination from
neighbor isotopes was less than 5–10%. As evidenced by the
figure, the mass determination efficiency decreases for large
A near the upper limit of the electronics range. Further details
on the mass identification procedures and on the experiment
can be found in [43].

Particle and event selections were performed to se-
lect quasiprojectile fragmentation events. The quasiprojectile
source was reconstructed by accepting in each event fragments
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FIG. 1. (Color online) Isotopic distributions for Z = 4 (a) and
Z = 14 (b) for a Super Telescope. The x axis is obtained by linearizing
�E-E spectra as described in [43]. The Gaussian fits (black, dashed
curves) show the overlapping of the mass distributions for different
isotopes. The overall Gaussian fit is also shown (red, solid curves)
for each Z.

with a longitudinal velocity relative to the largest fragment
within the range ±65%, ±60%, and ±45% for Z = 1, Z = 2,
and Z � 3, respectively [46]. This cut, later referred to as
Vcut, is intended to remove fragments from non-projectile-like
sources. Furthermore, the total Z of the detected fragments
included in the reconstruction was constrained to be in the
range Z = 25–30 (SumZ). Finally, limits were placed on the
deformation of the source, as measured by the quadrupole
momentum, to select a class of events that are, on average,
spherical. The quadrupole momentum, calculated from the
measured particle momenta in the quasiprojectile frame,∑

i p
2
‖i
/
∑

i p
2
⊥i

, was required to be less than 2 (Qcut). Details
on the source reconstructions can be found in Ref. [47]. Free
neutrons measured by the Neutron Ball were used to correct
for the free neutrons emitted by the quasiprojectile using the
procedure discussed in Refs. [40,47].

V. IMPACT OF SOURCE RECONSTRUCTION

Figure 2 shows the distribution of the reconstructed
quasiprojectile isospin asymmetry ms = Ns−Zs

As
for each of the

three systems and for the three systems combined together. In
the ms expression, Ns , Zs , and As are, respectively, the number
of neutrons, protons, and total nucleons in the reconstructed
quasiprojectile. As expected, the systems 70Zn + 70Zn and
64Ni + 64Ni, which have very similar N/Z values (1.33 and
1.29, respectively), show almost overlapping ms distributions,
with average values of ms = 0.15 and 0.13, respectively. The
64Zn + 64Zn ms distribution is shifted toward lower ms

values (ms = 0.09), since the system is less neutron rich
(N/Z = 1.13). The ms distribution of the three combined
systems is centered around ms = 0.12. The widths of the
distributions are large compared to the difference in the average
ms between the reacting systems. In Ref. [40] it has been

sm
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FIG. 2. (Color online) Reconstructed quasiprojectile ms distribu-
tion from the 64Zn + 64Zn (squares), 64Ni + 64Ni (diamonds), and
70Zn + 70Zn (triangles) reactions. The total yield of each system
was normalized to unity. The ms distribution of the quasiprojectile
obtained from the combined systems is plotted as stars. The total
yield of this distribution was normalized to 3.

shown that an improved isoscaling can be obtained when
selecting narrow bins in N/Z of the fragmenting source, rather
than performing a system-to-system isoscaling. In analogy,
and extending that work, we performed both isoscaling and
m-scaling between two different ms bins. For the isoscaling
analysis using ms , �ms refers to the difference of the mean ms

values in the two ms bins. To allow a comparison of the results
from the three different methods, for each ms bin combination
the isobaric yield ratio was computed for fragments produced
by a source with 〈ms〉 = �ms ± 0.0625.

Fragment yield data were divided according to the rela-
tive isospin asymmetry, ms , of the reconstructed source in
four bins: msa

= −0.0375 ± 0.0625, msb
= 0.0875 ± 0.0625,

msc
= 0.2125 ± 0.0625, and msd

= 0.3375 ± 0.0625, whose
boundaries are also plotted in Fig. 2. The transverse excitation
energy of the reconstructed source (E�

t ) was calculated through
calorimetry as [40,47]

E�
t =

MCP∑
i

KCP
t (i) + Mn

〈
Kn

t

〉 − Q. (15)

The first term is the sum of the transverse kinetic energies in
the quasiprojectile center-of-mass frame of the particles (MCP )
belonging to the quasiprojectile (see Sec. IV, VCut). The free
neutrons contribution to the excitation energy was estimated
as the average neutron kinetic energy 〈Kn

t 〉 multiplied by the
neutron multiplicity Mn. The average transverse kinetic energy
of the neutrons was calculated as the proton average transverse
kinetic energy corrected for the Coulomb barrier energy [48].
The last term in the equation is the reaction Q value. The
mass of the quasiprojectile was calculated as the sum of the
masses of the charged particles belonging to the source and
the neutron multiplicity. The transverse excitation energy per
nucleon (E�

t /A) of the reconstructed source was calculated
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FIG. 3. (Color online) Isoscaling parameter α extracted for
�ms = 0.185 and 3.5 � E�

t /A � 5 MeV from each reaction and for
the combined systems as a function of the fragment mass (A = 2Z).

and the data were divided into five bins: E�
t /A = (1.75 ±

1.75), (4.25 ± 0.75), (5.75 ± 0.75), and (7.25 ± 0.75) MeV
and E�

t /A > 8 MeV.
Figure 3 shows the isoscaling parameter α as a function of

the mass fragment A = 2Z extracted from each reaction (open
symbols) and for the combined systems (full circles). The error
bars are comparable to the size of the points. The isoscal-
ing was performed between two sources with different ms

(ms1 = −0.002 and ms2 = 0.183) so that �ms = 0.185. The
source excitation energy was required to be between 3.5 and
5 A MeV. We observe that consistent α values for each mass
were obtained for each system and for all the systems when
the data were gated on ms . The same results were obtained
for all the ms bin combinations and for all the excitation
energies. Moreover, a similar behavior was observed for
�H/T extracted from the m-scaling. Thus the systems were
combined together to increase the statistics.

Significantly better isoscaling and m-scaling were obtained
once two sources with different ms rather than two different
reactions were selected. In Fig. 4 the natural logarithm of the
yield ratio of Eq. (3) and 1

A
ln R21 of Eq. (6) are plotted as a

function of N and mf , respectively. In Figs. 4(a) and 4(b) the
ratios are computed between the yields of fragments produced
in two different reactions (64Zn + 64Zn and 70Zn + 70Zn),
while in Figs. 4(c) and 4(d) the fragments are produced by two
sources with different ms (ms1 = 0.097 and ms2 = 0.180), to
construct the neutron-poor and the neutron-rich sources, as
required from Eqs. (3) and (6). Comparison of these panels
demonstrates the improvement of isoscaling and m-scaling
with a narrowly defined ms source. Indeed the isotopes line
up on parallel, equally spaced lines in the isoscaling and on a
single line in the m-scaling, as predicted by Eqs. (3) and (6),
respectively.

To investigate the impact of the source reconstruction on the
extracted values, the source constraints described in this and
the previous sections have been imposed sequentially, on all
the data, in order to illustrate the effect of each cut individually.
The three methods have been applied to the so-selected data.

Figure 5 shows Csym

T
, α, and �H/T extracted from the

isobaric yield ratio [Eq. (13)], the isoscaling [Eq. (3)], and

N
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Z=15

Z=16
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(d)

FIG. 4. (Color online) Natural logarithm of the isotopic yield
ratio as a function of the fragment N [panels (a) and (c)] and natural
logarithm of the isotopic yield ratio per fragment mass as a function
of the fragment isospin asymmetry mf [panels (b) and (d)]. Panels
(a) and (b) show system-to-system isoscaling and m-scaling from
64Zn + 64Zn and 70Zn + 70Zn reactions. Panels (c) and (d) show
isoscaling and m-scaling using different ms bins of the reconstructed
quasiprojectile (see text).

the m-scaling [Eq. (6)] methods, respectively, as a function of
the fragment mass number A. For the x axis of the isoscaling
and m-scaling methods A = 2Z. The α and �H/T parameters
are both determined by individual fits to the yield ratios for
isotopes with a given Z.

We first focus on the values obtained by comparing
70Zn + 70Zn to 64Zn + 64Zn systems (labeled as SysToSys in
the figure), to analyze the impact of a limited angular coverage
and of the quasiprojectile reconstruction. We will refer to these
values as system-to-system values. A generally flat behavior
is observed for α and �H/T , independent of the fragment
mass number A, when no constraints are imposed on the
data (stars). The trends are modified neither by restricting
our analysis to a limited angular range (diamonds) nor by
selecting quasiprojectile fragmentation events (i.e., by apply-
ing Vcut, SumZ, and QCut-circles, triangles, and full squares,
respectively). This suggests that the quasiprojectile selection
does not significantly bias our determination of α or �H/T .

In contrast to the flat behavior of the isoscaling and
m-scaling, Csym

T
increases from 9 to 20 over the A range
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FIG. 5. (Color online) Csym

T
, α, and �H

T
obtained from isobaric

yield ratio (top), isoscaling (middle), and m-scaling (bottom) meth-
ods, applied to two different reactions (“SysToSys”) and two ms bins
(�ms). The source reconstruction constraints are applied to study
their impact on the measured values. The error bars, when not visible,
are comparable to the size of the symbols.

of 11 to 31, when no constraints are imposed on the data
(stars). The increase is slightly amplified for A = 25 and 27
by selecting a limited angular range (diamonds) to simulate
the angular coverage of Ref. [18]. The observed increase of
11 units in Csym

T
is similar to the one of 8 units reported in

Ref. [18]. Data for masses A > 27 in a limited angular range
are not available due to a statistics limitation. We should
notice that the angular selection does not affect the values
extracted from the isoscaling and m-scaling, since we take
the ratio of the yields of the same fragment [Eqs. (3) and
(6)]. This is not true for the isobaric yield ratio method,
where different fragments considered in the calculation [see
Eq. (12)] may be affected differently. To investigate the effect
of a good resolution up to Z = 18, as in Ref. [18], we
restricted the analysis to the detectors with the highest available
resolution, the so-called Super Telescopes. Such a restriction
does not modify the values of Csym

T
, and therefore they are not

plotted in the figure. Moreover, the selection of quasiprojectile
fragmentation events does not modify the Csym

T
trend, as can be

seen from the figure, since stars (no data selection), circles
(Vcut), triangles (Vcut and SumZ), and full squares (Vcut,
SumZ, and Qcut) overlap.

We turn now to analyze the impact of ms (asterisks) and
excitation energy (squares) constraints. The parameters α

and �H/T are plotted for �ms = 0.185, while Csym/T has

been obtained for 〈ms〉 = 0.183. The excitation energy was
restricted to be between 3.5 and 5 A MeV. The behavior is
flat, for both α and �H/T , and presents less fluctuations with
respect to the system-to-system values. The average value is
0.96 ± 0.01, to be compared to the system-to-system average
value, 0.34 ± 0.01. The difference in the values observed is
due to the different values of � in the two cases. Indeed,
the values of �, determined as in Eq. (8) for isoscaling
between two different systems and two different ms bins, are
0.027 and 0.084, respectively, which give consistent values of
α/� (α/� = 12.6 ± 0.4 and 11.43 ± 0.12, respectively). The
constancy of α/� was previously shown in [40].

A possible excitation energy dependence of α and �H/T

is suggested by systematically higher (even if in agreement) α

and �H/T values obtained for a selected source excitation
energy (squares), compared to the ones obtained with no
energy selection (asterisks). Indeed, the average excitation
energy of the source in the latter case is higher (5.6 ±
1.6 A MeV) than the average excitation energy in the selected
window (4.2 ± 0.4 A MeV). This trend is in agreement with
the excitation energy dependence of the isoscaling parameter
α/� observed for Kr + Ni systems in [40].

The selections in ms and excitation energy do not modify
the increasing trend of Csym

T
extracted by the isobaric yield

ratio method. Though the values agree within statistical
uncertainty, the ms selection (asterisks and squares) results
in a systematic lower Csym

T
for A � 19. A possible excitation

energy dependence may be observed also in Csym

T
extracted

by the isobaric yield ratio method. Indeed, for A � 19 the
Csym

T
values obtained from data selected in excitation energy

(squares) are very slightly higher than those obtained from
data not selected in excitation energy (asterisks). Moreover,
when performing an excitation energy selection we notice
that different mass regions are populated depending on the
source excitation energy: higher mass fragments (A > 15) are
produced by low excited sources, while lower mass fragments
(9 � A � 15) are mainly produced by highly excited sources.
This is consistent with fragments being produced by different
reaction mechanisms. Selection of heavy fragment multiplicity
may weaken the dependence of Csym

T
on A. However, the present

statistics do not allow this selection. These observations
suggest that, in the absence of a source reconstruction,
attention should be paid to mixing-reaction mechanisms when
drawing general conclusions.

VI. COMPARISON OF THE THREE METHODS

The following analysis was performed by applying the
described selections on the reconstructed quasiprojectile (see
Sec. V for details). The quasiprojectiles were divided into bins
based on their composition ms and their excitation energy per
nucleon.

The isoscaling parameters α and β were extracted simulta-
neously by a global fit to the yield ratios of all the available
isotopes and, separately, by individual fits to the yield ratios
for isotopes with a given Z. The obtained values were in good
agreement. The parameter β shows the same trend as a function
of N as α does as a function of Z, but it has the opposite sign.
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FIG. 6. Isoscaling parameters −β vs α for all the �ms and
excitation energy bins. The full line is the best fit to the data, while
the dashed line represents α = −β.

The parameters, evaluated for all possible ms and excitation
energy combinations, are plotted in Fig. 6. The best fit and
the line representing α = −β are also plotted in the figure.
The relation α = −β appears to be approximately satisfied in
our data (−β = 1.11 α), thus supporting the equivalence of
the isoscaling and the m-scaling. Therefore we can use Eq. (7)
to calculate Csym

T
from m-scaling, using α = �H/T . Small

differences between α and −β might be attributed to residual
Coulomb effects. Indeed, although the ratio of the yields of
a single isotope is considered, the two sources, whose ms

is fixed, might have different charges. We remind the reader
that the SumZ selection constrains the source charge to be
Z = 25–30.

The residual Coulomb effect due to differences in the charge
of the considered fragments is relevant only in the calculation
of Csym

T
by the isobaric yield ratio method and it influences

mainly large mass fragments. From the mass formula the
Coulomb energy for large Z can be written as [33]

Ec

A
= 0.77

Z2

A2
A2/3 = 0.77

4
(1 − m)2A2/3. (16)

Adding this term to the free energy �/T in Eq. (5), we see
that a quadratic and a linear term in m are introduced that
modify the symmetry energy coefficient and the external field.
Also a term not dependent on m is introduced. The effect
of introducing such corrections is extensively discussed in
Ref. [33]. Here we concentrate on evaluating the Coulomb con-
tribution, as well as the importance of o(m4) and o(m6) terms in
Eq. (5). First of all we should notice that, assuming a spherical
expansion, at low densities the Coulomb energy decreases
as ρ1/3. A fit of the quantity − [ln R(3, 1) − ln R(1,−1)] /A2

allows us to estimate the fitting parameters of Eq. (5) and the
Coulomb term. The fit results are shown in Fig. 7. The dashed
and full lines are the best fit to the data with a first-degree
polynomial of 1/A2 including and not including the Coulomb
correction, respectively. We remind the reader that (1/A2) ∝
m2. The parameters a′ and d are fitting parameters. We found
that o(m4) terms are negligible, since we are dealing with
relatively large fragments, which implies small m (but possibly
large Coulomb effects). The Coulomb parameter d is about two

21/A
0 0.002 0.004 0.006 0.008 0.01 0.012

-[
ln

 R
(3

,1
)-

ln
 R

(1
,-

1)
]/

A

0

0.5

1

1.5 2a’/A

2/3 + d A2a’/A

FIG. 7. (Color online) Quantity − [ln R(3, 1) − ln R(1, −1)] /A2

vs 1/A2 calculated from isobaric yield ratios for an average source
isospin asymmetry ms = 0. The dashed and full lines are the best fits
to the data with a first-degree function, including and not including
the Coulomb contribution, respectively.

orders of magnitude smaller than the 1/A2 coefficient a′, but
the term has to be included in the fitting function to obtain
a good fit (χ2/degrees of freedom ≈ 0.8). We therefore took
into account this correction and modified Eq. (13) as

Csym(T )

T
≈ −A

8
[ln R(3, 1, A) − ln R(1,−1, A)

− δ(3, 1, A)] − d A2/3. (17)

The α parameters are related to Csym

T
through the value of

�, as given in Eq. (7). Therefore, the extracted value of the
symmetry term depends on the choice of �. The isobaric
yield ratio method instead provides a Csym

T
value independent

of the choice of �. Three different definitions of � have
been examined. The Z/A of the emitting source has been
adopted for the definition of �source [Eq. (8)]. The average
proton content of each fragment with mass greater than 4 has
been used to calculate �liquid [Eq. (9)]. Finally, the average
of the fragment 〈mf 〉 over the events has been used to define
�〈mf 〉 [Eq. (10)]. The three different � values as a function
of the fragment charge for a given �ms and excitation energy
combination are plotted in Fig. 8. By definition, �source (red,
dashed curve) and �〈mf 〉 (black, full curve) are independent
of Z. We observe that �〈mf 〉 ≈ 0.3�source, which is close
to the value reported in Ref. [37]. The large discrepancy
between the value of �source and the values of �liquid and
�〈mf 〉 is due to the fact that, while both �liquid and �〈mf 〉
are related to the fragment composition, �source is related to
the source composition. The quantity �liquid (asterisks) shows
an odd-even behavior for Z � 8, which can be attributed to
structure effects [49]. Such an odd-even effect is in agreement
with the trend reported in [49–51]. The overall behavior shows
a rather significant decrease as a function of Z, which will
cause Csym

T
to increase as a function of Z. The very high

value of �liquid for Be is due to the fact that 8Be, produced
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FIG. 8. (Color online) Values of � computed according to the
different definitions of Eqs. (8), (9), and (10) vs the fragment charge
Z for �ms = 0.185 and 3.5 � E�

t /A � 5 MeV.

in the multifragmentation process, decays before reaching the
detector, and thus 〈A〉 deviates from the “true” centroid of the
isotope distribution. An attempt was made to estimate the 8Be
yield from the N = Z nuclei yields, whose corrected value is
plotted in the figure as a circle. A plot of the yield versus mass
number for mf = 0 fragments displays a power-law behavior
with Y ∝ A−τ [33]. The yield of 8Be has been estimated from
a fit of CA−τ to the data for even-even N = Z nuclei, for
which the pairing contribution is the same. The value of �

changes from 0.053 to 0.033.
Figure 9 shows a comparison between the three methods,

with different choices of �, for a given excitation energy
[3.5 � E�

t /A < 5.0 MeV; panels (a)–(c)] and for a given
source asymmetry difference [�ms = 0.086; panels (a) and
(d)–(f)]. The Csym

T
values obtained by the isobaric yield ratio

method (triangles) show an approximately constant behavior
for A < 20, while an increase is observed for A = 21 and 23.
This is observed for all the �ms combinations and excitation
energy windows. The observed increase of 3–4 units in Csym

T

for A from 11 to 23 is smaller than the increase observed
in Ref. [18]. We would like to emphasize that one of the
main limitations of the isobaric yield ratio method is that
it requires a nearly “ideal” isotopic identification, since any
contamination by other isotopes to each (Z,A) fragment
affects different isobars by a different amount. This effect is
particularly relevant for the yield estimate of heavy particles.
Indeed, the mass resolution decreases with increasing fragment
size (see Fig. 1), lowering the particle identification efficiency.
While this effect largely cancels out when the yield ratio of the
same fragment produced by two different sources is taken (i.e.,
isoscaling and m-scaling), the Csym

T
estimation for the isobaric

yield ratio method remains affected. For this reason, data for
A � 25, when available, are not shown for the isobaric yield
ratio method, while they are presented for the isoscaling and
m-scaling methods. Indeed, we do not observe a change of be-
havior of α as a function of A extracted from the isoscaling and
m-scaling methods even in the high-mass region (see Fig. 3).

The trends of Csym

T
obtained from the isoscaling and m-

scaling depend on the definition of �, as discussed in relation to
Eq. (7). First, we notice that Csym

T
obtained from the isoscaling

with the three definitions of � are not in agreement. This is due
to the differences in the values of �, which is clearly shown in
Fig. 8. The Csym

T
values determined using �source (crosses) and

�〈mf 〉 (circles) do not show any A dependence, while a clearly
increasing trend is observed for A > 15 for values determined
using �liquid (squares). This is caused by the dependence of
�liquid on A, as shown in Fig. 8. For A < 15 the structure

effects affecting �liquid are reflected in Csym

T
values.

The Csym

T
values determined using �〈mf 〉 from the isoscaling

(full circles) and m-scaling (open circles) show a generally
good agreement for all the �ms combinations. We can see
that the values obtained from the m-scaling are systematically
higher than those obtained from the isoscaling, which could
be due to the residual Coulomb effects noted above. The
difference decreases as the excitation energy increases, as can
be seen comparing Figs. 9(a), 9(d), 9(e), and 9(f).

Comparing Figs. 9(a)–9(c), we observe that the values
obtained with the isoscaling and m-scaling, using �〈mf 〉, do not
depend on the choice of �ms . Indeed, the weighted average
values (10.19 ± 0.04, 10.10 ± 0.20, and 10.12 ± 0.16 and
9.22 ± 0.05, 8.90 ± 0.20, and 9.07 ± 0.15 for �ms = 0.086,
0.180, and 0.279 and extracted by m-scaling and isoscaling,
respectively) are consistent within 2σ . The increase in the
uncertainties reflects the decrease of available statistics as the
considered ms bins are further apart, i.e., when we consider
the tails of the ms distribution (see Fig. 2).

An excitation energy dependence of Csym

T
can be extrap-

olated from Figs. 9(a) and 9(d)–9(f): Csym

T
decreases from

11.1(±0.08) to 7.7(±0.04) as the source excitation energy
increases. This trend is observed for the �〈mf 〉 derived quanti-

ties, as well as for Csym

T
derived with the other � definitions. As

already discussed, this trend is in agreement with the excitation
energy dependence of the isoscaling parameter α/� observed
in [40]. An excitation energy dependence of Csym

T
is also

observed for the m-scaling extracted quantities, which vary
from 12.47(±0.08) to 8.20(±0.04), increasing the excitation
energy. In contrast, a weaker excitation energy dependence
is found for the values extracted with the isobaric yield
ratio method, which decreases from 10.0(±0.4) to 8.8(±0.2),
increasing the excitation energy.

We now compare the values obtained with the different
� definitions to the values extracted from the isobaric yield
ratio, since they are independent of the choice of �. The Csym

T

values determined using �source (crosses) are lower than those
determined with the isobaric yield ratio method (triangles) by
a factor 2 to 3 independent of �ms and independent of the
excitation energy. The Csym

T
values determined using �liquid

(squares) show a rather good agreement for A ≈ 18–22 in the
central mass region, where �liquid ≈ �〈mf 〉. Nevertheless, it
does not reproduce the data for the low-mass region, where
structure effects influence the value of �liquid, as pointed out
in Fig. 8. In this region, in contrast to the high-mass region, the
isotopic resolution of each fragment is very good and presents
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FIG. 9. (Color online) Values of Csym

T
obtained with the three different methods. Each panel corresponds to the noted �ms and the noted

window in E�
t /A. Three different choices of � have been used to compute Csym

T
from the isoscaling parameter α.

a small uncertainty; thus, we have confidence in the extracted
Csym

T
values. The Csym

T
values determined using �〈mf 〉, both

from isoscaling and m-scaling, show good agreement with the
isobaric yield ratio values for masses up to A ≈ 20, for all the
�ms and excitation energy combinations. This is consistent
with what was recently observed by Tripathi et al. [37].
In this work the authors show that the position of the free
energy central minimum, when an external field is present
(i.e., when ms �= 0 [17]), is related to 〈mf 〉 rather than to ms .
This indicates that the connection between quantities extracted
from fragment yields and the symmetry energy coefficient has
to be found in the composition of the emitted fragments, taking
into account the event multiplicity.

The generally flat behavior of Csym

T
as a function of A

(circles and triangles in Fig. 9) may be interpreted as the
weak influence of secondary decay effects on the observables.
This in turn implies that fragments are determined in the
instability region in agreement with the theoretical work of
Dorso and Randrup [52]. This would also be the case in a
first-order phase transition for infinite nuclei, where the size
of a cluster is determined by its internal pressure, which takes
into account the surface tension, and the external pressure due
to the gas [34]. For finite systems the formed fragments might
reach the ground state by emitting low-energy γ rays and
possibly a neutron. Also the constancy of Csym

T
might indicate

that the assumption of constant volume is reasonable and we
can identify this quantity as the symmetry energy rather than
the enthalpy.

VII. CONCLUSIONS

Three methods to extract the symmetry energy coefficient
from fragment yields were compared. The isobaric yield ratio
method removes the dependence on the fragmenting source by
computing the difference of the yield ratios of properly chosen
isobars produced by the same source, but the dependence on
individual isobar detection efficiencies remains. The m-scaling
and the isoscaling, however, retain a dependence on the source
characteristics in the difference of the external fields of the two
sources (�H/T ), while significantly reducing the dependence
on isotopic detection efficiencies. The determination of Csym

T
in

this case depends on the choice of �.
The symmetry energy coefficient to temperature ratio, Csym

T
,

was experimentally evaluated as a function of the fragment
mass with the three different methods. The effect of the source
reconstruction on the Csym

T
values was analyzed, showing that

4π angular coverage is useful in extracting information from
the isobaric yield ratios, since a limited coverage impacts
Csym

T
values. Improved isoscaling and m-scaling were ob-

served when selecting quasiprojectile ms bins for neutron-rich
and neutron-poor systems, while isobaric-yield-ratio-extracted
values were only slightly affected. A decrease in Csym

T
was

observed with increasing excitation energy.
The isoscaling parameters α and β were extracted as a

function of Z for all ms and excitation energy combinations.
Our data show the equivalence of the isoscaling and the m-
scaling, since the relation α = −β is approximately satisfied.

034617-10



CONSTRAINING THE SYMMETRY TERM IN THE NUCLEAR . . . PHYSICAL REVIEW C 85, 034617 (2012)

The Csym

T
values extracted from the α isoscaling parameter

using �〈mf 〉 are in good agreement with the isobaric yield

ratio Csym

T
values. This indicates that the connection between

α and Csym

T
has to be found in the average fragment isotopic

asymmetry. The extracted symmetry term shows a generally
flat trend as a function of A for the mass region A = 10–20
with the best mass resolution, independent of the method used.
This may be consistent with the lack of secondary de-excitation
effects in our data, within our isotopic resolution, as well

as with the assumption of a freeze-out volume where the
disassembly occurs.
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[3] L. Trippa, G. Colò, and E. Vigezzi, Phys. Rev. C 77, 061304

(2008).
[4] A. Klimkiewicz et al., Phys. Rev. C 76, 051603 (2007).
[5] T. Li, U. Garg et al., Phys. Rev. Lett. 99, 162503 (2007).
[6] M. A. Famiano et al., Phys. Rev. Lett. 97, 052701 (2006).
[7] M. B. Tsang et al., Phys. Rev. Lett. 92, 062701 (2004), and

references therein.
[8] M. B. Tsang, W. A. Friedman, C. K. Gelbke, W. G. Lynch,

G. Verde, and H. S. Xu, Phys. Rev. Lett. 86, 5023 (2001).
[9] J. Iglio, D. V. Shetty, S. J. Yennello, G. A. Souliotis, M. Jandel,

A. L. Keksis, S. N. Soisson, B. C. Stein, S. Wuenschel, and
A. S. Botvina, Phys. Rev. C 74, 024605 (2006).

[10] R. C. Lemmon and P. Russotto for the ASY-EOS Collaboration,
Constraining the symmetry energy at supra-saturation densities
with measurements of neutron and proton elliptic flows, Exper-
iment proposal at GSI.

[11] H. S. Xu et al., Phys. Rev. Lett. 85, 716 (2000).
[12] M. B. Tsang et al., Phys. Rev. C 64, 054615 (2001).
[13] A. S. Botvina, O. V. Lozhkin, and W. Trautmann, Phys. Rev. C

65, 044610 (2002).
[14] A. Ono, P. Danielewicz, W. A. Friedman, W. G. Lynch, and

M. B. Tsang, Phys. Rev. C 68, 051601(R) (2003).
[15] G. A. Souliotis, M. Veselsky, D. V. Shetty, and S. J. Yennello,

Phys. Lett. B 588, 35 (2004).
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