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Influence of the shell structure of colliding nuclei in fusion-fission reactions
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We describe the fusion-fission processes within a two-stage reaction model. In the first stage (the approach
phase) we calculate the properties of the system at the touching point. In the second stage we describe the
evolution of the compact system. It is assumed that in the approach process the colliding ions are oriented
“nose to nose”; i.e., their symmetry axes coincide. The distributions at the touching point obtained at the first
step are used as the initial conditions for the evolution of a compact system. Both the approach phase and the
evolution of the compact system are described in terms of Langevin equations for the collective coordinates
(deformation parameters). At both stages the shell structure of the colliding ions and that of the compound
nucleus are taken into account. Within this model we obtain information on the touching probability and on the
observables measured in the fusion-fission reactions (mass and energy distributions of the fission fragments, the
touching and fusion cross sections, and the evaporation residue cross sections). Results obtained for the reactions
16,18O + 208Pb → 224,226Th and 48Ca + 208Pb → 256No, involving nuclei that are spherical in their ground state, are
compared with the available experimental data.
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I. INTRODUCTION

One of the most challenging problems of heavy-ion physics
is the theoretical description of fusion-fission reactions. By
comparing the calculated and experimental results one can
check our understanding of the reaction mechanism of heavy-
ion collisions.

According to Bohr’s compound-nucleus concept “fusion”
means the formation of the compound nucleus around the
spherical shape, and then fission can proceed independently
from the formation process. Nowadays, however, in the
description of fusion-fission reactions one often includes
all intermediate processes which take place in heavy-ion
collisions. In the present paper we consider the fusion-fission
process as the approach of the nuclei in the entrance channel,
formation of a compact system, and the fission process. The
concept of “fission” is not confined to fission from the spherical
compound nucleus but includes all the binary decays of the
compact system.

Though the approach process, fusion and fission are parts of
the same fusion-fission reactions, whereas in many approaches
these three stages are studied separately. One example of such
an approach is the calculation within the quantum diffusion
approach (see [1] and references therein) of the capture
probability, where the partial capture probability is defined by
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the probability of passing the potential barrier in the relative
distance coordinate at fixed value of the angular momentum.
Another example is the concept of a dinuclear system (DNS)
[2–5]. In this model it is assumed that after the touching point
both target and projectile keep their “individuality” that is, both
their spherical shape and shell structure. The entrance channel
in this model is taken into account through the formation
probability of the DNS, which is calculated on the basis of
the optical model, but this is the only memory of the entrance
channel. So, the initial stage and the further evolution of the
system are carried out within very different approaches.

More consistent are the approaches developed in [6–10].
The parameters of the entrance channel (the dependence of
the compound-nucleus formation probability on the angular
moment) [8] and the further evolution of the composite
system [6] are considered within the same approach. However,
whereas the DNS approach starts from the contact of the two
nuclei, in [6,7] this moment is missing completely. Once the
probability for the compound nucleus formation is known,
the evolution of the fissioning system starts from the ground
state. Thus the “prehistory” is ignored completely. In this way
a considerable portion of the information about the system’s
evolution is lost.

In [11,12] the authors suggested considering the ap-
proach phase, fusion, and fission within the same
framework.

In [11] and subsequent papers [13–16] of these authors the
whole process is divided into three steps. The first two steps
(approach process and fusion) are considered within a dynam-
ical approach, namely, by solving the Langevin equations for
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the variables which specify the shape of the composite system.
The last step is the statistical decay of the compound nucleus.
Such an approach allows for the calculation of the fission
probability and saves a lot of computation time. However,
details of the decay of the compound nucleus, such as the
energy and mass distribution of the fission fragments, cannot
be described within the statistical approach.

The two steps for the fusion process introduced in [11]
are the approach of the ions up to the touching point and the
overcoming of the conditional saddle or the ridge line.

The second step of the two-step model [11] for fusion
could be applied to the fissionlike process (fast fission or
quasifission) without passing through a compound nucleus,
though there appears no explicit applications to those pro-
cesses, probably due to the stronger interest in the synthesis of
superheavy elements, i.e., in the probability for the formation
of the compound nucleus.

In [12] the authors suggested combining the overcoming of
the ridge line and the fission from inside the saddle into one
stage for the evolution of the compact system and describing
the evolution of the compact system in the same way as the
approach phase using Langevin equations.

The application of Langevin equations makes possible a
detailed description of reactions with heavy ions—including
deep-inelastic collisions, quasifission, fission of spherical or
deformed compact systems, and formation of the evaporation
residue leading to the synthesis of superheavy elements—and
of energy and mass distributions of the fission (or quasifission)
fragments.

In the suggested model [12] the description of fusion-fission
reactions is split into two stages: first, the approach of the
bombarding ion (projectile) to the target nucleus up to the
touching point and, second, the evolution of the monosystem
formed after the touching of projectile and target nuclei. In
the first stage the distance between the centers of mass of the
two ions and their quadrupole deformations were taken into
account. In the second stage the shape of the compact system
is described in terms of distorted Cassinian ovaloids with three
parameters which specify the overall elongation of the system,
the mass asymmetry, and the neck radius. Both reaction stages
are described within the same dynamical approach, namely,
by means of Langevin equations for the parameters specifying
the shape of the separated or compact system. The stochastic
features of the process are taken into account by a random
force term in the Langevin equations.

In the present work we continue to work within the
approach of [12]. In the first formulation of the model [12]
the deformation energy of the colliding nuclei was calculated
within a pure liquid-drop model, so that shell and pairing
effects were neglected. It is well known, however, that shell
and pairing effects have a major influence on the formation
of the fission fragments. It is important, therefore, to investigate
the effect of the shells of the colliding ions on the evolution of
the compound system.

The influence of the shell and pairing effects in the defor-
mation energy on the properties of the system at the touching
point was investigated in [17]. There, pairs of projectile and
target nuclei, which are spherical (18O + 208Pb → 226Th) or
deformed (100Mo+ 100Mo → 200Po) in their ground state, were

examined. It was found that the account of pairing and shell
effects modifies considerably the properties of the combined
system at the touching point for both types of reactions.

The purpose of the present work is to study the conse-
quences of the account of the shell structure of the colliding
ions on the second stage of fusion-fission reactions. Here
we consider target and projectile nuclei, which are spher-
ical in their ground state. The calculated distributions for
the reaction 18O + 208Pb → 226Th are compared with those
presented in [12] (i.e., liquid-drop deformation energy in the
entrance channel). The calculated results for the reactions
16O + 208Pb → 224Th and 48Ca+ 208Pb → 256No are compared
with the experimental data published in [18–23] and [24,25],
respectively.

II. THE REACTION MODEL

We define the shape of the colliding ions and of the compact
system by the parametrization developed in [26,27]. In this
parametrization the lemniscate coordinate system {R, x} is
used. The coordinates {R, x} are related to some cylindrical
coordinates {ρ, z} using the equations

ρ = 1√
2

√
p(x) − R2(2x2 − 1) − s,

z = sign(x)√
2

√
p(x) + R2(2x2 − 1) + s,

p2(x) ≡ [R4 + 2sR2(2x2 − 1) + s2],

0 � R � ∞,−1 � x � 1. (1)

The coordinate surfaces of the lemniscate system R(x) = R0

are the Cassini ovaloids with s ≡ εR2
0 , where s is the squared

distance between the focus of Cassinian ovals and the origin
of the coordinate system. The spherical shape of the nucleus
corresponds to ε = 0. For 0 < ε < 0.4 the Cassinian ovals
are very close to ellipses with the ratio of half-axes equal to
(1 − 2ε/3)/(1 + ε/3). At larger ε values a neck appears and
the neck radius turns to zero at ε = 1.

The deviation of the nuclear surface from Cassini ovaloids is
defined by a series expansion of R(x) in Legendre polynomials
Pn(x),

R(x) = R0

[
1 +

∑
n

αnPn(x)

]
, (2)

where R0 = r0A
1/3 is the radius of the spherical nucleus

with the same volume, with r0 = 1.25 fm. The volume
conservation condition is fulfilled by the scaling of the
cylindrical coordinates {ρ, z}, namely,

ρ → ρ ≡ ρ/c, z → z ≡ (z − zc.m.)/c, c = (V/V0)1/3,

(3)

where V and V0 are the volumes of the deformed and spherical
nuclei, respectively, and zc.m. is the z coordinate of the center
of mass of the Cassini ovaloid.

The parameters ε and αn are considered as the deformation
parameters. Instead of using ε, it turns out to be convenient
to introduce another parameter, α, which is defined so that at
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α = 1 the neck radius becomes zero for any choice of the other
deformation parameters {αn},

ε = α − 1

4

{
(1 +

∑
n

αn)2 + [1 +
∑

n

(−1)nαn]2

}

+ α + 1

2

[
1 +

∑
n

(−1)nα2n(2n − 1)!!/(2nn!)

]2

. (4)

The time evolution of the collective degrees of freedom,
q ≡ (α, αn), and the corresponding momenta p/m ≡ (α̇, α̇n)
at both stages of the reaction is described in terms of the
Langevin equations [28,29], namely,

q̇β = μβνpν,

ṗβ = −1

2
pνpη

∂μνη

∂qβ

+ Kβ − γβνμνηpη + θβνξν. (5)

Here qβ are the deformation parameters and a convention of
summation over repeated indices ν, η is used. The quantity γβν

is the tensor of friction coefficients and μβν is the tensor inverse
to the mass tensor mβν . The derivative of the potential energy
of the system, Vpot, with respect to the deformation parameters
represents the conservative force, Kβ = −∂Vpot/∂qβ .

The random force θβνξν takes into account the fluctuations
in the system, where ξν is a random number with the following
properties:

〈ξν〉 = 0,〈
ξβ(t1)ξν(t2)

〉 = 2δβνδ(t1 − t2). (6)

The magnitude of the random force θβν is expressed in terms
of the diffusion tensor Dβν , Dβν = θβηθην , which is related to
the friction tensor γβν via the Einstein relation Dβν = T γβν .
Here T is the temperature related to the excitation (dissipated)
energy by the Fermi-gas formula, T = √

aEdis, with a being
the level density parameter [30]. The dissipated energy Edis is
calculated at each time step of Eqs. (5) as

Edis = Ec.m. − 1

2

∑
βν

pβpημβη − Vpot. (7)

For the entrance channel the potential energy (denoted by V fus)
is given by (8) and by (19) (see the following for the evolution
of the monosystem).

A. The approach process

Initially, the system consists of two spherical or slightly
deformed ions. We assume that the ions are oriented “nose to
nose”; i.e., their symmetry axes coincide. This assumption is,
of course, a simplification, but it allows for the calculation
of the interaction energy and of the shell contribution to
the deformation energy of the colliding ions without lengthy
computations. Moreover, we assume that the shape of the
ions in the entrance channel is well described by Cassini
ovaloids (1); i.e., the shape of each ion can be specified by
one deformation parameter α.

Thus, in the entrance channel the system is characterized
by three collective parameters, namely, αt, αp, and r , where

αt and αp are the deformation parameters of target and
projectile nuclei and r is the distance between their centers of
mass.

The potential energy of such a system consists of the
Coulomb energy VCoul, the nuclear interaction energy VGK, the
rotational energy, and the deformation energy E

(t,p)
def of target

and projectile nuclei,

V fus = VCoul + VGK + h̄2L2

2(Mr2 + Jt + Jp)
+

∑
t,p

E
(t,p)
def . (8)

Here M is the reduced mass of the system and Jt,p are the rigid-
body moments of inertia of the target and projectile nuclei [31].
The moments of inertia were calculated within the assumption
of a sharp density distribution. The shell correction δJ to the
rigid-body moment of inertia is very small, δJ/J ≈ 10−2 ÷
10−3 [32], and can be neglected.

For the nuclear interaction between target and projectile
nuclei we use a modified version of the Gross-Kalinowski
potential [33], which was introduced originally to specify the
interaction between spherical nuclei and was modified later
[34] for the case of deformed nuclei, i.e.,

VGK = 1
2G(V12 + V21), (9)

where the value of the constant G depends on the curvatures
of both nuclear surfaces and

Vij =
∫

Vi(r − r′, αi)ρj (r′, αj ) dr′. (10)

The nucleon-nucleus potential Vi is of Woods-Saxon type,
namely,

Vi(r, αi) = Vp

[
1 + exp

(
r − Rp(αi, z)

ap

)]−1

, (11)

with parameters Vp and ap taken from [34] and with the radius
parameter Rp(α, z) = R0

√
ρ2(α, z) + z2, where the profile

function ρ(α, z) is defined by (1)–(4). The nuclear density
is chosen in the following form:

ρi(r, αi) = ρ0

[
1 + exp

(
r − Rd (αi, z)

ad

)]−1

, (12)

where ρ0 = 0.17 fm−3, the density diffuseness
parameter ad = 0.54 fm, and Rd (α, z) = (1.25A1/3 −
0.86A−1/3)

√
ρ2(α, z) + z2 fm.

The deformation energy of the colliding nuclei is calculated
within the macroscopic-microscopic method [35,36]. In this
method the deformation energy is expressed as the sum of the
macroscopic part (liquid-drop energy) and the shell correction
Eshell (including the shell correction to the pairing correlation
energy), i.e.,

Edef = ELDM
def + Eshell. (13)

For the macroscopic part we used the liquid-drop model with
the parameters given in [37]. The shell correction for protons
(p) and neutrons (n) is calculated using the Strutinsky method
[35,36]:

Eshell(T = 0) =
∑
p,n

(δEp,n + δP p,n). (14)
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FIG. 1. The liquid-drop (solid) and the total (dashed) deformation
energy of 16O, 18O, and 208Pb nuclei as a function of the deformation
parameter α.

The dependence of the shell correction on the temperature is
given by the expression Eshell(T ) = Eshell(T = 0)e−aγ T 2

[38].
The level density parameter a and the shell correction damping
parameter γ are taken from [30]. The comparison of the liquid
drop and the total deformation energy (13) for a few nuclei
is shown in Fig. 1. One can see that the shell correction
modifies substantially the stiffness of the potential energy and,
as a result, the ability of the ions to get deformed during the
approach phase.

In order to specify the coefficients of the Langevin equation
completely one would need also the friction and inertia tensors.
The friction tensor in the entrance channel is chosen in the
same form as in [34], namely,

γ fus
rr = γ0 (dVGK/dr)2 ,

γ fus
ri = −1

2
γ fus

rr

Ri0√
αi + 1

(
ci − 2(αi + 1)dci/dαi

c2
i

)
,

γ fus
ij = γ fus

ri γ fus
rj

/
γ fus

rr + δij γij , (15)

where indices i and j refer to αt and αp, whereas the index
r corresponds to the distance between the centers of mass of
target and projectile nuclei. Here we use the coefficient γ0 =
4 × 10−23 s MeV−1, with the radii Ri0 of the corresponding
spherical nuclei, and the scaling factors ci is introduced to
ensure volume conservation during deformation.

The inertia tensor in the entrance channel is diagonal. Its
rr component is simply the reduced mass mfus

rr = M and its
αtαt and αpαp components are calculated in the same way
as for the compact system, mfus

αtαt
= mαtαt and mfus

αpαp
= mαpαp ,

as given in Eq. (17) below.

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 2. Characteristics of the system at the touching point for the
reaction 18O + 208Pb → 226Th, at the center-of-mass energy Ec.m. =
82 MeV. Panels (a), (b), and (c) show the quantities calculated with the
liquid-drop deformation energy, and (d), (e), and (f) show those with
the shell correction taken into account. Panels (a) and (d) show the
dependence of the touching cross section on the angular momentum
L, panels (b) and (e) display the distribution of the touching events
in the potential energy and the angular momentum, and panels (c)
and (f) show the distribution of the touching events in the dissipated
energy and the angular momentum.

The friction γij and inertia mij tensors for the deformation
degrees of freedom are defined within the linear response
approach and the locally harmonic approximation [39,40].
The widely used wall-and-window formula for the friction
tensor [41] and the Werner-Wheeler approximation [42] for
the mass tensor are macroscopic approximations. They are
justified either for large systems or at high enough excitation
energy (temperature). The use of these approximations for the
fusion-fission reactions when the energies of the incoming ions
are comparable with the height of the Coulomb barrier is very
questionably. At such energies microscopic effects come into
play.

For comparison [see Fig. 2(a)–2(c)], we have carried out
also some calculations with macroscopic friction and mass
tensors, as was done in the first formulation of the model [12].

The linear response approach using the locally harmonic
approximation [39,40] for the transport coefficients is based on
a microscopic Hamiltonian. In this approach, many quantum
effects, such as shell and pairing effects and the dependence of
the collisional width of single-particle states on the excitation
energy, are taken into account. The two main ingredients
of this approach are the mean-field Hamiltonian and the
collisional width of single-particle states. For the mean-field
Hamiltonian we use here the shell-model Hamiltonian with
a deformed Woods-Saxon potential [26,27]. The parameters
of this potential were fitted to reproduce the fission barriers
of heavy nuclei. For the collisional width a well-known
expression from Fermi-liquid theory is used.
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The parameters which appear in this expression were fitted
long ago to the data on the nucleon effective mass and the width
of giant resonances [39]. It was demonstrated in Ref. [43] that
the reduced friction coefficient γ /M calculated within the
linear response approach is in quite good agreement with the
experimental data extracted from the fission experiments [44].

The precise expressions for the friction γij and inertia mij

tensors can be found in [45]. They are

γij /h̄ = 2
∑
kl

(
nT

k − nT
l

)
ξ 2
kl

E−
klkl[

(E−
kl)

2 + 2
kl

]2 Fkl
i F lk

j

+ 2
∑
kl

(
nT

k + nT
l − 1

)
η2

kl

E+
klkl[

(E+
kl)

2 + 2
kl

]2 Fkl
i F lk

j

(16)

and

mij/h̄
2 =

∑
kl

(
nT

k − nT
l

)
ξ 2
kl

(E−
kl)

2(E−
kl − 3kl)[

(E−
kl)

2 + 2
kl

]3 Fkl
i F lk

j

+
∑
kl

(
nT

k + nT
l − 1

)
η2

kl

(E+
kl)

2(E+
kl − 3kl)[

(E+
kl)

2 + 2
kl

]3 Fkl
i F lk

j .

(17)

Here Ek and El are the quasiparticle energies in the
BCS approximation, E−

kl ≡ Ek − El, E+
kl ≡ Ek + El ,

nT
k ≡ 1/[1 + exp(Ek/T )], ηkl = ukυl + ulυk, and ξkl =

ukul − υkυl , where uk and υk are the coefficients of the
Bogolyubov-Valatin transformation. In (16) and (17) the
summation is carried out over single-particle states |k〉
and |l〉. The operator F̂j , which appears in (16) and (17),
is the derivative of the nuclear Hamiltonian in the BCS
approximation with respect to the deformation parameter αj .
The quantity kl is the average width of the two-quasiparticle
states, kl = [(Ek,�, T ) + (El,�, T )]/2. The calculation
of kl for a system with pairing correlations is explained in
detail in [46].

The Langevin equations (5) are integrated starting from the
initial distance rin = 4Rtouch. The touching point Rtouch was
defined in [12] as Rtouch = R1 + R2 + (ad,t + ad,p)/2, where
R1 and R2 are the nuclear radii along their common symmetry
axes, and the third term accounts for the diffuseness of the
density distributions [33]. We have checked that the increase
of rin does not significantly change the results of calculations
but does increase the computation time substantially.

Besides rin, at the initial moment we fix the value of the
angular momentum L and choose the random number ξν which
appears in the random force θβνξν (5). The random force means
that, at the touching point, rather than fixed quantities we get
distributions. Changing the initial value of ξν , we repeated the
calculations many times, up to 105, until the results were stable
with respect to the number of trajectories. By trajectory, we
mean here the dependence of r on time for a given calculation.

Equations (5) are integrated until the trajectory r(t) reaches
the touching point Rtouch or returns to the starting point rin.
As was illustrated in [47], due to the random force a certain
number of trajectories cannot reach the touching point even if
they overcome the fusion barrier.

From the calculations of the first stage we get the touching
probability and its dependence on the angular momentum L

and the distributions of the potential and the dissipated energy,
as illustrated in Fig. 2. We define the touching probability
T (L) as the ratio of the number of trajectories, NL,touch, which
have reached the touching point, relative to the total number
of trajectories, NL, under consideration, T (L) = NL,touch/NL.
Knowing this probability one can readily find the partial
and the total touching cross sections σtouch(L) = πλ2(2L +
1)T (L) and σtouch = ∑

L σtouch(L).
Here, a few words are in order on the use of the terms

touching cross section and the often used capture cross section.
By the capture process one usually means the trapping of the
colliding nuclei into the well of the nucleus-nucleus potential
after dissipation of part of the initial relative kinetic energy
and orbital angular momentum.

By the very construction of our model, at the touching
point (which is inside of the barrier of the nucleus-nucleus
interaction), the incoming ion and the target nucleus form a
compact system which can undergo quasifission or form a
quasistationary state inside the saddle configuration and then
fission from inside the saddle can occur, as seen on Fig. 5. The
touching process is just the beginning of the capture process.
Thus, the touching and capture cross sections should be the
same or very close to each other.

Results of calculations for the first stage with and without
taking into account shell effects in the deformation energy
differ from each other. In the case of nuclei that are spherical
in the ground state, the main reason for this difference is the
increasing stiffness of the potential energy due to the shell
effects (see Fig. 1). The larger is the stiffness, the less deformed
are the ions at the touching point. On the other hand, the
deformation of the ions in the approach phase reduces the
potential energy; i.e., the smaller is the stiffness, the more
favorable is the shape of colliding ions at the touching point.
These speculations are confirmed by the numerical results
shown in Fig. 2. The distribution calculated with shell effects
taken into account is narrower and the average value of the
potential energy at the touching point is approximately 4 MeV
larger than that in the pure liquid-drop case.

In Fig. 3 we compare the experimental values of fusion
cross sections σfus and the calculated touching cross sections
σtouch for the reactions 16,18O + 208Pb → 224,226Th. Since not
all touching events lead to fusion, the touching cross sections
should be larger than the fusion cross section. Indeed, at high
energies, the σtouch value is larger than that of σfus. However,
this is not the case for lower energies (at the fusion barrier and
below).

To solve this problem the authors of Ref. [47] suggested
taking into account quantum tunneling through the fusion
barrier. The penetrability of the barrier was defined in the
WKB approximation as

TL(E) =
[

1 + exp

(
2

h̄

∫ r1

r2

√
2m(V fus − E) dr

)]−1

, (18)

where the integration is carried out between the turning points
r1 and r2 in the subbarrier region and E is the potential
energy of the system at the turning points. As one can see
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FIG. 3. The dependence of the touching cross section σtouch on
the center-of-mass energy Ec.m. of the incoming ions. The calcu-
lations are done by taking into account tunneling for the reactions
18O + 208Pb → 226Th (solid) and 16O + 208Pb → 224Th (dashed). The
dotted line is the calculation for the reaction 18O + 208Pb → 226Th
without tunneling. The experimental values [18] for the fu-
sion cross section for the reactions 18O + 208Pb → 226Th and
16O + 208Pb → 224Th are marked by • and ◦, respectively. . The
arrow shows the height of the fusion barrier (for L = 0) for the
18O + 208Pb → 226Th reaction.

from Fig. 3, accounting for quantum tunneling increases the
touching probability in the subbarrier region.

The comparison of the measured fusion cross sections
for both reactions (see Fig. 3) shows that in the low-energy
region the fusion cross section is somewhat larger for the
heavier projectile, while at high energies both cross sections
are practically the same.

The calculated touching cross section is also larger for heav-
ier projectiles (and in this sense the dependence of σtouch on the
mass of the projectile is the same for calculated and measured
cross sections), but the calculated touching cross section for
18O projectiles is larger up to two orders of magnitude as
compared with that for 16O projectiles in the subbarrier region.
The reason for this is that the calculated barrier height for the
18O + 208Pb → 226Th reaction is approximately 1 MeV lower
than for the 16O + 208Pb → 224Th reaction. If one would shift
the (dashed) curve of the touching cross section for heavier
projectile to the left along the Ec.m. axes in Fig. 3 then it would
almost coincide with the touching cross section for the lighter
projectile (solid line).

The calculated touching cross section in the low-energy
region is still substantially smaller than the experimental fusion
cross section (see also Fig. 7). One way to possibly overcome
this difficulty could be to use a more flexible parametrization
of the shape of the system (for example, by taking into account
the octupole deformation of ions).

Unfortunately, accounting for the possibility of tunneling
[47] is effective only for reactions with a large target and
projectile mass asymmetry such as in 18O + 208Pb → 226Th.

For different combinations of projectile and target nuclei
the projectile energies at the touching point and at the fusion
barrier are different [see Figs. 4(a) and 4(b)]. The lower is
the energy of the ions at the touching point, the larger is the

FIG. 4. The dependence of the potential energy of two separated
ions on the distance r between their centers of mass for the reactions
18O + 208Pb → 226Th (top) and 48Ca + 208Pb → 256No (bottom). The
dashed line shows the end of the region accessible for tunneling. The
arrow shows the position of the touching point.

contribution from the tunneling effect to the fusion probability.
In the case of the 48Ca + 208Pb → 256No reaction the energy
of the bombarding ions at the touching point is smaller than
the fusion barrier by less than 1 MeV, and the enhancement
of the fusion probability by the tunneling effect is thus very
small.

B. The evolution of the compact system

In the case of the reactions considered in the present paper
the shape of the system just after the touching point is char-
acterized by an increasing elongation and mass asymmetry.
Such shapes can be described in terms of distorted Cassinian
ovaloids (2). Thus, besides the elongation parameter α we take
into account the parameters α1 and α4 which characterize the
mass asymmetry and the neck radius.

The potential energy Vpot of the compact system consists of
rotational and deformation energies, i.e.,

Vpot = h̄2L2

2J
+ Edef, (19)

where J is the rigid-body moment of inertia [31]. The
deformation energy and the friction and inertia tensors for
the α, α1, and α4 degrees of freedom are calculated in the
same way as in the entrance channel, by using the Strutinsky
method and Eqs. (16) and (17), respectively.

The deformation dependence of the potential energy of the
system is shown in Fig. 5. In this plot we also illustrate several
different possibilities for the evolution of the shape of the
compact system.

To solve the Langevin equations for the evolution of the
compact system one needs initial conditions. First of all, one
should define the shape of the compact system at the touching
point. The parameter α is defined by keeping in mind that at
the touching point both the divided and the compact system
should have a small neck radius. The parameters α1 and α4 are
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FIG. 5. The dependence of the deformation energy of the com-
pound nucleus 224Th on the deformation parameters α and α1 for
α4 = 0. The possible evolution of the shape of the system is shown
by dashed (the formation of the evaporation residue), dash-doted
(fission events), and solid (quasifission events) lines. The initial point
of the calculations of the evolution of the compact system is indicated
by the • symbol.

fixed by the initial mass asymmetry and by the requirement
that the potential energy of the divided and compact system at
the touching point be the same.

The angular momentum of the system, its potential Vpot,
and dissipated energy Edis are chosen randomly by the “hit
and miss” method from the distributions at the touching point,
calculated in the entrance channel (see Fig. 2).

By solving the Langevin equations in the first stage we
get, at the touching point, the distributions of the collective
momenta pr , pαt , and pαp . Unfortunately, it is not easy to
relate these final values of pr, pαt , and pαp to the initial
values of momenta pα , pα1 , and pα4 of the monosystem. So,
to fix the initial momenta of the monosystem we define the
kinetic energy as Ekin = Ec.m. − Vpot − Edis (which is small
in the most interesting case when the kinetic energy of the
incoming ions is comparable with the Coulomb barrier height)
and distribute it randomly among the α, α1, and α4 degrees
of freedom with the restriction that pα should lead to smaller
elongations, i.e., decreasing α values.

The Langevin equations (5) are integrated until the system
fissions or cools down by light-particle or γ -quanta evap-
oration [30] and thus forms the evaporation residue. The
trajectories r(t) were sorted according to their minimal value
rmin reached during the evolution of the compact system.
A certain number of trajectories do not reach the so-called
scission point rscission, which is the critical distance above
which the monosystem breaks apart. It was found in [48]
that rscission ≈ 2.35R0. The trajectories which did not reach
the scission point were considered as deep-inelastic collisions.
The trajectories with rsaddle � rmin � rscission were considered
as quasifission events. Finally, the trajectories which cross
the saddle point rmin < rsaddle contribute to true fission or
evaporation-residue formation. All these possibilities are
shown schematically in Fig. 5. When we discuss the fission
fragments distributions below we mean the true fission events,
i.e., the events when the system fissions from inside the saddle.

The evaporation of particles and γ quanta by the excited
compact system was described within the statistical model
[30]. At each integration step, by the “hit and miss” method,
we decide whether a particle was emitted and which kind of
particle was emitted. If some particle was emitted, the binding
energy of this particle was subtracted from the excitation
energy of the system. The expressions for the partial width
of the corresponding decay channel were taken from [30].

III. NUMERICAL RESULTS AND DISCUSSION

As a result of calculating the compact system evolution
we obtain the distributions of the fission fragments in mass
and kinetic energy, the partial (total) cross sections of the
compound nucleus, σcomp(L) [σcomp = ∑

L σcomp(L)], and of
the evaporation-residue formation, σer(L) [σer = ∑

L σer(L)],
and the multiplicities of evaporated particles and γ rays.

The quantities σcomp(L) and σer(L) are the products of
the touching cross section and the corresponding probability,
σcomp(L) = Pcomp(L)σtouch(L) and σer(L) = Per(L)σtouch(L).
The probabilities Pcomp(L) and Per(L) are calculated as the
ratio of the number of trajectories leading to the formation
of the compound nucleus or the evaporation residue to the
total number of trajectories considered at the second stage of
the calculation. The total probability of evaporation-residue
formation is then given by the product PtouchPer.

In Fig. 6 we compare the experimental and calcu-
lated evaporation-residue cross section σer for the reaction
16O + 208Pb → 224Th. As one can see, the experimental data
[18–21] differ from each other by up to one order of magnitude.
The data presented in [20] and [21] are the most recent and
seem to be the most reliable. Like in the case of the touching
cross section, the calculated evaporation-residue cross section
σer is close to the experimental values in the high-energy region
and smaller by up to two orders of magnitude for near-barrier

FIG. 6. The dependence of the evaporation residue cross section
σer on the center-of-mass energy Ec.m. of bombarding ions. The
experimental data for the reaction 16O + 208Pb are taken from [18]
(�), [19] (©), [20] (�), and [21] (�). The black squares (�) show the
cross section calculated in [12] for the reaction 18O + 208Pb with shell
effects in the deformation energy neglected. The presently calculated
cross sections σer for the reactions 16O + 208Pb and 18O + 208Pb are
shown by open stars and solid stars (�), respectively.

034602-7



LITNEVSKY, PASHKEVICH, KOSENKO, AND IVANYUK PHYSICAL REVIEW C 85, 034602 (2012)

FIG. 7. The dependence of the calculated touching cross section
σtouch (open stars) and the evaporation residue cross section (•) on the
center-of-mass energy Ec.m. of the bombarding ions for the reaction
48Ca + 208Pb → 256No. The experimental data for the capture cross
section σcap are marked as � [25], the experimental data for σer (◦) are
taken from [24]. The arrow indicates the height of the fusion barrier.

energies. In Fig. 6 we compare also the calculated values of σer

for the reaction 18O+208Pb →226Th with the one calculated
in [12] without shell corrections to the deformation energy
taken into account. One can see that shell effects lead to an
increase of σer by one or two orders of magnitude.

The calculated values of the touching σtouch and
evaporation-residue σer cross sections for the reaction 48Ca +
208Pb → 256No are shown in Fig. 7 . The comparison of
calculated σtouch and experimental cross sections in the low-
energy region shows the same problem as in the case of the
16,18O + 208Pb → 224,226Th reactions. The calculated touching
cross section for the near-barrier energies is too small. The
experimental data for σer (open circles) are available only for
energies near the fusion barrier, a region we cannot describe
within the present model. We can only mention that the
extrapolation of the calculated results for σer down to the
subbarrier region is very close to the experimental data.

FIG. 8. The yield of the fission fragments Y (normalized to 200%)
in the reaction 18O + 208Pb → 226Th for Ec.m. = 72 MeV (top) and
Ec.m. = 83 MeV (bottom). The experimental data are taken from [23]
(solid) and [22] (dashed). The calculated values are shown by the
histogram.

FIG. 9. Mass-energy distribution of fission fragments in the
reaction 18O + 208Pb → 226Th at energy Ec.m. = 72 MeV (bottom),
Ec.m. = 83 MeV (middle), and Ec.m. = 107.7 MeV (top).

We have also calculated the mass yield (see Fig. 8) and
mass–kinetic energy fission-fragments distribution (see Fig. 9)
for the reaction 18O + 208Pb → 226Th. The calculated mass
yields for the energies Ec.m. = 72 MeV and Ec.m. = 83 MeV
are in good agreement with the available experimental data.

The distribution of fission fragments in mass and kinetic
energy (see Fig. 9) is in agreement with the experimental data
(see Fig. 1 of [23]) and is very close to that obtained in [12] (the
liquid-drop deformation energy in the entrance channel). This
result is consistent with the idea that the compound nucleus
“does not remember” its history.

IV. CONCLUSIONS

The performed theoretical investigation of the fusion-
fission reactions between nuclei which are spherical in their
ground state has shown that the account of shell effects in the
deformation energy of the colliding nuclei has a substantial
influence on the characteristics of the combined system at the
touching point as well as on the probability of evaporation-
residue formation.

For the examples of 16,18O+ 208Pb →224,226Th and
48Ca + 208Pb → 256No reactions it is shown that the earlier
suggested two-stage model of the fusion-fission reactions
reproduces reasonably well the experimental data on the
evaporation-residue cross sections for energies of the incoming
ions larger than the fusion barrier. For near-barrier energies the
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calculated touching or evaporation-residue cross sections are
smaller than the experimental values by one or two orders of
magnitude. One possible way to overcome this difficulty of the
present model could be to use a more flexible parametrization
of the shape of the system in the approach stage.

We have also found out that taking into account quantum
tunneling through the barrier improves the agreement with

experimental results only for reactions with large initial mass
asymmetry.
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