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Isotopic trends of capture cross section and mean-square angular momentum of the captured system
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Within the quantum diffusion approach, the isotopic dependencies of capture cross section and mean-square
angular momentum are studied in the reactions 4He, 16O, 36S, 48Ca + 196,200,204,208Pb and 16O + 70,72,74,76Ge.
The results are in a reasonable agreement with existing experimental data.
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I. INTRODUCTION

Recently many experimental and theoretical studies have
been devoted to investigation of fusion, fission, and capture
processes at sub-barrier energies [1–11]. Measurements of
excitation functions down to the extreme sub-barrier energies
are important for studying the long-range behavior of the
nucleus-nucleus interaction. The experimental data obtained
are also of interest for solving astrophysical problems related
to nuclear synthesis in stars. There are indications for an
enhancement of the so-called S factor [12,13] at energies
Ec.m. below the Coulomb barrier but its origin is still under
discussion.

The main objective of the present work is to analyze
isotopic dependency of the capture cross section and the
mean-square angular momentum in the reactions 4He, 16O,
36S, 48Ca + 196,200,204,208Pb by using the quantum diffusion
approach [9–11,14,15]. In this approach, collisions of nuclei
are treated in terms of a single collective variable, the relative
distance between the colliding nuclei. For deformed nuclei,
deformation effects are taken into consideration through the
dependence of the nucleus-nucleus potential on the deforma-
tions and orientations of colliding nuclei. Our approach takes
into consideration the fluctuation and dissipation effects in
collisions of heavy ions that model the coupling with various
channels. We have to mention that many quantum mechanical
and non-Markovian effects accompanying the passage through
the potential barrier are taken into consideration in our formal-
ism [9,10]. It should be noted that the diffusion model which
includes the quantum statistical effects was also proposed in
Refs. [7,16,17].

The isotopic dependence of the capture cross section is
caused by the following reasons. The deformations of colliding
nuclei depend on the neutron number. The isotopic effects are
attributed to the neutron transfer if the Q value promotes it.
The nucleon distributions in the nuclei are the functions of
the mass numbers and affect the nucleus-nucleus potential. In
this article we treat the reactions with the isotopes of lead,
which are spherical. Moreover, the neutron transfer channels
are negligible in these reactions because of the negative Q

values. Thus, the nucleus-nucleus interaction potential remains
the important ingredient of our approach, which depends on
the isotopic composition of colliding nuclei.

For finding the nuclear part of the nucleus-nucleus potential,
we follow Refs. [9,10], where the double-folding procedure
was carried out with a density-dependent effective NN inter-
action as suggested in Ref. [18]. This interaction is found with
some averaging ansatz starting from the density-dependent
effective interaction of the theory of finite Fermi systems
(TFFS) [19]. For density distributions of interacting nuclei,
the two-parameter symmetrized Fermi-type form is used. For
the lead isotopes, the Fermi distribution parameters are fitted
to the self-consistent density distributions found within the
energy density functional (EDF) method of Ref. [20] with the
DF3-a functional [21].

II. MODEL

A. Nucleus-nucleus interaction potential

In the model [9,10], the potential describing the interaction
of two nuclei is taken in the form [18]

V (R,Zi, Ai, θi, J ) = VC(R,Zi, Ai, θi) + VN (R,Zi, Ai, θi)

+Vrot (R,Ai, J ), (1)

where VN , VC , and the last summand stand for the nuclear,
the Coulomb, and the centrifugal potentials, respectively.
The nuclei are proposed to be spherical or deformed with
the quadrupole deformation parameters βi . The quadrupole
deformation parameters are taken from Ref. [22] for even-even
deformed nuclei. The nucleus-nucleus potential depends on
the distance R between the center of mass (c.m.) of two
interacting nuclei, their masses Ai and charges Zi (i = 1, 2),
the orientation angles θi for deformed nuclei, and the relative
angular momentum J . The index i = 1 marks the lighter
participant of the collision process and i = 2 marks the heavier
one.
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FIG. 1. (Color online) Comparison of the self-consistent density
distributions (solid lines) with Fermi approximations (dotted lines)
for four Pb isotopes.

For the nuclear part of the nucleus-nucleus potential, we
use the double-folding formalism, in the form

VN (R,Zi, Ai, θi) =
∫

ρ1(r1)ρ2(R − r2)F (r1 − r2)dr1dr2,

(2)

with the density-dependent effective NN interaction

F (r1 − r2) = C0

[
Fin

ρ(r1)

ρ0
+ Fex

(
1 − ρ(r1)

ρ0

)]
δ(r1 − r2).

(3)

Here C0 = 300 MeV fm3 is the usual TFFS normalization
parameter and ρ(r) = ρ1(r) + ρ2(R − r) is the total nucleon

FIG. 2. Dependence of the diffuseness parameter a on the mass
number A of even-even Pb isotopes. Calculations were performed
within FFST in Ref. [23].

FIG. 3. The nucleus-nucleus interaction potential calculated for
the 16O + 208Pb reaction at zero angular momentum. The position
Rb of the Coulomb barrier, radius of interaction Rint, and the external
rex and the internal rin turning points for some values of Ec.m. are
indicated.

density of the dinuclear system. The interaction strengths in
Eq. (3) are found in terms of Landau-Migdal parameters f, f ′

FIG. 4. The nucleus-nucleus potentials calculated for the reac-
tions 4He + 196,200,204,208Pb (upper part) and 16O + 196,200,204,208Pb
(lower part) at zero angular momentum.
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FIG. 5. The nucleus-nucleus potentials calculated for the reac-
tions 36S + 196,200,204,208Pb (upper part) and 48Ca + 196,200,204,208Pb
(lower part) at zero angular momentum.

with the averaging ansatz [18],

Fin,ex = fin,ex + f ′
in,ex

(N1 − Z1)(N2 − Z2)

(N1 + Z1)(N2 + Z2)
, (4)

where Ni = Ai − Zi are the neutron numbers of interacting
nuclei. Our calculations are performed with the following set of
parameters: fin = 0.09, fex = −2.59, f ′

in = 0.42, f ′
ex = 0.54,

and ρ0 = 0.17 fm−3 [18]. To calculate the Coulomb and
centrifugal potentials, we use the formulas

VC(R,Zi, Ai, θi) = Z1Z2e
2

A1A2

∫
ρ1(r1)ρ2(r2)

|R + r2 − r1|dr1dr2 (5)

and

Vrot (R,Ai, J ) = h̄2J (J + 1)

2μR2
, (6)

where P2(cos θi) is the Legendre polynomial and μ =
mA1A2/(A1 + A2) is the reduced mass (m is the nucleon
mass).

FIG. 6. The heights Vb of the Coulomb barriers calculated for
the reactions 4He + APb (solid line), 16O + APb (dashed line),
36S + APb (dotted line), and 48Ca + APb (dash-dotted line) at zero
angular momentum.

B. Nuclear density distributions

The density distributions ρ1 and ρ2 of interacting nuclei in
Eqs. (2) and (3) are taken in the two-parameter symmetrized
Fermi-type form with the nuclear radius parameter r0 =
1.15 fm (R = r0A1/3) for all nuclei with Ai � 16 and the
diffuseness parameter a depending on the (A,Z) values of
the nucleus under consideration [18]. Specifically, we use
a = 0.53 fm for the light magic 16O projectile and a = 0.55 fm
for the intermediate-weight projectile nuclei 36S, 48Ca. For the
lightest 4He projectile the Fermi density parameters are taken
equal to r0 = 1.02 fm and a = 0.48 fm.

For nuclear density distributions of the long chain of lead
isotopes, we start from the self-consistent density distributions
found within the EDF method of Ref. [20] with the energy
functional DF3-a [21]. It differs from the initial functional DF3
of Ref. [20] with spin-orbit and effective tensor components
only. It made it possible to describe successfully the ground-
state properties of nuclei from the calcium region to the
transuranium one. In particular, the charge radii are reproduced
with this functional with the record accuracy of 0.01 ÷
0.02 fm [23]. Then we approximate these density distributions
with Fermi functions by fitting the parameters r0 and a. It
turned out that the regular value of r0 = 1.15 fm is valid
in this case, too. For the diffuseness parameters, we found
a = 0.520, 0.526, 0.535, and 0.550 fm for four even lead
isotopes 196Pb, 200Pb, 204Pb, and 208Pb, respectively. Quality
of fitting is demonstrated in Fig. 1. It should be stressed that
the “tails” of the density distributions mainly contribute to
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FIG. 7. The values of positions Rb of the Coulomb barriers
(upper part), ωb = |∂2V/∂R2|R=Rb

(middle part), and Bqf (lower
part) calculated for the reactions 4He + APb (solid line), 16O + APb
(dashed line), 36S + APb (dotted line), and 48Ca + APb (dash-dotted
line) at zero angular momentum.

the folding integral (2). Therefore, the differences between
the self-consistent density distributions and the Fermi ones,
which are seen in the central regions, are not important for
the results. The values of the diffuseness parameter a for
all lead isotopes are displayed in Fig. 2. One can see that
the a(A) dependence is, in general, essentially nonlinear and
is characterized by a steep dropoff with A decreasing from
208 to 194 and by almost linear plot for values of A from
194 to 180.

C. Capture cross section and mean-square angular momentum
of captured system

The capture cross section is a sum of partial capture cross
sections σcap(Ec.m., J ) [9,10]

FIG. 8. The calculated capture cross sections (upper part) and the
mean-square angular momenta of the captured system (lower part)
vs Ec.m. for the reactions 4He + 196,200,204,208Pb. The heights Vb of
the Coulomb barriers are 19.7 MeV, 19.6 MeV, 19.5 MeV, and 19.3
MeV, respectively.

σcap(Ec.m.) =
∑

J

σcap(Ec.m., J )

= πh̄2

2μEc.m.

∑
J

(2J + 1)
∫ π/2

0
dθ1 sin θ1

×
∫ π/2

0
dθ2 sin θ2Pcap(Ec.m., J, θ1, θ2), (7)

where the summation is over the possible values of angular
momentum J at a given bombarding energy Ec.m. in the center-
of-mass system. Knowing the potential of the interacting
nuclei for each orientation, one can obtain the partial capture
probability Pcap, which is defined by the passing probability
of the potential barrier in the relative distance R at a given
J . The mean-square angular momentum of captured system is
calculated with the following formula:

〈J 2〉 = 1

σcap(Ec.m.)

∑
J

J (J + 1)σcap(Ec.m., J ). (8)

The value of Pcap is obtained by integrating the propagator
G from the initial state (R0, P0) at time t = 0 to the final state
(R, P ) at time t (P is a momentum) [9]:
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FIG. 9. The calculated capture cross sections (upper part) and
the mean-square angular momenta of the captured system (lower
part) vs Ec.m. for the reactions 16O + 196,200,204,208Pb are compared
with the experimental data. The experimental cross sections for
the 16O + 204Pb reaction are taken from Ref. [26] (open squares)
and for the 16O + 208Pb from Refs. [27] (closed triangles), [28]
(closed rhombuses), [26] (closed circles), and [29] (closed stars). The
experimental values of 〈J 2〉 (closed squares) for the 16O + 208Pb
reaction are from Ref. [30]. The heights Vb of the Coulomb barriers
are 74.6 MeV, 74.2 MeV, 73.6 MeV, and 73.0 MeV, respectively.

Pcap = lim
t→∞

∫ rin

−∞
dR

∫ ∞

−∞
dP G(R,P, t |R0, P0, 0)

= lim
t→∞

1

2
erfc

[
−rin + R(t)√


RR(t)

]
. (9)

The second line in Eq. (9) is obtained by using the prop-
agator G = π−1| det 
−1|1/2 exp(−qT 
−1q) [qT = (qR, qP ),
qR(t) = R − R(t), qP (t) = P − P (t), R0 = R(t = 0), P0 =
P (t = 0), 
kk′(t) = 2qk(t)qk′(t), 
kk′(t = 0) = 0, k, k′ =
R,P ] calculated for an inverted oscillator which approximates
the nucleus-nucleus potential V in the variable R. The
frequency ω of this oscillator with an internal turning point rin

(Fig. 3) is defined from the condition of equality of the classical
actions of approximated and realistic potential barriers of the
same height at a given J . It should be noted that the passage
through the Coulomb barrier approximated by a parabola has
been previously studied in Refs. [11,16]. This approximation

FIG. 10. The same as in Fig. 9, but for the reactions
36S + 196,200,204,208Pb. The experimental cross sections for the
36S + 208Pb reaction are taken from Refs. [31] (closed squares)
and [32] (open circles and squares). The heights Vb of the Coulomb
barriers are 142.7 MeV, 141.9 MeV, 140.9 MeV, and 139.8 MeV,
respectively.

is well justified for the reactions and energy range, which are
considered here. Finally, one can find the expression for the
capture probability:

Pcap = 1

2
erfc

⎡
⎣

(
πs1(γ − s1)

2μh̄
(
ω2

0 − s2
1

)
)1/2

μω2
0R0/s1 + P0

[γ ln(γ /s1)]1/2

⎤
⎦ ,

(10)

where γ is the internal-excitation width, ω2
0 = ω2{1 −

h̄λ̃γ /[μ(s1 + γ )(s1 + γ )]} is the renormalized frequency in
the Markovian limit, and the value of λ̃ is related to the
strength of linear coupling in coordinates between collective
and internal subsystems. The si are the real roots (s1 �
0 > s2 � s3) of the following equation: (s + γ )(s2 − ω2

0) +
h̄λ̃γ s/μ = 0. The details of the used formalism are presented
in Ref. [9]. We have to mention that most of the quantum
mechanical effects, dissipative effects, and non-Markovian
effects accompanying the passage through the potential barrier
are taken into consideration in our formalism [9–11]. For
example, the non-Markovian effects appear in the calculations
through the internal-excitation width γ .
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FIG. 11. The same as in Fig. 9, but for the reactions 48Ca
+ 196,200,204,208Pb. The experimental cross sections for the 48Ca
+ 208Pb reaction are taken from Refs. [33] (open squares), [34]
(closed triangle), and [35] (closed squares). The heights Vb of the
Coulomb barriers are 175.1 MeV, 174.0 MeV, 172.9 MeV, and 171.6
MeV, respectively.

As shown in Fig. 3, the nuclear forces start to play a role
at Rint ≈ Rb + 1.1 fm, where the nucleon density of colliding
nuclei approximately reaches 10% of the saturation density. If
the value of rex corresponding to the external turning point is
larger than the interaction radius Rint, we take R0 = rex and
P0 = 0 in Eq. (10). For rex < Rint, it is natural to start our
treatment with R0 = Rint and P0 defined by the kinetic energy
at R = R0. In this case the friction hinders the classical motion
to proceed toward smaller values of R. If P0 = 0 at R0 >

Rint, the friction almost does not play a role in the transition
through the barrier. So, at R < Rint the relative motion may be
more coupled with other degrees of freedom. At R > Rint the
relative motion is almost independent of the internal degrees
of freedom. Thus, two regimes of interaction at sub-barrier
energies differ by the action of the nuclear forces and the role
of friction at R = rex.

III. CALCULATED RESULTS

Besides the parameters related to the nucleus-nucleus
potential, two parameter h̄γ = 15 MeV and the friction coeffi-

FIG. 12. The capture cross sections (upper part) and the mean-
square angular momenta of captured system (lower part) vs Ec.m.

for the 48Ca + 196Pb reaction calculated with a = 0.52 fm (solid
line) and a = 0.55 fm (dashed line). The heights Vb of the Coulomb
barriers are 175.1 MeV and 173.6 MeV, respectively.

cient h̄λ = −h̄(s1 + s2) = 2 MeV are used for calculating the
capture probability in all reactions. The most realistic friction
coefficients in the range of h̄λ ≈ 1–2 MeV are suggested from
the study of deep inelastic and fusion reactions [24]. These
values are close to those calculated within the mean field
approach [25]. All calculated results presented are obtained
with the same set of parameters and are rather insensitive to
reasonable variations of them [9,10].

A. Nucleus-nucleus potentials

In Figs. 4 and 5 the nucleus-nucleus potentials calculated
for the reactions 4He, 16O, 36S, 48Ca + 196,200,204,208Pb at zero
angular momentum are shown. The height of the Coulomb
barrier grows with decreasing neutron number of Pb (Fig. 6).
For example, Vb changes from 171.5 MeV (19.30 MeV) to
175 MeV (19.75 MeV) for the 48Ca + APb (4He + APb)
system when A decreases from 208 to 196. So, the more
asymmetric reaction results in the smaller change of the
nucleus-nucleus potential.
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FIG. 13. The calculated values of the astrophysical S factor with
η0 = η (Ec.m. = Vb) (middle part), the logarithmic derivative L (up-
per part), and the fusion barrier distribution D = d2(Ec.m.σcap)/dE2

c.m.

(lower part) versus Ec.m. for the reactions 4He + 196Pb (dash-dotted
lines), 200Pb (dotted lines), 204Pb (dashed lines), and 208Pb(solid lines).

With decreasing mass number of Pb isotope the pocket
depth Bqf becomes smaller (Fig. 7) as well as the distance
between the positions of the pocket minimum and the Coulomb
barrier at R = Rb ≈ R1 + R2 + 2 fm, where Ri = 1.15A

1/3
i

(i = 1, 2) are the radii of colliding nuclei (Fig. 7). For example,
Bqf = 3.2 MeV (15 MeV) and 4.8 MeV (16.4 MeV) for the
reactions 48Ca + 196Pb (4He + 196Pb) and 48Ca + 208Pb
(4He + 208Pb), respectively. As seen in Fig. 7, the value
of ωb = |∂2V/∂R2|R=Rb

is almost insensitive to the neutron
number of the dinuclear system.

As the centrifugal part of the potential grows, the potential
pocket becomes shallower, while the position of the pocket
minimum moves toward the barrier at R = Rb. At some critical
angular momentum the potential pocket disappears and the
value of capture cross section goes to zero.

B. Capture cross section and mean-square angular momentum
of captured system

In Figs. 8–11 the calculated capture cross sections for the
reactions 4He,16O,36S,48Ca + 196,200,204,208Pb are presented.
The calculated results are in rather good agreement with the
available experimental data. As is seen, the decrease of the

FIG. 14. The same as in Fig. 13, but for the reactions
16O + 196,200,204,208Pb. The experimental data for the reactions
16O + 204Pb and 16O + 208Pb are taken from Ref. [26] (open squares)
and Ref. [28] (closed rhombuses), respectively.

Pb atomic number leads to smaller values of capture cross
section at fixed Ec.m. for all types of the reactions. So, as the
Pb diffuseness parameter becomes smaller, the height of the
Coulomb barrier becomes larger and, accordingly, the capture
cross section becomes smaller at a certain value of Ec.m.. Thus,
the increase of the number of neutrons in Pb assists the capture
process. In Fig. 9 the experimental data are for the reactions
16O + 204,208Pb. They demonstrate the same behavior like the
calculated solid and dashed curves. The isotopic dependence
is rather weak because the nucleus-nucleus potential weakly
depends on the mass number of the target in very asymmetric
reactions. In the reactions with 48Ca the isotopic trend is more
pronounced.

In Figs. 8–11 one can see that there is a sharp dropoff
of the cross sections just under the Coulomb barrier. With
decreasing Ec.m. up to about 0.5–5.0 MeV below the Coulomb
barrier, the regime of interaction is changed because at the
external turning point the colliding nuclei do not reach the
region of nuclear interaction where friction plays a role. As a
result, at smaller Ec.m. the cross sections fall with a smaller
rate. With large values of Rint the change of fall rate occurs
at smaller Ec.m.. However, the uncertainty in the definition of
Rint is rather small. This effect is not sensitive to the change
of mass number of Pb. Therefore, the change of fall rate of
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FIG. 15. The same as in Fig. 13, but for the reactions
36S + 196,200,204,208Pb. The experimental data for the 36S + 208Pb
reaction are taken from Ref. [31] (closed squares).

sub-barrier capture cross section should be in the data if we
assume that the friction starts to act only when the colliding
nuclei approach the barrier. Note that experimental data have
still large uncertainties to make a firm experimental conclusion
about this effect.

The calculated mean-square angular momenta of captured
systems vs Ec.m. are presented in Figs. 8–11 as well. The
increase of A raises the mean-square angular momentum of
captured system, as expected. At energies 0.5–4.5 MeV below
the barrier 〈J 2〉 has a minimum. The position of the minimum
is shifted to the smaller energies with increasing A. Note
that there are experimental indications [30] of the presence
of this minimum. On the left-hand side of this minimum
the dependence of 〈J 2〉 on Ec.m. is rather weak. A similar
weak dependence has been found in Ref. [36] in the extreme
sub-barrier region. Note that the found behavior of 〈J 2〉, which
is related to the change of the regime of interaction between
the colliding nuclei, would affect the angular anisotropy
of the products of fission-like fragments following capture.
Indeed, the values of 〈J 2〉 are extracted from data on angular
distribution of fission-like fragments [4].

In Fig. 12 the calculated capture cross sections and
the mean-square angular momenta of captured system are
presented versus Ec.m. for the 48Ca + 196Pb reaction with
diffuseness parameter a = 0.52 fm (as in Fig. 11) and a =
0.55 fm for 196Pb. The change of a causes the change of

FIG. 16. The calculated reduced capture cross sections (upper
part) and the mean-square angular momenta of the captured system
(lower part) vs (Ec.m. − Vb)/(h̄ωb). Solid, dashed, dotted, and dash-
dotted lines show the results for the reactions 4He + APb, 16O + APb,
36S + APb, and 48Ca + APb, respectively.

the Coulomb barrier, which leads to increase or decrease of
the capture cross section. So, the choice of the diffuseness
parameter significantly affects the value of capture cross
section especially in the sub-barrier region. If we use a = 0.55
fm for all Pb isotopes then all capture cross section and
mean-square angular momentum dependencies will be closer
to each other than in Figs. 8–11.

C. Astrophysical S factor, L factor, and barrier distribution

Assuming that the capture cross section is equal to the
fusion cross section, we calculate astrophysical S factor, S =
Ec.m.σcap exp(2πη). Here, η(Ec.m.) = Z1Z2e

2
√

μ/(2h̄2Ec.m.)
is the Sommerfeld parameter. In Figs. 13–15 the calculated
S factors versus Ec.m. are shown for the reactions 4He, 16O,
36S + APb. The S factor has a maximum. In Figs. 14 and 15
the behavior of the S factor in the reactions 16O + 204,208Pb
and 36S + 208Pb is well reproduced. After this maximum the
S factor slightly decreases with decreasing Ec.m. and then
starts to increase. The same behavior has been revealed in
Ref. [37] by extracting the S factor from the experimental data
for lighter systems. In Figs. 13–15, the so-called logarithmic
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FIG. 17. The calculated capture cross sections (upper part) and
mean-square angular momenta of the captured system (lower part) vs
Ec.m. for the 16O + 76Ge reaction. The experimental cross sections are
from Ref. [39] (closed squares). The height Vb of the Coulomb barrier
is indicated by the arrow. The quadrupole deformation parameters are
β1(16O) = 0 and β2(76Ge) = 0.2623 [22].

derivative, L(Ec.m.) = d[ln(Ec.m.σcap)]/dEc.m., and the barrier
distribution d2(Ec.m.σcap)/dE2

c.m. are also presented for the
reactions 4He, 16O, 36S + APb. The logarithmic derivative
strongly increases below the barrier and then has a maximum at
Ec.m. ≈ Vb − 3 MeV. The maximum of L almost corresponds
to the minimum of the S factor. The barrier distributions
calculated have only one maximum at Ec.m. = Vb. For the S

factor and L and D functions, the value of height of maximum
increases slightly with A. The widths of these maxima are
almost independent of the mass number of Pb. The positions
of maxima are shifted to larger Ec.m. with decreasing A. The
position of the maximum of the D function corresponds to
the Coulomb barrier. As seen in Figs. 13–15, the positions
of the maxima of S and D come closer to each other with
increasing reaction asymmetry. The maximum of the S factor
is expected at σcap of about 10 mb in the reactions with 4He and
at σcap of about 0.1 mb in the reactions with 36S. Therefore,
the observation of the maximum and minimum of S is simpler
in the strongly asymmetric reactions.

FIG. 18. The same as in Fig. 17, but for the 16O + 74Ge reaction.
The experimental cross sections are from Ref. [39] (closed squares).
The static quadrupole deformation parameters are β1(16O) = 0 and
β2(74Ge) = 0.2825 [22].

D. Dimensionless representations of capture cross sections and
mean-square angular momenta

In Ref. [38] a reduction procedure was proposed to
eliminate the influence of the nucleus-nucleus potential (the
Coulomb barrier height, width, and position) on the fusion
(capture) cross section. It consists of the following transfor-
mations:

Ec.m. → Ec.m. − Vb

h̄ωb

, σcap → 2Ec.m.

h̄ωbR
2
b

σcap,

〈J 2〉1/2 →
[

πh̄

μωbR
2
b

]1/2

〈J 2〉1/2. (11)

To unify the obtained results for all reactions with APb
isotopes, we present in Fig. 16 the calculated capture cross
sections and the mean-square angular momenta of captured
systems in the dimensionless representation [38]. As it is seen
from the Fig. 16, the reduced values of cross section and mean-
square angular momentum of captured systems in the reactions
4He + 196,200,204,208Pb coincide at bombarding energies above
and below the Coulomb barrier. The same behavior can be ob-
served for other groups of the reactions 16O + 196,200,204,208Pb,

034612-9



R. A. KUZYAKIN et al. PHYSICAL REVIEW C 85, 034612 (2012)

FIG. 19. The same as in Fig. 17, but for the 16O + 72Ge
reaction. The experimental cross sections are from Ref. [39] (closed
squares). The quadrupole deformation parameters are β1(16O) = 0
and β2(72Ge) = 0.2424 [22].

36S + 196,200,204,208Pb, and 48Ca + 196,200,204,208Pb. From this
behavior and from the very weak dependencies of ωb and
Rb on the neutron number of the dinuclear system (see
Fig. 7), one can conclude that the neutron number or the
diffuseness parameter strictly influences the capture cross
section through only the height of the Coulomb barrier. So, by
using the nucleus-nucleus interaction potential calculated with
any realistic diffuseness parameter and adjusting the height of
the Coulomb barrier from experimental capture cross sections
at bombarding energies near the barrier, one can calculate the
capture cross sections or any other observables at sub-barrier
energies. Such types of calculations are suitable to describe
the capture of deformed nuclei for which the self-consistent
calculations of diffusenesses are not available. In addition, the
diffuseness seems to be dependent on the angle with respect
to the symmetry axis of the deformed nucleus.

As found, the change of the neutron number in one of the
colliding nuclei mainly causes the change of the height of the
Coulomb barrier. If this height is adjusted to the experimental
data, the nucleus-nucleus potential can be calculated at some
fixed realistic values of parameters irrespective of the number
of neutrons in the system. For the reactions 16O + 70,72,74,76Ge
with deformed target nuclei, the heights of the calculated

FIG. 20. The same as in Fig. 17, but for the 16O + 70Ge
reaction. The experimental cross sections are from Ref. [39] (closed
squares). The quadrupole deformation parameters are β1(16O) = 0
and β2(70Ge) = 0.2245 [22].

Coulomb barriers Vb = V (Rb) are adjusted to the experimental
data [39] for the capture cross section at Ec.m. � Vb. We
use r0 = 1.15 fm and a = 0.55 fm for all deformed nuclei
70,72,74,76Ge. The experimental quadrupole deformation pa-
rameters of the isotopes 70,72,74,76Ge are taken from Ref. [22].
In these reactions there are no neutron transfer channels with
positive Q values and thus transfer might be expected to
be suppressed. In Figs. 17–20, the calculated capture cross
sections for the reactions 16O + 70,72,74,76Ge are in a rather
good agreement with the available experimental data. One
can see that there is a sharp dropoff of the cross sections just
under the Coulomb barrier. At Ec.m. of 3.5–4.0 MeV below the
Coulomb barrier the regime of interaction is changed (turning
off the nuclear forces and, respectively, nuclear friction). As a
result, at smaller Ec.m. the cross sections fall with a smaller rate,
but the effect is less pronounced in contrast to the collisions
of spherical nuclei. The collisions of deformed nuclei occur at
various mutual orientations affecting the value of Rint.

In Figs. 17–20, the calculated mean-square angular mo-
menta of the captured systems versus Ec.m. are predicted for
the reactions 16O + 70,72,74,76Ge.
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IV. SUMMARY

By using the quantum diffusion approach, we studied the
isotopic trends of capture cross sections and mean-square
angular momenta of captured systems in the reactions 4He,
16O, 36S, 48Ca + 196,200,204,208Pb. The nuclear parts of the
nucleus-nucleus interaction potentials were calculated by
using the double-folding procedure with the density-dependent
effective NN interaction [18] constructing with an averaging
procedure from the TFFS effective interaction. For density
distributions of interacting nuclei, we used the two-parameter
symmetrized Fermi functions. For the lead isotopes, the Fermi-
distribution parameters were found to fit to the self-consistent
density distributions calculated with the DF3-a functional [21]
within the EDF method [20].

The available experimental data at energies above and
below the Coulomb barrier are well described. The isotopic
trends are attributed to the deformation effects, neutron
transfer, and nucleus-nucleus interaction. As demonstrated
in our calculations, in the case of the same deformations of
colliding isotopes and minor effect of neutron transfer, the
neutron number of the target nucleus strictly influences the
height of the Coulomb barrier but not the width of the barrier.
Thus, the height Vb of the calculated Coulomb barrier can be

adjusted to the experimental data for the capture cross sections
at Ec.m. � Vb to take effectively into account the change of
nuclear interaction with neutron number. The width of the
nucleus-nucleus interaction potential can be calculated with
any realistic diffuseness parameter because the width is rather
insensitive to its value. Indeed, this procedure is often used for
calculating the sub-barrier fusion and capture. It was applied
to the reactions 16O + 70,72,74,76Ge.

As found, the increase of the number of neutrons in Pb
assists the capture process. The isotopic dependence is rather
weak in the reactions 4He, 16O + 196,200,204,208Pb because the
nucleus-nucleus potential weakly depends on the mass number
of the target in very asymmetric reactions. In the reactions with
36S and 48Ca the isotopic trend is more pronounced. The slope
of the capture cross section at deep sub-barrier energies is not
sensitive to the neutron number of the system.
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