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The reactions γp → K+� and ep → e′K+� have been investigated in a tree-level effective Lagrangian model
that incorporates most of the well-established baryon resonances with spins up to 5

2 , four less well-established
nucleon resonances with larger mass, and the K�(892) and K1(1270) resonances in the t channel. The off-shell
structure of the electromagnetic vertices in electroproduction is incorporated by the addition of electromagnetic
form factors. To achieve a good fit to the electroproduction data, it was found necessary to treat the ground-state
hyperon form factors as adjustable parameters rather than simply equating them with the neutron form factors
as was done in past studies. Photoproduction data consisting of unpolarized differential cross sections from
the CLAS Collaboration, hyperon polarization asymmetries from CLAS, GRAAL, and SAPHIR, photon beam
asymmetries from GRAAL and LEPS, and double polarization observables from CLAS were fit over the c.m.
energy range from threshold up to 2.3 GeV. Electroproduction data for the virtual photoproduction structure
functions σU , σT , σL, σT T , and σLT from the CLAS collaboration were fit over the �K c.m. energy range from
threshold up to 2.3 Gev and for several values of q2, the square of the virtual photon 4-momentum. For each
intermediate resonance included, the fitted parameters in the photoproduction fit consist of the products of the
coupling strengths at the electromagnetic and strong interaction vertices. In the electroproduction fit, there were,
in addition, two form-factor parameters for each intermediate baryon in the s and u channels and one form factor
parameter for each kaon resonance in the t channel. Results are presented for the fitted photoproduction and
electroproduction observables and compared with the data for several sets of kinematical variables.
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I. INTRODUCTION

The photoproduction of strangeness from the proton has
been a subject of considerable interest since the mid 1980s.
Much of the theoretical work, especially the earlier work,
employed effective Lagrangian models [1–18], but several
recent studies are based on coupled-channel approaches or
chiral unitary frameworks [19–23]. There is currently a
wealth of photoproduction data from several groups, including
SAPHIR [24], LEPS [25], GRAAL [26,27], and CLAS
[28–31]. Recently, a new photoproduction fit was published
that incorporates much of this new data [32].

By contrast, the electroproduction of strangeness from
the proton has received much less attention. Most of the
recent data has been obtained at Jefferson Lab, either by
the Hall C Collaboration [33] or by CLAS [34–36]. The
earliest theoretical studies of electroproduction date from
the mid 1970s, and were based on a simple Regge model
[37]. More recent studies generally employ an effective
Lagrangian model [2,4,7,9,10,14,38,39] and often treat both
the electroproduction and photoproduction reactions together.
There also exist updated Regge analyses of electroproduction
[40] and studies based on chiral frameworks [23,41].

While electroproduction is more difficult to treat than pho-
toproduction, both theoretically and experimentally, it involves
virtual, rather than real, photons, and thus, has the potential
to yield information not available from photoproduction. In
particular, the reaction mechanism involves a longitudinal
photon contribution and, within the context of effective
Lagrangian models, is sensitive to the electromagnetic form
factors of the intermediate hadronic resonances associated with
the strangeness production reaction mechanism. In Ref. [32],
it was suggested that these electromagnetic form factors could
be studied within the framework of an effective Lagrangian

model using parameters fit to photoproduction data. The
idea was that the photoproduction fit could be applied to
electroproduction with just the addition of electromagnetic
form factors at the virtual photon-hadronic vertices. The
parameters associated with these form factors would then be
fit to the electroproduction data. In other words, the basic
reaction mechanism would be fixed by the photoproduction
data; the electromagnetic form factors would be fixed by the
electroproduction data.

That idea provided much of the motivation for the work
reported here. We were also motivated by the desire to
obtain a quantitative fit to recent electroproduction data
comparable in quality with the fit of recent photoproduction
data reported in Ref. [32]. Aside from the information they
provide concerning the underlying interactions, such fits can
be used to study strangeness-producing reactions involving
more complex targets such as the deuteron and 3He.

In practice, we found that the photoproduction data do
not constrain the parameters of the photoproduction fit suf-
ficiently to provide a good description of the longitudinal part
of the electroproduction reaction. In principle, the Lorentz
covariance of the reaction model determines the longiditudinal
contributions to electroproduction once all the parameters
of the model are fixed. Thus, if one were able to obtain
a unique fit to the photoproduction data, one should be
able to use that fit, with the addition of electromagnetic
form factors, to describe the electroproduction reaction. The
trouble is that the photoproduction fit reported in Ref. [32],
while quantitative, is probably not unique. Different fits of
comparable quality to the photoproduction data will generally
yield quite different longitudinal contributions to electropro-
duction, since the photoproduction data only constrain the
tranverse part of the reaction mechanism. We found that,
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to obtain a good fit to the electroproduction data, it was
necessary to adjust the parameters of the photoproduction fit by
fitting the photoproduction data and the electroproduction data
simultaneously. This was necessary even with electromagnetic
form factors included in the electroproduction reaction model.

The remainder of this work is organized as follows: in the
next section, we summarize the underlying reaction model
used to describe both the photoproduction reaction, γp →
K+�, and the electroproduction reaction, ep → e′K+�. For
a more comprehensive discussion of this model, the reader
should consult Ref. [32]. In Sec. III, the electroproduction
reaction is discussed in more detail with detailed expressions
given for the electroproduction structure functions.

The hadronic electromagnetic form factors are discussed
in Sec. IV, both for the Born contributions in each reaction
channel and for the contributions with intermediate hadronic
resonances. In connection with these form factors, we note here
that it has been a common practice in electroproduction studies
to use the proton electromagnetic form factors in all s-channel
contributions to the reaction and the neutron electromagnetic
form factors in all the u-channel contributions. While this
approximation has the virtue of simplicity, it is completely
unjustified.

Section V presents details of the fitting procedure, including
a summary of the data fit for both reactions and a list of the
parameters to be fitted. Results for both the photoproduction
reaction and the electroproduction reaction are presented in
Sec. VI. Due to a sign error in the t-channel Born term,
it was necessary to redo the photoproduction fit described
in Ref. [32]. We then compare the photoproduction results
obtained with two different fits: one obtained with the photo-
production data alone and the other with both photoproduction
data and electroproduction data. Finally, electroproduction
results obtained with the latter fit are compared with data from
Ref. [35].

II. THE PHOTOPRODUCTION REACTION MODEL

The reaction model, consisting of s-channel, u-channel,
and t-channel contributions, is depicted diagrammatically in
Fig. 1. The s-channel contributions include the Born term
with an intermediate proton and contributions in which an
intermediate nucleon resonance is excited. The u-channel
contributions include the Born term with an intermediate �

and terms involving both the ground-state � baryon and
intermediate hyperon resonances. Finally, in the t channel,
the Born contribution is supplemented with contributions
involving both K�(892) and K1(1270) exchange.

The general structure of the corresponding reaction ampli-
tudes is given by the expressions

T̂s =
∑
N�

V†
K (pK )D(ps)Vγ (pγ ), (1)

T̂u =
∑
Y �

V†
γ (pγ )D(pu)VK (pK ), (2)

and

T̂t =
∑
K�

V†
γK (pγ , pt )Dt (pt )Vp�(pt ), (3)

K

K

γ
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FIG. 1. Contributions to the amplitude for the reaction γp →
K+�.

where ps = p� + pK , pu = p� − pγ , and pt = pγ − pK are
the intermediate 4-momenta in the s, u, and t channels, respec-
tively, the V’s designate the interaction vertices, and the D’s
the associated intermediate baryon and meson propagators.
The particular forms of both the electromagnetic interaction
vertices and the strong interaction vertices, as well as the
propagators, depend explicitly on the spin and the parity of
the intermediate hadron.

In the t channel, the interaction vertices are given by

VγK = −eε · (pK − pt ) (4)

and

Vp� = g�Kpγ5 (5)

for an intermediate ground-state kaon (the t-channel Born
term), by

Vμ

γK = gγKK�

msc

εμνρλενpγρptλ (6)

and

Vμ
p� =

(
gV

�K�p + gT
�K�p

mp + m�

γ · pt

)
γ μ (7)

for an intermediate K�(892) resonance and by

Vμ

γK = gγKK1

msc

(
ε · ptp

μ
γ − pγ · ptε

μ
)

(8)

and

Vμ
p� =

(
gV

�K1p + gT
�K1p

mp + m�

γ · pt

)
γ μγ5 (9)
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for an intermediate K1(1270) resonance. In these expressions
ε denotes the photon polarization 4-vector and msc is a
scaling mass, set equal to 1 GeV, introduced to make the
electromagnetic coupling strengths dimensionless. For the
t-channel resonance propagators we employ the expression

Dt =
−gμν + ptμptν

m2
K�

p2
t − m2

K�

, (10)

where the label K� now refers to either kaon resonance, and we
note that no width is included since the intermediate energies
in the t channel are always well below any possible decay
thresholds.

In the s and u channels, we employ standard expressions for
the interaction vertices that are associated with intermediate
baryons of spin 1

2 . In particular, for positive-parity baryons,
we use

V
K 1

2
+ (pK ) = gγ5 (11)

and

V
γ 1

2
+(pγ ) = gγ εμiσμν(pγ )ν (12)

with

gγ = eκ

2mB

, (13)

where κ is defined by its relation to the transition magnetic
moment,

μT = eκ

mB + mI

, (14)

mB is the mass of the incoming or outgoing baryon (mp or
m�), and mI is the mass of the intermediate baryon. The corre-
sponding expressions for negative-parity intermediate baryons
just have the γ5 factor transposed from the strong interaction
vertex to the electromagnetic vertex. For intermediate protons,
there is an additional term,

Vcharge(pγ ) = eγ μεμ, (15)

arising from the proton’s charge. For the spin- 1
2 propagator, we

employ, in agreement with other authors, a relativistic Breit-
Wigner form,

D
1
2 (p) = γ · p + mI

p2 − m2
I + imI�I

, (16)

where the width �I is nonzero only in the s channel.
For intermediate baryons of spin 3

2 , we employ the standard
Rarita-Schwinger form for the spin- 3

2 propagator and use
forms for the corresponding vertices that are similar to those
introduced in Ref. [10], but without off-shell terms. Other
expressions have been employed for the spin- 3

2 propagator [1],
but these alternative expressions do not satisfy the differential
equation that defines the propagator as a Green’s function [42].
As for off-shell terms in the interaction vertices, the results of
Ref. [10] suggest that these terms, as well as corresponding

terms in the propagator, have a relatively modest effect on
calculated observables. For positive-parity spin- 3

2 intermediate
baryons, neglect of these terms yields the interaction vertices

Vμ

K 3
2

+(pK ) = − g

mπ

p
μ

K, (17)

and

Vμ

γ 3
2

+(pγ ) =
[

g1

2mB

(
εμγ · pγ − pμ

γ γ · ε
)

+ g2

4m2
B

(
ε · pBpμ

γ − pγ · pBεμ
)]

γ5, (18)

where pB is the 4-momentum of the incoming or outgoing
ground-state baryon. The corresponding negative-parity ver-
tices just have the γ5 factor transposed from one vertex to the
other vertex. Note that we have employed the pion mass, rather
than the kaon mass, to make the strong interaction coupling
dimensionless.. The Rarita-Schwinger propagator is obtained
by just multiplying the spin- 1

2 propagator given by Eq. (16) on
the right by the spin- 3

2 projection operator

P
3
2

μν = gμν − 1

3
γμγν + 1

3

pμγν − pνγμ

mI

− 2

3

pμpν

m2
I

. (19)

Our interaction model also includes intermediate baryons
with spin 5

2 in both the s and u channels. As reported
in Ref. [32], this is necessary because there are several
well-established resonances below 2 GeV that could have a
significant impact on photoproduction observables within the
kinematic range of the observations. For the spin- 5

2 interaction
vertices, we employ forms similar to those given in Ref. [9] but
modified so as to be consistent with the forms adopted here
for the spin- 3

2 vertices. For the positive-parity intermediate
resonances, the resulting expressions are

Vμν

K 5
2

+(pK ) = g

m2
π

p
μ

Kpν
Kγ5 (20)

and

Vμν

γ 5
2

+(pγ ) =
[

g1

2mB

(
εμγ · pγ − pμ

γ γ · ε
)

+ g2

4m2
B

(
ε · pBpμ

γ − pγ · pBεμ
)] pν

γ

mπ

. (21)

As for the other s and u channel vertices, the corresponding
negative-parity vertices just have the γ5 factor transposed from
one vertex to the other vertex. The corresponding propagator is
constructed by multiplying the spin- 1

2 propagator on the right
by the spin- 5

2 projector operator,

P

5
2

μν,μ′ν ′ = Rμν,μ′ν ′ − 1
5PμνPμ′ν ′

− 1
5 (Pμργ

ργ σRσν,μ′ν ′ + Pνργ
ργ σRσμ,μ′ν ′) (22)

with

Rμν,μ′ν ′ = 1
2 (Pμμ′Pνν ′ + Pμν ′Pνμ′ ), (23)

where

Pμν = gμν − pμpν/m2
I . (24)
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As discussed in Ref. [32], the nucleon resonances excited in
the s channel generally lie in kinematic regions where various
decay channels are open. It is thus necessary to include widths
in the s-channel resonance propagators, and these widths are
usually required rather far off the resonance mass shell.

In Ref. [15] a model was proposed to dynamically gen-
erate widths off-shell by making use of the partial-width
data summarized in the particle data tables [43]. The full
width is first decomposed into a number of different decay
channels. In each such channel, the off-shell energy and
momentum dependence of the partial width is generated using
an effective Lagrangian model with the required coupling
strength adjusted to yield the empirical on-shell branching
ratio for decay into that channel. The model treats two types
of decays: two-body decays with stable decay products and
decays in which one of the decay products is itself unstable.
The latter decays are approximated as decays into either a
ground-state baryon and a meson resonance or a ground-state
meson and a baryon resonance. The corresponding widths are
obtained by integrating the product of the relevant phase-space
factor and a Breit-Wigner distribution function over the mass
distribution of the unstable decay product. Reference [32]
contains a detailed description of this model, including ex-
pressions for the phase-space factors and distribution function
employed and values for all the required decay branching
ratios.

In Ref. [32] the model was used to generate energy-
dependent widths for all the three- and four-star nucleon reso-
nances included in the fit. For these resonances the branching
ratio data is generally good enough to obtain reasonably good
estimates for the partial widths on the resonance mass shells.
However, the model of Ref. [32] also included some larger-
mass, less well-established nucleon resonances for which the
partial-width data is limited. For these larger-mass resonances,
the widths were simply treated as energy-independent param-
eters to be determined in the data fitting procedure. In the
present work, we employ the same width prescription as used
in Ref. [32]. In particular, we use the same on-shell branching
ratios for the well-established nucleon resonances and the same
energy-independent widths for the higher-energy nucleon
resonances.

The matrix elements for the photoproduction reaction have
the general structure

ūM�
(p�)T̂ uMp

(pp)

= ūM�
(p�)[Â + B̂γ5 + Ĉγ 0 + D̂γ 0γ5]uMp

(pp), (25)

where pp and Mp are the 4-momentum and spin projection
of the proton, and p� and M� the 4-momentum and spin
projection of the �. Detailed expressions for the operators
Â, B̂, Ĉ, and D̂ can be found in Ref. [32]. Equation (25) was
evaluated by first converting it to the equivalent form involving
Pauli spinors,

ūM�
(p�)T̂ uMp

(pp)

= N�Npχ
†
M�

[(Â+Ĉ) + (B̂ + D̂)σ · p̂p+σ · p̂�(D̂ − B̂)

+ σ · p̂�(Ĉ − Â)σ · p̂p]χMp
, (26)

TABLE I. Baryon resonances considered in the model

Resonance I J P

N (1440) 1
2

1
2

+

N (1520) 1
2

3
2

−

N (1535) 1
2

1
2

−

N (1650) 1
2

1
2

−

N (1675) 1
2

5
2

−

N (1680) 1
2

5
2

+

N (1700) 1
2

3
2

−

N (1710) 1
2

1
2

+

N (1720) 1
2

3
2

+

N (1900) 1
2

3
2

+

N (2000) 1
2

5
2

+

N (2080) 1
2

3
2

−

N (2200) 1
2

5
2

−

�(1405) 0 1
2

−

�(1670) 0 1
2

−

�(1820) 0 5
2

+

�(1830) 0 5
2

−

�(1890) 0 3
2

+

�(2110) 0 5
2

+

�(1385) 1 3
2

+

�(1775) 1 5
2

−

�(1915) 1 5
2

+

�(1940) 1 3
2

−

where

N =
√

E + m

2m
(27)

and

p̂ = p
E + m

, (28)

and then evaluating the Pauli matrix elements numerically.
Table I lists all the nucleon and hyperon resonances that

were included in the fit of Ref. [32] and which have been
included here. It should be noted that the analysis of Ref. [32]
initially included a larger set of hyperon resonances, but
that better results were achieved by reducing the number of
resonances in the u channel (see Ref. [32] for details).

The set of parameters varied in the fit to the photoproduction
observables consists of the products of coupling strengths at
the two interaction vertices in each resonance contribution
to the reaction amplitude. These products are defined by the
relations

FN� = eκpN�g�KN�, F�� = eκ���g��Kp,
(29)

F�� = eκ���g��Kp,
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for the spin- 1
2 baryons in the s and u channels, by

G1
N� = g

pN�

1 g�KN�, G2
N� = g

pN�

2 g�KN�,

G1
�� = g���

1 g��Kp, G2
�� = g���

2 g��Kp, (30)

G1
�� = g���

1 g��Kp, G2
�� = g���

2 g��Kp

for the spin- 3
2 and spin- 5

2 resonances in the s and u channels,
by

FK = eg�Kp (31)

for the ground state kaon in the t channel, and by

GV
K� = gγKK�gV

�K�p, GT
K� = gγKK�gT

�K�p (32)

for the t-channel kaon resonances, where e = 0.3029 is the
dimensionless electric charge. Note in Eqs. (29), that the N�,
��, and �� subscripts refer to either the corresponding ground
state baryon or a spin- 1

2 resonance. Note also that in Eq. (31),
we have corrected a sign error in Ref. [32]. For the proton, we
also need the charge-coupling product. This is given by

FCp = eg�Kp. (33)

Values for the ground state coupling products can be
obtained by combining SU(3) symmetry relations and SU(2)
isospin coupling coefficients with data from the particle data
tables. The symmetry relations yield the simple expressions

Fp = κpFCp, F� = κ�FCp, FK = FCp,

F�

F�

= 1√
3

1 − 2α

1 − 2
3α

κ�

κ��

, (34)

where α is an SU(3) symmetry parameter that can be fixed
using the empirical pion coupling strengths, and κ�� is the
�-� transition magnetic-moment factor. For the various
coupling factors appearing in these relations, we employ the
same values as were used in Ref. [32]: κp = −1.79, κ� =
−0.729, κ�� = 1.91, α = 0.625, and FCp = −1.98, which
yield the value F� = 0.934. These values are consistent with
a recent study based on a generalized Goldberger-Treiman
relation used in conjunction with the Dashen-Weinstein sum
rule [44]. For further discussion concerning the ground state
couplings, the reader should consult Ref. [32]. Note that in
the fits reported here, none of the ground-state couplings were
varied.

III. ELECTROPRODUCTION

To describe the electroproduction reaction, we employ a
formalism which is similar to that described in Ref. [39], but
which differs from it in several respects. In particular, we
include here baryon resonances with spins up to 5

2 , and we use a
different method to evaluate the virtual photoproduction matrix
elements. We have also incorporated a more sophisticated
treatment of the baryon electromagnetic form factors.

The matrix element for the reaction ep → e′K+� can be
expressed, in the impulse approximation, as the product of
a hadronic current and a leptonic current divided by q2, the
square of the 4-momentum of the exchanged virtual photon.

In particular,

〈F |T̂ |I 〉 = lμhμ

q2
. (35)

The lepton and hadronic currents are given by the relations

lμ = eūM ′ (p′)γμuM (p) (36)

and

hμ = eūM�
(p�)t̂μuMp

(pp), (37)

where in the lepton current, p and p′ are the incident and final
electron 4-momenta and M and M ′ the corresponding electron
spin projections.

After performing the electron spin projection sums, making
use of the current conservation relation,

qμhμ = 0, (38)

and imposing the extreme relativistic limit on the electron
kinematics, the spin-summed square of the matrix element
given by Eq. (35) can be expressed in terms of a summed
matrix element for the virtual photoproduction of a � from a
proton. In particular, one obtains

1

4

∑
spins

|〈F |T̂ |I 〉|2 = e2

2m2
eq

2

1

ε − 1

∑
M�Mp

1

2
|〈f |t̂γ |i〉|2,

(39)

where 〈f |t̂γ |i〉 is the virtual photoproduction matrix element
and

ε =
(

1 − 2
q2

q2
tan2 �

2

)−1

, (40)

with � denoting the electron scattering angle, is the transverse
polarization of the virtual photon.

The differential cross section obtained from Eq. (39) is
related to the corresponding virtual photoproduction cross
section by the relation

dσ

dE′d�′d�K

= α

(2π )4

p′

(ε − 1)q2

√√√√ (
qμp

μ
p

)2 − q2m2
p(

pμp
μ
p

)2 − m2
em

2
p

dσγ

d�K

,

(41)

where α is the fine-structure constant, and the extreme
relativistic limit has again been imposed on the electron
kinematics. The virtual photoproduction cross section can be
expressed most simply in the K� c.m. system. In that frame,

dσγ

d�K

= 1

(4π )2

mpm�pK

|q|s
1

2

∑
spins

|〈f |t̂γ |i〉|2, (42)

where
√

s = EK + E�.
The simplest expression for the virtual photoproduction

matrix element is obtained by choosing a coordinate system
defined with respect to the lepton plane. If we choose the z

axis in the direction of the virtual photon and the x axis so that
the initial electron 3-momentum lies in the xz plane, then the
spin-summed squared matrix element appearing in Eq. (42)
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takes the form

1

2

∑
spins

|〈f |t̂γ |i〉|2

= 1

2

∑
M�Mp

[
1

2
(ε + 1)|hx |2− 1

2
(ε − 1)|hy |2− q2

q2
0

ε|hz|2

− 1

q0

√
−q2

2
ε(ε + 1)(hxh

�
z + h�

xhz)

]
, (43)

where q0 denotes the fourth component of the virtual photon
4-momentum. Note in this expression that the squared 4-
momentum, q2, is negative.

While Eq. (43) involves components of the hadronic current
defined with respect to the lepton plane, the hadronic current
is more easily evaluated in a coordinate system defined with
respect to the hadron plane. The two sets of components are
related by a simple rotation. In particular, if we choose the x

axis of the hadronic plane coordinate system so that the kaon
3-momentum lies in the xz plane, then we obtain

hx = h̃x cos φ − h̃y sin φ, hy = h̃x sin φ + h̃y cos φ,
(44)

hz = h̃z,

where the h̃ are the hadron current components in the hadronic
coordinate system, and φ is the angle between the hadron plane
and the lepton plane.

The hadronic current matrix elements are defined by the
expression

h̃ = ūM�
(p�)t̂JPuMp

(pp), (45)

where JP denotes the spin and parity of the intermediate
hadron in a particular contribution to the matrix element.
With the exception of the t-channel contribution involving
an intermediate K�(892) resonance, all of the matrix element
operators have the general structure

t̂JP = α1 + α2γ5 + α3γ
0 + α4γ

0γ5

+ D1γ + D2γ γ5 + D3γ
0γ + D4γ

0γ γ5. (46)

The t-channel K�(892) contribution has the form

t̂JP = α1 + α2γ5 + α3γ
0 + α4γ

0γ5

+ β1 × γ + β2 × γ γ5 + β3 × γ 0γ + β4 × γ 0γ γ5.

(47)

The various α, β, and D quantities that appear in these relations
are momentum-dependent operators that act within the 2 × 2
Pauli spinor space of the baryons. Detailed expressions
for these operators with the electromagnetic form factors
suppressed are given in the Appendix.

In Ref. [39], the hadronic matrix elements were evaluated
by carrying out the Dirac algebra analytically and then
evaluating the resulting Pauli matrix elements numerically.
In the present work, where we include intermediate baryons
with spin 5

2 in the s and u channels, we have chosen to
reduce the algebraic work required by directly evaluating
the Dirac matrix elements numerically without first reducing
them to Pauli form. We have checked that the two approaches
agree numerically for the t-channel contributions to the matrix

elements and the s- and u-channel contributions with spin- 1
2

and spin- 3
2 intermediate baryons.

The virtual photoproduction cross section given by Eq. (42)
can be conveniently decomposed into a number of structure
functions according to the relation

dσγ

d�K

= σT + εσL + εσT T cos 2φ +
√

ε(ε + 1)σLT cos φ,

(48)

where

σT = 1

2
k

∑
M�Mp

1

2
(|h̃x |2 + |h̃y |2),

σL = 1

2
k

∑
M�Mp

1

2

−q2

q2
0

|h̃z|2,

σT T = 1

2
k

∑
M�Mp

1

2
(|h̃x |2 − |h̃y |2),

σLT = −k
∑

M�Mp

1

q0

√
−q2

2
�(h̃x h̃

�
z), (49)

with

k = mpm�pK

16π2|q|s . (50)

It should be noted that this decomposition is consistent with
that used in most experimental studies of the reaction ep →
e′K+�, but differs slightly from that used in many theoretical
studies, including that of Ref. [39].

In practice it has proved difficult experimentally to separate
the transverse and longitudinal structure functions (σT and
σL), with the result that, over most of the kinematic range
considered, data exists only for the combined structure
function,

σU = σT + εσL. (51)

In contrast with σT and σL, which do not depend on the
incident electron energy, σU does depend on the incident
electron energy through its dependence on the polarization
parameter ε.

IV. ELECTROMAGNETIC FORM FACTORS

Because of the off-shell nature of the exchanged photon,
effective Lagrangian treatments of electroproduction require
the use of electromagnetic form factors at the hadronic photon
vertices. While the nucleon electromagnetic form factors
have been studied extensively, there currently exists little
information regarding the electromagnetic form factors of
strange baryons or nucleon resonances.

The senstivity of electroproduction observables to t-
channel electromagnetic form factors has been examined in
some detail [9,45], but very little attention has been paid
to the form factors in the s and u channels. In fact, most
previous studies of electroproduction have made use of an
extremely crude model for the baryon electromagnetic form
factors in which the proton form factor is employed for all
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charged baryons and the neutron form factor for all neutral
baryons. Such a prescription is completely unjustified for the
baryon resonances, and, as pointed out in Ref. [38], the neutron
magnetic form may not even provide a good representation of
the � magnetic form factor, much less the form factors of
the hyperon resonances. Indeed, in the present study, we were
unable to find a quantitative fit to electroproduction data with
the neutron form factor used to represent the � one.

In Ref. [39] a slightly more sophisticated model was
introduced in which the baryon resonance form factors were
supplemented by an adjustable multiplicative factor. The
purpose of this model was not to obtain a quantitative fit to
electroproduction data, but rather to study the sensitivity of
calculated electroproduction observables to the baryon form
factors. In fact, the results reported in that reference indicate
that, depending on the kinematics, certain of the observables
can be quite sensitive to the baryon electromagnetic form
factors.

With the results of Ref. [39] in mind, we have adopted
in the present work a model in which all of the hadronic
electromagnetic form factors are varied except for those
associated with an intermediate ground-state kaon or an
intermediate proton. For the kaon form factor, we employ
a parametrization based on a relativistic quark model [46],
which was among those considered in Ref. [9]. It has the form

FK (q2) = αK

�2
1

�2
1 − q2

+ (1 − αK )

(
�2

2

�2
2 − q2

)2

(52)

with αK = 0.398, �1 = 0.642 GeV, and �2 = 1.386 GeV.
For the proton electromagnetic form factors, we conform

with previous studies in adopting the proton form factors
obtained by Gari and Krumpelmann using an extended
vector meson dominance model [47]. Within that model, the
charge and magnetic form factors are expressed as linear
combinations of isoscalar and isovector contributions. The
isoscalar contributions are attributed to ω-meson exchange
modified by a perturbative QCD term, while the isovector
contributions are attributed to ρ-meson exchange modifed by
a perturbative QCD term. The parameters of the model, which
include the ω- and ρ-meson coupling strengths and several
form-factor mass parameters, were adjusted to fit nucleon
electromagnetic data. Further details of the model, including
parameter values, can be found in Ref. [39]. Here we employ
the same parameter values as were used in that reference.

All of the remaining electromagnetic form factors contain
parameters that are fit to electroproduction data. In the t

channel, the kaon resonance form factors used here have the
form

FK� (q2) = �2
K�

�2
K� − q2

, (53)

where the subscript K� refers to either of the intermediate
kaon resonances included in the t-channel contribution to the
reaction amplitude.

For an intermediate � baryon in the u channel and for all
the intermediate baryon resonances in the s and u channels,

we adopt the somewhat more versatile form

F (q2) = 1

1 + α

�2

�2 − q2

(
1 + α

�2

�2 − q2

)
, (54)

which contains two adjustable parameters, α and �, for
each intermediate baryon. Note that for real photons with
q2 = 0, F is normalized to unity, so that the corresponding
electromagnetic vertex has a strength equal to its value in the
photoproduction reaction.

For the u-channel Born term, which involves an intermedi-
ate � baryon, there are both charge and magnetic contributions
to the reaction amplitude. As for the other intermediate
baryons, the � magnetic form factor is normalized to unity
for q2 = 0; however, the � charge form factor must reduce to
zero for q2 = 0 since the � has no charge. To satisfy this latter
requirement, we define two form factors for the �, F1 and F2,
each with the form given by Eq. (54). We then define the linear
combinations

F�1(q2) = 1

2
[F1(q2) − F2(q2)],

(55)
F�2(q2) = κ�

2
[F1(q2) + F2(q2)],

where κ� is the � magnetic moment parameter. In terms of
these combinations, the charge and magnetic form factors of
the � are given by

FC(q2) = F�1(q2) − τ�F�2(q2)],
(56)

FM = 1

κ�

[F�1(q2) + F�2(q2)],

with

τ� = q2

4m2
�

. (57)

Note that at q2=0, F�1 and F�2 reduce to zero and κ�,
respectively, so that FC and FM reduce to zero and unity,
respectively, as required.

An important issue regarding the electromagnetic form
factors is the requirement that the hadronic current satisfy
the current-conservation condition given by Eq. (38). Not only
is current conservation necessary for gauge invariance, but
since it has been used explicitly to fix the time component of
the hadronic current, its violation will result in unphysical
singularities in the reaction amplitude whenever the time
component of the virtual photon 4-momentum vanishes. All
of the contributions to the amplitude individually satisfy
the current-conservation requirement with the exception of
the Born charge contributions. Thus, except for the Born
charge contributions, the addition of form factors at the
electromagnetic vertices will not violate current conservation.
For the charge contributions, in the absence of form factors,
current conservation is satisfied by the sum of the t-channel
Born term (kaon exchange) and the proton charge term (the
u-channel charge term vanishes in the absence of form factors).
This happens because the coupling products associated with
these two terms are identical in the absence of form factors.
Obviously, with the addition of form factors, the current-
conservation condition will no longer be satisfied by these
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terms, since there is no reason to expect the proton and kaon
electromagnetic form factors to be the same.

One method to resolve this difficulty, as suggested in
Ref. [48], is to introduce counter terms in the charge con-
tributions to the amplitude. These are chosen so that, in the
limit q2 → 0, one just recovers the usual charge contributions
without form factors. In particular, we employ the expressions

t̂
μ

ch = eFC(q2)γ μ + [1 − FC(q2)]
qμ

q2
γ · q (58)

for the proton charge vertex,

t̂
μ

ch = eFC(q2)

[
γ μ − qμ

q2
γ · q

]
(59)

for the � charge vertex, and

t̂
μ

K = eFK (q2)
(
2p

μ

K − qμ
)

+ [1 − FK (q2)]

(
2pK · q

q2
− 1

)
qμ (60)

for the kaon electromagnetic vertex. Note here that, in the limit
q2 → 0, the proton and kaon form factors both reduce to unity,
and the � form factor reduces to zero.

V. FITTING PROCEDURE

As mentioned in the introduction, we were not able to
achieve a quantitative fit to electroproduction data without
adjusting the parameters obtained by fitting the photopro-
duction data alone. Thus, we refit the photoproduction pa-
rameters, consisting of all the resonance coupling products
defined by Eqs. (29), (30), and (32), simultaneously to both
photoproduction and electroproduction data. In addition to the
photoproduction parameters, the set of form-factor coupling
and mass parameters appearing in Eqs (53)–(55), was fit to the
electroproduction data.

We employed the same set of photoproduction data in our
fit as was used in Ref. [32]. This consists of the most recent
CLAS data for the differential cross section [30], given by

dσ

d�
= 1

(2π )2

mpm�pF

4Eγ s

1

4

∑
spins

|〈F |T̂ |I 〉|2 (61)

in the center-of-momentum (c.m.) frame, where pF is the
outgoing 3-momentum in the c.m. and s = W 2 is the squared
c.m. energy, plus CLAS [28], SAPHIR [24], and GRAAL [26]
data for the hyperon polarization asymmetry P , GRAAL [26]
and LEPS [25] data for the photon beam asymmetry �, and
CLAS [31] data for the double polarization observables Cx

and Cz. The hyperon and photon asymmetries are defined by
the relations

P = dσ+
� − dσ−

�

dσ+
� + dσ−

�

, (62)

where the superscripts + and − refer to spin projections above
and below the scattering plane, and

� = dσ⊥
� − σ

‖
�

dσ⊥
� + σ

‖
�

, (63)

TABLE II. Fit results for the coupling strength products. For each
hadron, the first set of numbers is from the fit to both photoproduction
and electroproduction data; the second set of numbers is from the fit
to the photoproduction data only.

Spin- 1
2 resonances

N (1440) FN� 3.2545 2.7943
N (1535) FN� 0.4375 − 0.0374
N (1650) FN� − 0.0484 0.0809
N (1710) FN� 0.0941 0.0445
�(1405) F�� − 3.2802 − 7.9160
�(1670) F�� 4.4016 9.2854

Spin- 3
2 resonances

N (1520) G1
N� − 0.7442 − 1.3233

G2
N� − 0.5355 − 1.1888

N (1700) G1
N� − 0.0970 0.2417

G2
N� − 0.0675 0.0985

N (1720) G1
N� − 0.0020 − 0.0643

G2
N� − 0.3068 − 0.4057

N (1900) G1
N� 0.0210 − 0.0077

G2
N� − 0.0146 − 0.1070

N (2080) G1
N� − 0.0066 0.0030

G2
N� 0.0012 0.0071

�(1890) G1
�� − 1.6976 − 5.5716

G2
�� − 7.9940 − 7.2097

�(1385) G1
�� 0.1278 2.0140

G2
�� 5.3970 4.0580

�(1940) G1
�� 1.3050 − 1.7048

G2
�� 0.2441 − 3.5932

Spin- 5
2 resonances

N (1675) G1
N� − 0.0031 − 0.0037

G2
N� − 0.0095 0.0076

N (1680) G1
N� 0.0251 0.0553

G2
N� 0.0012 0.0583

N (2000) G1
N� − 0.0172 − 0.0318

G2
N� − 0.0110 − 0.0340

N (2200) G1
N� − 0.0001 − 0.0005

G2
N� − 0.0004 − 0.0020

�(1820) G1
�� − 0.1643 0.3395

G2
�� − 1.8779 − 4.5875

�(1830) G1
�� − 0.0875 − 0.5155

G2
�� − 0.1653 − 0.4905

�(2110) G1
�� − 0.1539 − 0.1382

G2
�� − 1.5859 − 3.5863

�(1775) G1
�� 0.0730 0.4655

G2
�� 0.1749 0.4809

�(1915) G1
�� 0.3204 − 0.2569

G2
�� 3.4085 8.0386

t-channel resonances
K(892) GV

K� 3.2840 3.2860
GT

K� 0.9215 − 0.1044
K(1270) GV

K� 1.3698 2.2410
GT

K� − 3.4497 − 1.7332

where ⊥ and ‖ refer to polarization vectors perpendicular
and parallel to the scattering plane respectively. The double
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FIG. 2. Differential cross section vs. cos(θ ) for (a) W =
1.727 GeV, (b) W = 1.832 GeV, (c) W = 1.920 GeV, (d) W =
2.028 GeV, (e) W = 2.120 GeV, and (f) W = 2.217 GeV, where θ is
the c.m. scattering angle and W is the c.m. energy. The solid curve
was obtained by fitting both photoproduction and electroproduction
data, the dashed curve by fitting just the photoproduction data. Data
are from Ref. [30].

polarization observables are given by

Ci′ = dσ+
� − dσ−

�

dσ+
� + dσ−

�

, (64)

where now the superscripts + and − refer to � spin projections
along and opposite to the i = z or i = x axes, and the incident
photon is circularly polarized with positive helicity.

The bulk of recent electroproduction data has been obtained
by the Hall C Collaboration and the CLAS Collaboration at
Jefferson Lab. Here we fit the most recent results obtained
by CLAS [35] for the virtual photoproduction structure
functions defined by Eqs. (49). The CLAS Collaboration has
also recently obtained data for several electroproduction spin
observables [36], but we leave consideration of these data to a
future work.

In carrying out the fits, we minimized the χ2 per degree of
freedom defined by the relation

χ2

ν
=

∑ (Ycalc − Yexp)2

σ 2
, (65)

where the sum is over all of the individual data points, Ycalc

and Yexp are the calculated and experimental values of the

FIG. 3. Hyperon polarization asymmetry vs. cos(θ ) for (a) W =
1.730 GeV, (b) W = 1.835 GeV, (c) W = 1.934 GeV, (d) W =
2.029 GeV, (e) W = 2.120 GeV, and (f) W = 2.228 GeV, where θ is
the c.m. scattering angle and W is the c.m. energy. The solid curve
was obtained by fitting both photoproduction and electroproduction
data, the dashed curve by fitting just the photoproduction data. Data
are from Ref. [28].

observable, and σ 2 is the squared statistical uncertainty in Yexp.
The number of degrees of freedom is given by ν = Ndata −
Npar, where Ndata is the number of data points and Npar is the
number of parameters in the fit.

Because the number of parameters to be fit is rather
large, it was not feasible to fit all the parameters in a single
fitting run. Therefore, we employed an iterative procedure in
which only a subset of all the model parameters was fit in
each run. As mentioned in the introduction, due to a sign
error in the t-channel Born term, it was necessary to refit
the photoproduction data considered in Ref. [32]. Using the
photoproduction parameters from the resulting fit, we next fit
the form-factor parameters to the electroproduction data. Then,
using these form-factor parameters, we refit the photoproduc-
tion parameters simultaneously to the photoproduction and
electroproduction data. Using the new set of photoproduction
parameters, the form-factor parameters were then refit to the
electroproduction data. We found that this iterative scheme
converges quite well after only two iterations. To obtain a
good fit to the data, we tried varying the starting parameters
but did not significantly improve our initial fit.
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FIG. 4. Cx vs. cos(θ ) for (a) W = 1.734 GeV, (b) W =
1.839 GeV, (c) W = 1.939 GeV, (d) W = 2.035 GeV, (e) W =
2.126 GeV, and (f) W = 2.212 GeV, where θ is the c.m. scattering
angle and W is the c.m. energy. The solid curve was obtained by
fitting both photoproduction and electroproduction data, the dashed
curve by fitting just the photoproduction data. Data are from Ref. [31].

VI. NUMERICAL RESULTS AND DISCUSSION

The photoproduction parameters obtained from the simul-
taneous fit of photoproduction and electroproduction data
are presented in Table II. This table lists the fit values of
all the coupling strength products defined in Sec. II. For
comparison, we have also listed the corresponding parameter
values obtained by fitting the photoproduction data alone.
As noted in Sec. II, the widths of the high-mass nucleon
resonances were not refit in the present study; instead, the
width values reported in Ref. [32] were employed.

Even a cursory examination of the numbers in Table II
reveals that the two parameters sets are quite different. This
indicates that photoproduction data alone are not sufficient
to uniquely constrain the coupling parameters associated
with effective Lagrangian treatments of electromagnetic
strangeness production. The longitudinal degrees of freedom
associated with the virtual photons exchanged in electropro-
duction appear to be crucial, not only in fixing electromagnetic
form factors, but also in fixing the underlying strangeness
production mechanism itself.

The quality of our fits is illustrated in Figs. 2–6. These
five figures display the photoproduction observables defined
by Eqs. (61)–(64) as functions of cos(θ ), where θ is the c.m.

FIG. 5. Cz vs. cos(θ ) for (a) W = 1.734 GeV, (b) W =
1.839 GeV, (c) W = 1.939 GeV, (d) W = 2.035 GeV, (e) W =
2.126 GeV, and (f) W = 2.212 GeV, where θ is the c.m. scattering
angle and W is the c.m. energy. The solid curve was obtained by
fitting both photoproduction and electroproduction data, the dashed
curve by fitting just the photoproduction data. Data are from Ref. [31].

scattering angle, for several values of the c.m. energy W . In
each of these figures, the solid and dashed curves correspond
respectively to the fit obtained with both photoproduction
and electroproduction data and to the fit obtained with the
photoproduction data alone.

As seen in Fig. 2, the two fits yield comparable results for
the differential cross section. The fits differ mainly at very
forward angles and at extreme backward angles. Overall, both
fits, despite the differences in the fit parameters, provide a
quantitatively good account of the differential cross section.

The two fits differ more substantially in the results obtained
for the polarization observables. The relative quality of the
two fits depends on both the observable examined and the c.m.
energy considered, but overall the qualities of the two fits are
comparable. For the hyperon polarization asymmetry (Fig. 3),
the dotted curves generally do a little better than the solid
curves at the lower energies. At 2.228 GeV, however, the solid
fit is consistent with the data near cos(θ ) = −0.2, while the
dashed curve exhibits a large peak not seen in the data.

For the double polarization observables, Cx and Cz, the
dashed curves are somewhat better than the solid curves,
especially at lower energies. The contrast between the two
curves is especially pronounced at 2.035 GeV, where the
dashed curve generally reproduces the angular distribution of
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FIG. 6. Photon beam asymmetry vs. cos(θ ) for (a) W =
1.702 GeV, (b) W = 1.754 GeV, (c) W = 1.808 GeV, (d) W = 1.859
GeV, and (e) W = 1.906 GeV, where θ is the c.m. scattering angle
and W is the c.m. energy. The solid curve was obtained by fitting
both photoproduction and electroproduction data, the dashed curve
by fitting just the photoproduction data. Data are from Ref. [26].

the data, while the solid curve is too flat. It should be noted
that, for the observable Cz, the error bars in the data are so
large as to preclude any definite conclusions as to the quality
of the fits.

For the photon beam asymmetry, the two fits yield curves
that are quite close together. Once again, the dashed curve
seems to be better at lower energies. At the higher energies,
both curves fit the data quite well. Figure 6 displays results
for energies up to 1.906 GeV. Higher-energy data exist but are
limited to forward angles. Although not shown in the figure,
the higher-energy data were included in the fit.

The electromagnetic form factor parameters obtained by
fitting the electroproduction data are listed in Table III. For the
ground-state hyperons and the baryon resonances, the second
and third columns give the fit values for the form-factor mass
parameter � and coupling parameter α defined in Eq. (54).
For the kaon resonances, the second column lists the fit values
of the form factor mass defined in Eq. (53). Note that, for
the ground-state � (the u channel Born term), the charge
and magnetic form factors are related to F1 and F2 through
Eqs. (55) and (56).

We have not listed parameter uncertainties for these values
as the iterative fitting procedure described in the previous

TABLE III. Fit results for the electromagnetic form factor
parameters.

� α

Spin − 1
2 resonances

N (1440) 1.4572 2.8997
N (1535) 1.6180 4.5155
N (1650) 4.6512 − 4.8632
N (1710) 2.6098 4.0269
F1(�) 1.4653 0.7876
F2(�) 4.7441 − 1.4324
�(1405) 2.8688 − 0.4031
�(1670) 0.2707 − 0.5281
� 1.8314 − 0.8612

Spin- 3
2 resonances

N (1520) 1.7213 3.4965
N (1700) 3.7186 − 3.8566
N (1720) 1.5354 3.7758
N (1900) 4.6720 − 1.3748
N (2080) 4.2171 2.6698
�(1890) 0.4491 − 0.0360
�(1385) 0.7034 4.0338
�(1940) 0.2584 2.3431

Spin- 5
2 resonances

N (1675) 1.1856 4.8271
N (1680) 1.1045 1.0577
N (2000) 1.4616 3.6176
N (2200) 3.3698 − 2.8773
�(1820) 1.1050 2.4088
�(1830) 0.2133 1.6144
�(2110) 0.5460 − 0.4098
�(1775) 0.2576 3.0308
�(1915) 1.0454 1.6727

t-channel resonances
�K�

K(892) 0.211
K(1270) 0.672

section makes the interpretation of these uncertainties unclear.
The nominal uncertainties associated with the form-factor
segment of the iterative procedure (generated from the corre-
sponding covariance matrix) suggest that there exist significant
correlations among the u-channel form-factor parameters. This
is consistent with the results of Ref. [32], where significant
correlations among the u-channel coupling parameters were
noted.

The quality of our electroproduction fits is illustrated in
Figs. 7–13. The first three figures exhibit the energy depen-
dences of the structure functions σU , σT T , and σLT , defined
by Eqs. (49) and (51), for three different kaon scattering
angles and two different values of the squared virtual-photon
4-momentum. The first figure reveals that, while the fit to σU

generally follows the energy dependence of the data, there
are significant discrepancies within certain energy ranges. In
particular, at the lower −q2 value, the fit lies below the data
between 1.72 and 1.85 GeV, while at the higher −q2 value, the
fit lies above the data at energies exceeding 2.22 GeV.
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FIG. 7. σU vs. W for (a) cos(θ ) = 0.90 and −q2 = 0.65 GeV2,
(b) cos(θ ) = 0.90 and −q2 = 1.55 GeV2, (c) cos(θ ) = 0.35 and
−q2 = 0.65 GeV2, (d) cos(θ ) = 0.35 and −q2 = 1.55 GeV2,
(e) cos(θ ) = −0.25 and −q2 = 0.65 GeV2, and (f) cos(θ ) = −0.25
and −q2 = 1.55 GeV2, where θ and W are the scattering angle and
energy in the K� c.m. frame, and q2 is the square of the virtual-photon
4-momentum. The −q2 = 0.65 GeV2 results were obtained with
E = 2.567 GeV and the −q2 = 1.55 GeV2 results with E =
4.056 GeV, where E is the energy of the incident electron in the
laboratory frame. Data are from Ref. [35].

The fits to σT T and σLT are generally of lower quality than
the fit to σU . For both observables the fits are better at the higher
−q2 value and at more backward angles. At the forward angle,
the data for σT T exhibit more structure than is seen in the fit,
which is quite flat at that angle. At the other two angles, the
fit to σT T is pretty good at the higher −q2 value but lies above
the data at the lower −q2 value for energies below 1.9 GeV.
Similar observations apply to the σLT fit: it misses the energy
dependence of the data at the forward angle, and at the other
angles reproduces the data much better at the higher −q2 value
than the lower value.

Figures 10–12 display the angular distributions of the same
three structure functions for selected energies and squared
photon 4-momentum. Again, it can be seen that the fit to σU

is much better than the fits to σT T and σLT . Also, as seen in
the earlier figures, the fits to σT T and σLT generally tend not to
reproduce the data at forward angles, especially at the lowest
energy value.

As mentioned earlier, the CLAS data for the two structure
functions σT and σL are quite limited. Except for just a few

FIG. 8. σT T vs. W for the same values of cos(θ ) and −q2 as in
Fig. 7, where θ and W are the scattering angle and energy in the K�

c.m. frame, and q2 is the square of the virtual photon 4-momentum.
Data are from Ref. [35].

points, data for these structure functions exist for just −q2 =
1.0 GeV2 and for energies between 1.75 and 1.95 GeV. For
this reason, we present only angular distributions for σT and
σL at the single q2 for which data exists. These are exhibited
in Fig. 12 for three different energy values, with the σT fits
on the left and the σL fits on the right. As can be seen in the
figure, the fits at the highest energy value are reasonably good,
but the fits at the lowest energy diverge from the data
significantly at forward angles. More data for different values
of q2 would certainly be useful here.

In summary, we have presented a new fit of recent kaon
photoproduction and electroproduction data from a variety of
sources using an effective Lagrangian model supplemented
with electromagnetic form factors. We included photoproduc-
tion data from threshold up to a c.m. energy of 2.3 GeV and
CLAS electroproduction data for a variety of �K c.m. energies
and virtual-photon 4-momenta.

Overall, the new fit yields good representations of both
the photoproduction data and the electroproduction data.
When compared with a fit to photoproduction data alone,
the fit presented here, while yielding quite different coupling
parameters, nevertheless describes the photoproduction data
with a comparable level of precision. This indicates that
photoproduction data alone are not adequate to uniquely
constrain effective Lagrangian models of electromagnetic
strangeness production.
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FIG. 9. σLT vs. W for the same values of cos(θ ) and −q2 as in
Fig. 7, where θ and W are the scattering angle and energy in the K�

c.m. frame, and q2 is the square of the virtual photon 4-momentum.
Data are from Ref. [35].

To achieve a good fit to the CLAS electroproduction data,
it was necessary to include the ground-state hyperon form
factors among the fitted parameters. If we simply set these
form factors equal to the neutron form factors, we cannot
achieve even a semiquantitative fit of the data. In general, our
fit to the electroproduction data is reasonably good, although
not as good as the photoproduction fit.
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APPENDIX: AMPLITUDE OPERATORS

Here we list the various α, β, and D operators that appear in
Eqs. (46) and (47) for the hadronic current matrix elements. All
expressions are given without form factors except for the Born
charge contributions. Since the form factors are intimately
connected with the counter terms in these contributions, they
have been given with the form factors included.

FIG. 10. σU vs. cos(θ ) (a) W = 1.725 GeV and −q2 =
0.65 GeV2, (b) W = 1.750 GeV and −q2 = 1.55 GeV2, (c) W =
1.875 GeV and −q2 = 0.65 GeV2, (d) W = 1.950 GeV and −q2 =
1.55 GeV2, (e) W = 2.050 GeV and −q2 = 0.65 GeV2, and (f)
W = 2.150 GeV and −q2 = 1.55 GeV2, where θ and W are the
scattering angle and energy in the K� c.m. frame, and q2 is the
square of the virtual photon 4-momentum. The −q2 = 0.65 GeV2

results were obtained with E = 2.567 GeV and the −q2 = 1.55 GeV2

results with E = 4.056 GeV, where E is the energy of the incident
electron in the laboratory frame. Data are from Ref. [35].

In the t channel for an intermediate ground-state kaon, the
only nonzero operator is the α2 operator given by

α2 = eg�Kp

p2
I − m2

K

FK (q2)(2pK − q)

+ [1 − FK (q2)]

(
2pK · q

q2
− 1

)
q, (A1)

where pI is the 4-momentum of the intermediate kaon, q is
the 3-momentum of the virtual photon, and FK (q2) is the kaon
electromagnetic form factor.

For the other t-channel contributions, we define products
of the coupling strengths and energy denominators:

GV = GV
K�

msc

1

p2
R − m2

R

,

(A2)

GT = GT
K�

msc(m� + mp)

1

p2
R − m2

R

,

where GV
K� and GT

K� are the t-channel coupling products given
by Eqs. (32), msc is the kaon resonance scaling mass appearing
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FIG. 11. σT T vs. cos(θ ) for the same values of W and −q2 as in
Fig. 10, where θ and W are the scattering angle and energy in the K�

c.m. frame, and q2 is the square of the virtual photon 4-momentum.
Data are from Ref. [35].

in Eqs. (6), and (8), and pR and mR are the 4-momentum and
mass of the intermediate kaon resonance. In terms of these
products, we obtain

α1 = GT ER(q × pK), α2 = −GT σ · pR(q × pK),

α3 = GV (q × pK), α4 = 0,

β1 = −GV (EKq − q0pK), β2 = 0, (A3)

β3 = −GT ER(EKq − q0pK),

β4 = −GT σ · pR(EKq − q0pK)

for an intermediate K�(892) resonance and

α1 = −GT �2(pR, q)pR, α2 = −GT �2(pR, q)pR,

α3 = GV σ · qpR, α4 = −GV q0pR, D1 = 0,
(A4)

D2 = GV pR · q, D3 = GT σ · pRpR · q,

D4 = GT ERpR · q

for an intermediate K�(1270) resonance, where the operators
�2 and �2 are defined by the relations

�2(a, b) = a0b0 − σ · aσ · b,
(A5)

�2(a, b) = b0σ · a − a0σ · b.

FIG. 12. σLT vs. cos(θ ) for the same values of W and −q2 as in
Fig. 10, where θ and W are the scattering angle and energy in the K�

c.m. frame, and q2 is the square of the virtual photon 4-momentum.
Data are from Ref. [35].

In the s and u-channels, the intermediate baryon can have
spin 1

2 , 3
2 , or 5

2 . For spin- 1
2 baryons we define the quantities

Fsch = eg�Kp

p2
I − m2

p

, Fuch = eg�Kp

p2
I − m2

�

,

(A6)

Fs = FN�

2mp

Ds(pR), Fu = FY�

2m�

Du(pR),

where pI is the 4-momentum of the intermediate proton or �

in the charge terms, FN� and FY� (Y = � or �) are the coupling
products given by Eqs. (29), and the energy denominators are
defined by

Ds(pR) = (
p2

R − m2
R + imR�R

)−1
,

(A7)
Du(pR) = (

p2
R − m2

R

)−1
.

The s-channel positive-parity spin- 1
2 operators are then given

by

α1 = 0, α2 = −FsmRq, α3 = −Fsσ · pRq,

α4 = FsERq, D1 = Fs�2(pR, q), D2 = −Fs�2(pR, q),

D3 = FsmRσ · q, D4 = FsmRq0. (A8)
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FIG. 13. σT vs. cos(θ ) (left side panels) and σL vs. cos(θ ) (right
side panels) for −q2 = 1.0 GeV2 and W = 1.750 GeV [panels (a)
and (b)], W = 1.850 GeV [panels (c) and (d)], and W = 1.950 GeV
[panels (e) and (f)], where θ and W are the scattering angle and
energy in the K� c.m. frame, and q2 is the square of the virtual
photon 4-momentum. Data are from Ref. [35].

For the u-channel positive-parity spin- 1
2 operators, we obtain

α1 = 0, α2 = −FumRq, α3 = Fu[σ · pRq − 2σ · qpR],

α4 = Fu[−ERq + 2q0pR], D1 = Fu�2(q, pR),

D2 = −Fu�2(q, pR), D3 = FumRσ · q, D4 = FumRq0.

(A9)

All of the α operators associated with the charge contribu-
tions to the s− and u-channel Born terms are zero except for
α2. After making use of the Dirac equation, the α2 operator
and the D operators are given by

D1 = 0, D2 = 0, D3 = FC(q2)Fschσ · q,

D4 = FC(q2)Fschq0, (A10)

α2 = 2FC(q2)Fschpp + eg�Kp[1 − FC(q2)]
q
q2

for the proton charge term and

D1 = 0, D2 = 0, D3 = FC(q2)Fuchσ · q,

D4 = FC(q2)Fuchq0, (A11)

α2 = FC(q2)

[
2Fuch(p� − q) + eg�Kp

q
q2

]
for the � charge term, where FC(q2) is the proton or � charge
form factor.

The spin- 3
2 and spin- resonance contributions in the s and

u channels each involve two coupling products. For the spin- 3
2

contributions we define the combinations

Gs1 = G1
N�

mπ2mp

Ds(pR), Gs2 = G2
N�

mπ (2mp)2
Ds(pR),

Gu1 = G1
Y �

mπ2m�

Du(pR), Gu2 = G2
Y �

mπ (2m�)2
Du(pR),

(A12)

with G1
N� , G2

N� , G1
Y � , and G2

Y � given by Eqs. (30). The corre-
sponding combinations for spin 5

2 just have the denominator
factors of mπ replaced by factors of m3

π .
In the s channel the positive-parity spin- 3

2 operators are
then given by

α1 = Gs1

[
−�2(pR, q)k + 1

3
�2(pK, q)pR + 2

3
�2(pR, pK )q

]

+ 1

3
Gs2mR[−βp�2(pR, pK )pR − �2(pR, y)pp + �2(pK, q)pp],

α2 = Gs1

[
−�2(pR, q)k + 1

3
�2(pK, q)pR + 2

3
�2(pR, pK )q − 2

3
αKm2

Rq
]

+Gs2m
3
Rb + 1

3
Gs2mR[−βp�2(pR, pK )pR − �2(pR, y)pp + �2(pK, q)pp],

α3 = Gs1

[
mRσ · qk + 2

3
mR(αKσ · pR − σ · k)q + 1

3
�3(pR, pK, q)

pR

mR

]

+Gs2m
2
R

[
−σ · pRb + 1

3
βpσ · pKpR + 1

3
σ · ypp + 1

3
�3(pR, pK, q)

pp

m2
R

]
,

α4 = Gs1

[
−mRq0k + 2

3
mR(EK − αKER)q + 1

3
�3(pR, pK, q)

pR

mR

]

+Gs2m
2
R

[
ERb − 1

3
βpEKpR − 1

3
y0pp + 1

3
�3(pR, pK, q)

pp

m2
R

]
,
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D1 = 1

3
Gs1mR[2�2(pK, q) − �2(pR, y) − αK�2(pR, q)] + 1

3
Gs2m

2
Rβp�2(pR, pK ),

D2 = 1

3
Gs1mR

[
�2(pR, y) + αK�2(pR, q) − 2�2(pK, q) + 3m2

RβK

] + 1

3
Gs2m

2
R

[ − βp�2(pR, pK ) + αKβpm2
R

]
,

D3 = 1

3
Gs1

[
m2

R(3βKσ · pR + σ · y + αKσ · q) + 2�3(pR, pK, q)
] + 1

3
Gs2m

3
Rβp(αKσ · pR − σ · pK),

D4 = 1

3
Gs1

[
m2

R(3βKER + Ey + αKq0) − 2�3(pR, pK, q)
] + 1

3
Gs2m

3
Rβp(αKER − EK ) (A13)

with

αq = pR · q

m2
R

, αK = pR · pK

m2
R

, βp = pp · q

m2
R

, βK = q · k

m2
R

, k=pK − 2

3
αKpR, y =αKq − αqpK, b=βpk − βKpp.

(A14)

The operators �3(a, b, c) and �3(a, b, c) are defined by the relations

�3(a, b, c) = a0�2(b, c) − σ · a�2(b, c), �3(a, b, c) = a0�2(b, c) − σ · a�2(b, c). (A15)

To specify the positve-parity spin- 3
2 operators in the u channel, we first define the combinations

c1 = β�

(
k − 2

3
pK

)
− βKp�, c2 = 1

3

(
q2

m2
R

p� − β�q
)

, c3 = 2βKpR − 2

3
αKq2αq(pK − k),

c4 = 4

3
pK − 2

3
αKpR − k, c5 = k − 4

3
pK, (A16)

with

β� = p� · q

m2
R

(A17)

and the other parameters as defined above. Then the positive-parity spin- 3
2 operators in the u channel are given by

α1 = Gu2mR

[
�2(pR, pK )c2 + 1

3
[αK�2(pR, q) + �2(q, pK )]p�

]

+Gu1

[
−�2(q, pK )pR + 2

3
�2(pR, pK )q + �2(pR, q)c5

]
,

α2 = Gu2mR

[
�2(pR, pK )c2 + 1

3
[αK�2(pR, q) + �2(q, pK )]p� + m2

Rc1

]

+Gu1

[
−�2(q, pK )pR + 2

3
�2(pR, pK )q + �2(pR, q)c5 + m2

Rc3

]
,

α3 = Gu2m
2
R

[
σ · pRc1 + σ · pKc2 + 1

3

(
αKσ · q − 1

m2
R

�3(pR, q, pK )

)
p�

]
(A18)

+1

3
Gu1mR

[
3σ · qc4 − 2σ · pKq + 2σ · pRy − 1

m2
R

�3(pR, q, pK )pR

]
,

α4 = −Gu2m
2
R

[
ERc1 + EKc2 + 1

3

(
αKq0 + 1

m2
R

�3(pR, q, pK )

)
p�

]

+1

3
Gu1mRl

[
−3q0c4 + 2EKq − 2ERy − 1

m2
R

�3(pR, q, pK )pR

]
,

D1 = 1

3
Gu2m

2
Rβ��2(pR, pK ) + 1

3
Gu1mR[−2�2(q, pK ) + αq�2(pR, pK ) − 2αK�2(pR, q)],

D2 = 1

3
Gu2m

2
R

[ − β��2(pR, pK ) + m2
Rβ�αK

]+ 1

3
Gu1mR

[
2�2(q, pK ) − αq�2(pR, pK )+2αK�2(pR, q) − m2

R(3βK +2αKαq)
]
,

D3 = 1

3
Gu2m

3
R[−β�αKσ · pR + β�σ · pK] + 1

3
Gu1m

2
R

[
−3αqσ · pK + 2αKσ · q − 3βKσ · pR − 2

1

m2
R

�3(pR, q, pK )

]
,

D4 = 1

3
Gu2m

3
R[−β�αKER + β�EK ] + 1

3
Gu1m

2
R

[
−3αqEK + 2αKq0 − 3βKER + 2

1

m2
R

�3(pR, q, pK )

]
.
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In connection with the positive-parity spin- 5
2 nucleon resonances, we define

aK = 1

5

(
α2

K − m2
K

m2
R

)
, bK = β2

K + 1

m2
R

aKq · z, d1 = 1

5

(
2βKq + q2

m2
R

h
)

, d2 = 1

5
(αqh + βKpR),

d3 = βKh + 2
1

m2
R

h · pRd2 + aKz, d4 = βK (βKpp − βph) + aK

(
1

m2
R

z · qpp − βpz
)

− 2

5

1

m2
R

(βpβKh · pRpR),

d5 = 1

5
(βph − 2βKpp), (A19)

with

h = pK − αKpR, z = q − αqpR, x (A20)

and the α and β parameters defined as for the spin- 3
2 resonances. The positive-parity spin- 5

2 s-channel operators are then given
by

α1 = Gs1m
2
R

[
�2(pR, q)d3 − �2(pR, h)d1 − p2

R

m2
R

�2(h, q)d2

]
+ Gs2m

3
R�2(h, z)d5,

α2 = Gs1m
2
R

[
�2(pR, q)d3 − �2(pR, h)d1 − p2

R

m2
R

�2(h, q)d2

]
+ Gs2m

3
R

[
�2(h, z)d5 + m2

Rd4
]
,

α3 = Gs1m
3
R

[
σ · qd3 − σ · hd1 + 1

m2
R

�3(pR, h, q)d2

]
− Gs2m

2
R�3(pR, h, z)d5,

α4 = Gs1m
3
R

[
−q0d3 + h0d1 + 1

m2
R

�3(pR, h, q)d2

]
− Gs2m

2
R

[
�3(pR, h, z)d5 + m2

RERd4
]
,

(A21)

D1 = 1

5
Gs1m

3
R[2βK�2(h, z) + βK�2(h, q)] + 1

5
Gs2m

4
RβKβp�2(pR, h),

D2 = 1

5
Gs1m

3
R

[ − 2βK�2(h, z) − βK�2(h, q) + 5m2
RbK

] − 1

5
Gs2m

4
RβKβp�2(pR, h),

D3 = −1

5
Gs1m

2
R[2βK�3(pR, h, z) + βK�3(pR, h, q)] + 1

5
Gs2m

5
RβKβpσ · h,

D4 = 1

5
Gs1m

2
R

[
2βK�3(pR, h, z) + βK�3(pR, h, q) − 5m2

RbKER

] + 1

5
Gs2m

5
RβKβph0.

Finally, in connection with the positive-parity spin- 5
2 hyperon resonances, we define, in terms of previously defined parameters,

b1 = βkh + aKz, b2 = 1

5
(βkpR + αqh), f1 = bKp� − β�

(
b1 − 2

5
βKh

)
, f2 = 1

5
(β�h − 2βKp�),

f3 = 2

5
βKαqp� − β�b2, f4 = −2bKpR − 2aRh, f5 = b1 − 6

5
βKh, f6 = 4

5
βK (q − αqpR) − 1

5

q2

m2
R

h, (A22)

f7 = 2

5
(2βKpR − αqh) + p2

R

m2
R

b2, f8 = −4

5
βKq + 1

5

q2

m2
R

h

with

aR = −2

5
βKαq

(
2 − p2

R

m2
R

)
. (A23)

Then the positive-parity spin- 5
2 u-channel operators are given by

α1 = Gu2m
3
R[�2(q, h)f2 + �2(pR, h)f3] + Gu1m

2
R[�2(q, h)f7 + �2(pR, h)f8 + �2(q, pR)f5],

α2 = Gu2m
3
R

[
�2(q, h)f2 + �2(pR, h)f3 + m2

Rf1
] + Gu1m

2
R

[
�2(q, h)f7 + �2(pR, h)f8 + �2(q, pR)f5 + m2

Rf4
]
,

α3 = Gu2m
2
R

[ − m2
Rσ · pRf1 − p2

Rσ · hf3 + �3(pR, q, h)f2
]

−Gu1m
3
R

[
σ · qf5 + σ · hf6 + 4

5
βKαqσ · pRh − 1

m2
R

�3(q, pR, h)b2

]
,
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α4 = Gu2m
2
R

[
m2

RERf1 + p2
Rh0f3 + �3(pR, q, h)f2

] + Gu1m
3
R

[
q0f5 + h0f6 + 4

5
βKαqERh + 1

m2
R

�3(q, pR, h)b2

]
,

D1 = 1

5
Gu2m

4
Rβ�βK�2(pR, h) + 1

5
Gu1m

3
R[2βKαq�2(pR, h) − 3βK�2(q, h)],

D2 = −1

5
Gu2m

4
Rβ�βK�2(pR, h) + 1

5
Gu1m

3
R

[ − 2βKαq�2(pR, h) + 3βK�2(q, h) − 5m2
Rbk

]
,

D3 = −1

5
Gu2m

5
Rβ�βKσ · h + Gu1m

4
R

[
aRσ · h + bKσ · pR − 3

5

1

m2
R

βK�3(q, pR, h)

]
,

D4 = −1

5
Gu2m

5
Rβ�βKh0 + Gu1m

4
R

[
aRh0 + bKER + 3

5

1

m2
R

βK�3(q, pR, h)

]
. (A24)

All of the s- and u-channel operator expressions above are for positive-parity resonance contributions to the reaction
amplitude. For negative-parity resonances, the α1, α2, D3, and D4 operators are just the negatives of the corresponding
positive-parity operators, while the α3, α4, D1, and D2 operators are identical to the corresponding positive-parity
operators.
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