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Five-body resonances of 8C using the complex scaling method
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We study the resonance spectroscopy of the proton-rich nucleus 8C in the α + p + p + p + p cluster model.
Many-body resonances are treated on the correct boundary condition as the Gamow states using the complex
scaling method. We obtain the ground state of 8C as a five-body resonance for the first time, which has dominantly
the subclosed (p3/2)4 configuration and agrees with the recent experiment for energy and decay width. We predict
the second 0+ state with the excitation energy of 5.6 MeV, which corresponds to the 2p2h state from the ground
state. We evaluate the occupation numbers of four valence-protons in the 8C states and also the J π distribution of
proton-pair numbers of the two 0+ states of 8C. The ground state involves a large amount of the 2+ proton-pair
fraction, while the excited 0+

2 state almost consists of two of the 0+ proton pairs, which can be understood
from the (p3/2)2(p1/2)2 configuration. We also discuss the mirror symmetry between 8C and 8He with an α+four
nucleon picture. It is found that the 0+ states retain the mirror symmetry well for the configuration properties of
two nuclei.
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I. INTRODUCTION

Radioactive beam experiments have provided us with
much information on unstable nuclei far from the stability.
In particular, the light nuclei near the drip-line exhibit new
phenomena of nuclear structures, such as the neutron halo
structure found in 6He, 11Li, and 11Be [1]. The unstable nuclei
can often be unbound states beyond the particle thresholds
due to the weak binding nature. The resonance spectroscopy
of unbound states beyond the drip-line has been developed
experimentally. In addition to the energies and decay widths,
the configuration information is important to understand the
structures of the resonances. In proton-rich and neutron-rich
nuclei, the configurations of extra nucleons provide with the
useful information to know the correlations between the extra
nucleons in resonances as well as in weakly bound states. It is
interesting to compare the structures of resonances and weakly
bound states between proton-rich and neutron-rich sides. This
comparison is related to the mirror symmetry in unstable nuclei
having a large isospin.

Recently, the new experiments on 8C have been reported
[2,3] in addition to the old observations [4–6]. The 8C nucleus
is known as an unbound system beyond the proton drip-line and
its ground state is naively considered to be the 0+ resonance.
The ground state of 8C is observed at 2 MeV above the
6Be + 2p threshold energy and is close to the 7B + p threshold
[3], and excited states have not yet been observed. The 8C states
can decay not only to a two-body 7B + p channel but also to
many-body channels of 6Be + 2p, 5Li + 3p, and 4He + 4p.
This multiparticle decay condition makes difficulty to identify
the states of 8C experimentally.
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The mirror nucleus of 8C is 8He with isospin T = 2, which
has the bound ground state. Recently, many experiments on
8He have been reported [7–13]. Its ground state is considered
to have a neutron skin structure consisting of four valence
neutrons around 4He with the small binding energy of 3.1
MeV. For the excited states of 8He, most of them can be
located above the 4He + 4n threshold energy [10]. This fact
indicates that the observed resonances of 8He can decay into
the channels of 7He + n, 6He + 2n, 5He + 3n, and 4He + 4n.
These multiparticle decays of 8He are related to the Borromean
nature of 6He, which breaks up easily into 4He + 2n, and make
it difficult to settle the excited states of 8He. There still remain
contradictions in the observed energy levels of 8He.

From the view point of the “4He + four protons or four
neutrons” system, the information of 8C and 8He is important
to understand the structures on and outside the drip-lines as a
five-body picture. It is also interesting to examine the effect of
Coulomb interaction and the mirror symmetry in two nuclei.
Structures of resonances and weakly bound states generally
depend on the existence of the open channels as the thresholds
of the particle emissions. In this sense, the mirror symmetry
in unstable nuclei can be related to the coupling behavior to
the open channels. In the previous analyses of 7B and 7He
with the 4He + N + N + N model [14], we discussed the
mirror symmetry in two nuclei. It is found that breaking of
the mirror symmetry is occurred in their ground states with
respect to the amount of the mixing of 2+ states of A = 6
subsystems, while their excited states retain the symmetry
well. This result concerns with the relative energy positions
between the A = 7 states and the “A = 6” + N thresholds.
Similarly, it is interesting for 8C and 8He to compare the effects
of the couplings to the open channels in the resonances of two
nuclei. The configuration properties of the extra four nucleons
in 8C and 8He are also interesting from the viewpoint of the
correlations of extra nucleons.
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On the theoretical side, to treat the unbound states explicitly,
several methods have been developed, such as the microscopic
cluster model [15,16], the continuum shell model [17], and
the Gamow shell model [18,19]. It is, however, difficult to
satisfy the multiparticle decay conditions correctly for all open
channels. For 8C, it is necessary to describe the 4He + 4p

five-body resonances in the theory. So far, no theory describes
the 8C nucleus as five-body resonances. In addition, it is
important to reproduce the threshold energies of subsystems
for particle decays, namely the positions of open channels.
Emphasizing these theoretical conditions, in this study, we
employ the cluster orbital shell model (COSM) [14,20–24]
of the 4He + 4p five-body system. In COSM, the effects of
all open channels are taken into account explicitly [22] so
we can treat the many-body decaying phenomena. In our
previous works of neutron-rich systems [22–24], we have
successfully described the He isotopes with the 4He + 4n

model up to the five-body resonances of 8He, including the
full couplings with 5,6,7He. We have described many-body
resonances using the complex scaling method (CSM) [25–27]
under the correct boundary conditions for all decay channels.
In CSM, the resonant wave functions are directly obtained
by diagonalization of the complex-scaled Hamiltonian using
the L2 basis functions. Results for light nuclei using CSM
have been obtained successfully for energies, decay widths,
spectroscopic factors, and for the breakup strengths induced
by the Coulomb excitations [28,29], monopole transition [24],
and one-neutron removal [23]. Recently, CSM has been
developed to apply to the nuclear reaction methods such as the
scattering amplitude calculation [30], Lippmann-Schwinger
equation [31,32], and the continuum-discretized coupled-
channels (CDCC) method [33].

In this study, we proceed with our study of resonance
spectroscopy of the proton-rich nucleus 8C with the 4He + 4p

five-body cluster model. This study is the extension of the
previous one of 7B with the 4He + 3p model [14]. We
concentrate on the 0+ states of 8C and discuss the structure
differences between the ground and the excited states. It
is interesting to examine how our model describes 8C as
five-body resonances. We predict the resonances of 8C and
investigate their binding properties. To extract the information
of the extra protons, we calculate the Jπ distribution of the
pair numbers of the four valence protons in the 8C states. This
quantity is useful for understanding the coupling behavior of
four protons as a proton-pair inside 8C. For mirror nucleus
8He, we have performed the similar analysis [24], in which
the large mixing of the 2+ neutron pair is confirmed for the
ground state. From the viewpoint of the mirror symmetry, we
compare the structures of 8C with those of 8He and discuss the
similarity and the difference in two nuclei.

In Sec. II, we explain the complex-scaled COSM wave
function. In Sec. III, we discuss the structures and the
configurations of four valence protons in the ground and the
excited states of 8C. A summary is given in Sec. IV.

II. COMPLEX-SCALED COSM

A. COSM for the 4He + Nv p systems

We use COSM of the 4He + Nvp systems, where Nv is a
valence proton number around 4He, namely Nv = 4 for 8C.

The Hamiltonian form is the same as that used in Refs. [14,
22,23],

H =
Nv+1∑
i=1

ti − TG +
Nv∑
i=1

V
αp

i +
Nv∑
i<j

V
pp

ij , (1)

=
Nv∑
i=1

[ �p2
i

2μ
+ V

αp

i

]
+

Nv∑
i<j

[ �pi · �pj

4m
+ V

pp

ij

]
, (2)

where ti and TG are the kinetic energies of each particle (p and
4He) and of the center of mass of the total system, respectively.
The operator �pi is the relative momentum between p and
4He. The reduced mass μ is 4m/5 using a nucleon mass
m. The 4He-p interaction V αp is given by the microscopic
KKNN potential [27,34] for the nuclear part, in which
the tensor correlation of 4He is renormalized on the basis
of the resonating group method in the 4He + N scattering. For
the Coulomb part, we use the folded Coulomb potential using
the density of 4He having the (0s)4 configuration. We use the
Minnesota potential [35] as the nuclear part of V pp in addition
to the Coulomb interaction. These interactions reproduce the
low-energy scattering of the 4He-N and the N -N systems,
respectively.

For the wave function, 4He is treated as a (0s)4 configuration
of a harmonic oscillator wave function, whose length param-
eter is 1.4 fm to fit the charge radius of 4He as 1.68 fm. The
motion of valence protons around 4He is solved variationally
using the few-body technique. We expand the relative wave
functions of the 4He + Nvp system using the COSM basis
states [20–23]. In COSM, the total wave function �J with
spin J is represented by the superposition of the configuration
�J

c as

�J =
∑

c

CJ
c �J

c , (3)

�J
c =

Nv∏
i=1

a†
αi

|0〉, (4)

where the vacuum |0〉 is given by the 4He ground state. The
creation operator a†

α is for the single-particle state of a valence
proton above 4He with the quantum number α = {n, �, j}
in a jj -coupling scheme. Here the index n represents the
different radial component. The index c represents the set
of αi as c = {α1, . . . , αNv

}. We take a summation over the
available configurations in Eq. (3), which gives a total spin
J . The expansion coefficients {CJ

c } in Eq. (3) are determined
variationally with respect to the total wave function �J by
the diagonalization of the Hamiltonian matrix elements. The
relation

∑
c(CJ

c )2 = 1 is satisfied due to the normalization of
the total wave function.

The coordinate representation of the single-particle state
corresponding to a†

α is given as ψα(r) as function of the
relative coordinate r between the center of mass of 4He and
a valence proton [20], as shown in Fig. 1. We employ a
sufficient number of radial bases of ψα(r) to describe the
spatial extension of valence protons in the resonances, in
which ψα(r) are normalized. In this model, the radial part of
ψα(r) is expanded with the Gaussian basis functions for each
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FIG. 1. Sets of the spatial coordinates in COSM for the
4He + Nvp system.

orbit as

ψα(r) =
N�j∑
k=1

dk
α φk

�j

(
r, bk

�j

)
, (5)

φk
�j

(
r, bk

�j

) = N r�e
−
(
r/bk

�j

)2
/2[

Y�(r̂), χσ
1/2

]
j
, (6)

〈ψα|ψα′ 〉 = δα,α′ . (7)

The index k is for the Gaussian basis with the length parameter
bk

�j . Normalization factor of the basis and a basis number are
given by N and N�j , respectively. The coefficients {dk

α} in
Eq. (5) are determined using the Gram-Schmidt orthonormal-
ization, and, hence, the basis states ψα are orthogonal to each
other as shown in Eq. (7). The numbers of the radial bases
of ψα are at most N�j and are determined to converge the
physical solutions. The same method using Gaussian bases as a
single-particle basis is employed in the tensor-optimized shell
model [36,37]. The antisymmetrization between a valence
proton and 4He is treated on the orthogonality condition
model [27], in which the single-particle state ψα is imposed
to be orthogonal to the 0s state occupied by 4He. The length
parameters bk

�j are chosen in geometric progression [23,27].
We use at most 17 Gaussian basis functions by setting bk

�j from
0.2 fm to around 40 fm with the geometric ratio of 1.4 as a
typical one. Due to the expansion of the radial wave function
using a finite number of basis states, all the energy eigenvalues
are discretized for bound, resonant, and continuum states.
To obtain the Hamiltonian matrix elements of multiproton
system in the COSM configurations, we employ the j -scheme
technique of the shell-model calculation in terms of ψα as the
basis states.

In COSM, the asymptotic boundary condition of the wave
functions for proton emissions is correctly described [14,27,
38]. For 8C, all the channels of 8C, 7B + p, 6Be + 2p, 5Li + 3p,
and 4He + 4p are automatically included in the total wave

function �J in Eq. (3). These channels are coupled to each
other by the interactions and the antisymmetrization, and those
couplings depend on the relative distances between 4He and a
valence proton and between the valence protons.

We explain the parameters of the model space of COSM and
the Hamiltonian which are determined in the previous analyses
of He isotope [22,23]. For the single-particle states, we take the
angular momenta � � 2 to keep the accuracy of the converged
energy within 0.3 MeV of 6He with the 4He + n+ n model
in comparison with the full space calculation [27]. In this
model, we adjust the two-neutron separation energy of 6He(0+)
to the experiment of 0.975 MeV by taking the 173.7 MeV
of the repulsive strength of the Minnesota potential instead
of the original value of 200 MeV. The adjustment of the NN

interaction is originated from the pairing correlation between
valence protons with higher angular momenta � > 2 [27].
Hence, the present model reproduces the observed energies
of 6He and is applied to the proton-rich nuclei in this analysis.

B. Complex scaling method

We explain CSM, which describes resonances and non-
resonant continuum states [25–27]. Hereafter, we refer to
the nonresonant continuum states as the continuum states
simply. In CSM, we transform the relative coordinates of
the 4He + Nvp system, as r i → r i e

iθ for i = 1, . . . , Nv ,
where θ is a scaling angle. The Hamiltonian in Eq. (2) is
transformed into the complex-scaled Hamiltonian Hθ , and
the corresponding complex-scaled Schrödinger equation is
given as

Hθ�
J
θ = E�J

θ . (8)

The eigenstates �J
θ are obtained by solving the eigenvalue

problem of Hθ in Eq. (8). In CSM, we obtain all the energy
eigenvalues E of bound and unbound states on a complex
energy plane, governed by the ABC theorem [39]. In this
theorem, it is proved that the boundary condition of resonances
is transformed to one of the damping behavior at the asymptotic
region. This proof is mathematically a general one for the
many-body system, including a long-range interaction. The
transformed boundary condition for the resonances makes it
possible to use the same method to obtain the bound states
and resonances. This property of CSM is worthy to obtain
the wave functions of the resonances directly as the Gamow
states, in particular, for many-body case. For a finite value
of θ , every Riemann branch cut starting from the different
thresholds is commonly rotated down by 2θ . Hence, the
continuum states such as 7B + p and 6Be+2p channels in
8C are obtained on the branch cuts rotated by the −2θ

from the corresponding thresholds [22,23]. In contrast, bound
states and resonances are obtainable independently of θ . We
can identify the resonance poles with complex eigenvalues:
E = Er − i�/2, where Er and � are the resonance energies
and the decay widths, respectively. In the wave function, the θ

dependence is included in the expansion coefficients in Eq. (3)
as {CJ

c (θ )}. The coefficients CJ
c (θ ) can be a complex number

in general for a finite angle θ . The angle θ is determined to
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FIG. 2. Energy levels of 5Li, 6Be, 7B, and 8C measured from the
4He energy. Units are in MeV. Black and gray lines are theory and
experiments, respectively. Small numbers are decay widths.

search for the stationary point of each resonance in a complex
energy plane [25–27].

The resonant state generally has a divergent behavior at
asymptotic distances, and its norm then is defined by a
singular integral using, for example, the convergent factor
method [27,40,41]. In CSM, on the other hand, resonances
are precisely described as eigenstates expanded in terms of the
L2 basis functions. The amplitudes of the resonances are finite
and normalized as

∑
c(CJ

c (θ ))2 = 1. The Hermitian product
is not applied due to the bi-orthogonal relation [25,26,42].
The matrix elements of resonances are calculated using the
amplitudes obtained in CSM and are independent of the angle
θ [27].

In this study, we discretize the continuum states in terms
of the basis expansion, as shown in the figures of energy
eigenvalue distributions in Refs. [23,27,28]. The reliability of
the continuum discretization in CSM has already been shown
using the continuum level density [43] and the phase-shift
analysis [30].

III. RESULTS

A. Energy spectra of 5Li, 6Be, 7B, and 8C

We show the systematic behavior of level structures of 5Li,
6Be, 7B, and 8C in Fig. 2. There is no bound states in those
nuclei. It is found that the present calculations agree with
the observed energy levels. We, furthermore, predict many
resonances for 6Be, 7B, and 8C. In the previous analysis [14],
we discussed the structures of 6Be and 7B in detail, such as
the spatial properties of extra protons, the configurations and
the mirror symmetry. It was found that the 6Be structures
are similar to those of a mirror nucleus 6He. For 7B, only the
ground states of 7B and 7He breaks the mirror symmetry, while
the excited states of two nuclei retain the symmetry [14].

In this analysis, we discuss the structures of the 0+ states of
8C. The energy eigenvalues are listed in Table I measured from
the 4He + 4p threshold. We obtain two resonances of 8C(0+),
both of which are five-body resonances as shown in Fig. 2. The
energy of the 8C ground state is obtained as Er = 3.32 MeV
and agrees with the recent experiment of Er = 3.449(30) MeV

TABLE I. Energy eigenvalues of the 8C (0+) resonances measured
from the 4He + 4p threshold. The values within parentheses are the
experimental ones [3].

Energy (MeV) Width (MeV)

0+
1 3.32 [3.449(30)] 0.072 [0.130(50)]

0+
2 8.88 6.64

[3]. The decay width is 0.072 MeV, which is small and good
but slightly smaller than the experimental value of 0.130(50)
MeV. There is no experimental evidence for the excited states
of 8C so far, and further experimental data are anticipated.

We discuss the configuration properties of two resonances
of 8C in detail. For the ground state, in Table II, we list the main
configurations with their complex squared amplitudes (CJ

c )2

in Eq. (3). In general, the squared amplitude of a resonant
state can be a complex number, while the total of the complex
squared amplitudes is normalized as unity. The interpretation
of the complex number in the physical quantity of resonances is
still an open problem [41]. In the results of 8C, the amplitudes
of the dominant configurations are almost real values. In that
case, it is reasonable to discuss the physical meaning of the
dominant real part of the amplitudes of the resonances in the
same way that we discuss the bound state. When we consider
all the available configurations, the summations conserve unity
due to the normalization of the states.

From Table II, in the 8C ground state, the (p3/2)4 con-
figuration dominates the total wave function with a squared
amplitude of 0.88 for the real part. The 2p2h excitations from
the lowest p3/2 orbit are mixed totally by about 0.12. In the
2p2h components, the p1/2 and d5/2 orbits contribute to the
ground state. These results mean that the jj -coupling scheme
and the p3/2 subclosed nature are well established in the ground
state of 8C. To see the mirror symmetry, the results of the 8He
ground state described in the 4He + 4n model [24] are shown
in Table II. In the 8He ground state, the extra four neutrons
dominantly occupy the p3/2 orbit with a squared amplitude of
0.86 and the 2p2h components are mixed by about 0.14. From
those values of the squared amplitudes, it is concluded that
the trend of the configuration mixing in the ground states of
8C and 8He is quite similar, which indicates the good mirror
symmetry between two states. It is also noticed that among the
2p2h components, the only (p3/2)2(1s1/2)2 configuration of 8C
increases slightly from that of 8He. This is considered to be
so-called the Thomas-Erhman shift caused by the Coulomb
repulsion.

TABLE II. Dominant parts of the complex squared amplitudes
(CJ

c )2 of the ground states of 8C and 8He.

Configuration 8C(0+
1 ) 8He(0+

1 )

(p3/2)4 0.878 − i0.005 0.860
(p3/2)2(p1/2)2 0.057 + i0.001 0.069
(p3/2)2(1s1/2)2 0.010 + i0.003 0.006
(p3/2)2(d3/2)2 0.007 + i0.000 0.008
(p3/2)2(d5/2)2 0.037 + i0.000 0.042
Other 2p2h 0.008 + i0.000 0.011
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TABLE III. Radial properties of the ground states of 8C and 8He
in units of fm, in comparison with the experiments of 8He.

8C 8He 8He(exp.)

Rm 2.80 + i0.17 2.52 2.49(4),a 2.53(8),b 2.49(4)c

Rp 3.13 + i0.20 1.80
Rn 1.96 + i0.08 2.72
Rch 3.25 + i0.21 1.92 1.929(26)d

rc-4N 2.36 − i0.25 2.05

aReference [12].
bReference [44].
cReference [45].
dReference [13].

The radial properties of 8C are interesting to discuss the
effect of the Coulomb repulsion in comparison with 8He having
a neutron skin structure, although the radius of 8C can be
complex numbers because of the resonance. The results of 8C
are shown in Table III for matter (Rm), proton (Rp), neutron
(Rn) charge (Rch) parts, and the relative distances between
the 4He core and the center of mass of four valence nucleons
(rc-4N ). It is found that the values in 8C are almost real, so the
real parts can be considered to represent the radial properties
of 8C. The matter radius of 8C is larger than that of 8He by
about 11% for a real part. The relative distance between the
4He core and 4p in 8C is wider than the one between the 4He
core and 4n in 8He by about 15%. The enhancement of the
radius of 8C from 8He comes from the Coulomb repulsion
between five constituents of 4He + p + p + p + p in 8C. The
Coulomb repulsion makes the energy of 8C shift up to become
a resonance in comparison with 8He, and it also increases the
relative distances between each constituent from the neutron
skin state of 8He.

We discuss the excited 0+
2 state of 8C, which is located at

the excitation energy of 5.6 MeV. The dominant configurations
of four valence protons are listed in Table IV. In this state, the
(p3/2)2(p1/2)2 configuration dominates the total wave function
with a large squared amplitude of 0.93 for a real part, while
(p3/2)4 is given as 0.04. Hence, the 0+

2 state of 8C corresponds
to the 2p2h excited state of the ground state and can be
described mostly in terms of the single configuration rather
than the ground state. This 2p2h configuration property is
commonly seen in the 8He(0+

2 ) [24], as shown in Table IV.
The coupling properties of four valence protons in 8C are
discussed from the viewpoint of the proton pair numbers later.

It is interesting to discuss the mirror symmetry between
8C and 8He consisting of 4He and four valence protons or

TABLE IV. Dominant parts of the complex squared amplitudes
(CJ

c )2 of the 0+
2 states of 8C and 8He.

Configuration 8C(0+
2 ) 8He(0+

2 )

(p3/2)4 0.044 + i0.007 0.020 − i0.009
(p3/2)2(p1/2)2 0.934 − i0.012 0.969 − i0.011
(p3/2)2(1s1/2)2 −0.001 + i0.000 −0.010 − i0.001
(p3/2)2(d3/2)2 0.020 + i0.003 0.018 + i0.022
(p3/2)2(d5/2)2 0.002 + i0.001 0.002 + i0.000
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neutrons. To do this, we show the energy spectra of He isotopes
with COSM in Fig. 3, using the Hamiltonian in Eq. (2) without
the Coulomb term. For 7He(1/2−), the experimental energy
is not fixed, so we include the recent data [46] with dotted
line as a reference in the figure. From the figure, it is found
that the COSM results agree with the observed energy levels
well for He isotopes. From Figs. 2 and 3, it is found that the
orders of energy levels are the same between proton-rich and
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are shifted up due to the Coulomb repulsion, in comparison
with those of the neutron-rich side. The displacement energies
are 2.4 MeV for 6Be from 6He, 3.9 MeV for 7B from 7He,
and 6.5 MeV for 8C from 8He, respectively. In Fig. 4, we
compare the excitation energy spectra of proton-rich and
neutron-rich sides. It is found that the good symmetry is
confirmed between the corresponding nuclei. The differences
of excitation energies for individual levels are less than 1 MeV.
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FIG. 4. Excitation energy spectra of mirror nuclei of A = 5, 6, 7,
and 8 in the units of MeV.
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TABLE V. Complex occupation numbers of valence protons in 8C.

Orbit 0+
1 0+

2

p1/2 0.12 + i0.00 1.87 − i0.02
p3/2 3.75 − i0.01 2.09 + i0.01
s1/2 0.03 + i0.00 0.00 + i0.00
d3/2 0.02 + i0.00 0.04 + i0.01
d5/2 0.08 + i0.00 0.01 − i0.00

B. Occupation and pair numbers in 8C

We discuss the structures of the two 0+ states of 8C from the
viewpoint of the configurations of valence protons. We list the
complex occupation numbers of four protons in each orbit for
8C in Table V. Since the states are Gamow states, their physical
quantities become complex values with a relatively small
imaginary part, while their summation conserves the valence
proton number being four as a real value in each state. In the
8C ground state, the p3/2 orbit is dominant and its real part of
the complex occupation number of 3.75 is close to 4, which is
consistent with the dominant configuration of (p3/2)4 as shown
in Table II. In the 0+

2 state, the p3/2 and p1/2 orbits share two
protons individually because the (p3/2)2(p1/2)2 configuration
dominates this state as shown in Table IV. In two 0+
states, the interaction acting between valence protons emerges
the small mixing of the other orbits such as the sd-shell
components.

We calculate the complex pair number P (Jπ , S) of four
valence protons in 8C, which is defined by the matrix element
of the operator as

P (Jπ , S) =
〈 ∑

α�β

A
†
Jπ ,S(αβ)AJπ ,S(αβ)

〉
. (9)

Here the quantum numbers α and β are for the single-particle
state, and A

†
Jπ ,S (AJπ ,S) is the creation (annihilation) operator

of a proton pair with the coupled angular momentum and parity
Jπ and the coupled intrinsic spin S. The complex pair numbers
are useful to understand the structures of four protons from the
viewpoint of pair coupling. The summation of the complex
pair numbers over all Jπ and S is equal to 6, which is a real
value, from the total pair number consisting of four protons
as ∑

Jπ ,S

P (Jπ , S) = 6. (10)

In Table VI, we list the results of the complex pair numbers
up to the 3− component for two 0+ states of 8C. It is found
that the values are almost real and their imaginary part is very
small and, hence, we focus on the discussion of the results of
real parts. In Fig. 5, we show the real part of the complex pair
numbers and compare them between two 0+ state of 8C. In the
ground state, it is found that the 2+ proton pair is dominant with
the real part of the number as about 4.6 taking the summation
of S = 0 and 1, and the 0+ proton pair number is about 1.1
for a real part. These results are consistent with the main
configuration of (p3/2)4 from the CFP decomposition with the
numbers of 1 and 5 for the 0+ and 2+ pairs, respectively. The

TABLE VI. Complex pair numbers P (J π , S) of valence protons
in 8C up to J π = 3−.

J π S 0+
1 0+

2

0+ 0 0.69 + i0.00 0.98 + i0.00
0+ 1 0.37 + i0.00 0.96 + i0.00

0− 0 0.00 + i0.00 0.00 + i0.00
0− 1 0.00 + i0.00 0.01 + i0.00

1+ 0 0.01 + i0.00 0.15 + i0.00
1+ 1 0.08 + i0.00 1.24 − i0.02

1− 0 0.02 + i0.00 0.00 + i0.00
1− 1 0.02 + i0.00 0.02 + i0.00

2+ 0 1.54 + i0.00 0.86 + i0.00
2+ 1 3.06 − i0.01 1.72 + i0.00

2− 0 0.02 + i0.00 0.00 + i0.00
2− 1 0.07 + i0.01 0.01 + i0.00

3+ 0 0.00 + i0.00 0.00 + i0.00
3+ 1 0.00 + i0.00 0.00 + i0.00

3− 0 0.04 + i0.00 0.02 + i0.00
3− 1 0.09 + i0.00 0.02 + i0.00

decompositions into the S = 0 and S = 1 components can
also be naively understood from the (p3/2)2

J=0,2 configuration
using the LS-coupling transformation. These results show that
the shell structure of the p3/2 protons is well established in
the 8C ground state from the pair numbers. When one of the
proton pair with Jπ = 0+ or 2+ state is coupled with 4He, this
system can be the main components of 6Be(0+

1 ) and 6Be(2+
1 ),

respectively [14]. Recent experiments [2,3] show that the
decay of the 8C ground state can go through the 6Be(0+

1 ) + 2p

channel while the final states are the five-body 4He + 4p

system. When they reconstruct the 6Be(0+
1 ) component among

the five-body final states, the probability of the 6Be(0+
1 ) + 2p

decay channel is estimated as 0.92(5), which is consistent with
the present value of the 0+ pair number summed by the spin S

shown in Table VI.
In the 0+

2 state of 8C, this state has about 2.0 of the
0+ proton pair number for a real part in addition to the
large 2+ pair number as about 2.6. This is consistent with
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FIG. 5. Real parts of the complex pair numbers of valence protons
P (J π , S) in the 8C(0+
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2 ) states decomposed into the S = 0 (shaded)

and S = 1 components (blank).
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FIG. 6. Real parts of the complex pair numbers of valence
neutrons P (J π , S) in the 8He(0+

1 , 0+
2 ) states decomposed into the

S = 0 (shaded) and S = 1 components (blank).

the (p3/2)2(p1/2)2 configuration, which can be decomposed
into the pairs of 0+, 1+, and 2+ with the numbers of 2,
1.5, and 2.5, respectively. Similarly to the ground-state case,
the decompositions into the S = 0, 1 components in the one
proton-pair are naively understood from the (p3/2)2 and (p1/2)2

configurations.
To discuss the mirror symmetry of 8C, we show the neutron

pair numbers of four valence neutrons in 8He in Fig. 6, those
of which dominantly have the real parts. From the results,
the distributions are quite similar between 8C and 8He for the
ground and excited 0+ states. Similarly to the case of 8C, the
importance of the 2+ neutron pair in 8He is confirmed. This
result was suggested in the experiment [47] and is also obtained
in the 6He + n+ n three-body analysis [15]. On the other hand,
the 0+

2 state has almost two of the 0+ neutron pair number
in addition to the large 2+ pair number. This is consistent
with the (p3/2)2(p1/2)2 configuration, as shown in Table IV. In
summary, the structures of 8C are similar to those of 8He for
the properties of the pair numbers of valence nucleons above
4He. This result indicates that the mirror symmetry is well
retained in two nuclei for the 0+ states.

IV. SUMMARY

We have investigated the resonance structures of 8C with the
4He + p + p + p + p five-body cluster model. The boundary
condition for many-body resonances is accurately treated using
the complex scaling method. The decay thresholds concerned
with subsystems are described consistently. We have found
two 0+ resonances of 8C, which are five-body resonances
and are dominantly described by the p-shell configurations.
For the ground state, the energy and the decay width agree
with the recent new experiments. We also predict the excited
0+

2 resonance of 8C, which we hope to see confirmed
experimentally. It is found that the present cluster model
describes well the systematic energy spectra of proton-rich
nuclei from 5Li to 8C, in addition to the mirror nuclei of the
neutron-rich He isotopes from 5He to 8He.

For 8C, we, furthermore, investigate the structures of four
valence protons around the 4He core and compare them with
those of neutrons in 8He, a mirror nucleus. The ground state of
8C is dominated by the (p3/2)4 configuration of four protons
with the squared amplitude of about 0.88 and the 0+

2 state
is (p3/2)2(p1/2)2 with about 0.93, corresponding to the 2p2h
configuration from the ground state. We also decompose the
four protons into two proton pairs and discuss the coupling
behavior of the two proton pairs. It is found that the 2+
proton pair contributes largely in the 8C ground state which
is understood from the (p3/2)4 configuration. On the other
hand, the 8C(0+

2 ) state has about two of the 0+ proton pairs
which mainly comes from the (p3/2)2(p1/2)2 configuration.
The structure of 8C is compared with 8He and it is found that
both the ground and excited 0+ states of two nuclei retain the
mirror symmetry well.
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[22] T. Myo, K. Katō, and K. Ikeda, Phys. Rev. C 76, 054309

(2007).
[23] T. Myo, R. Ando, and K. Katō, Phys. Rev. C 80, 014315 (2009).
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[27] S. Aoyama, T. Myo, K. Katō, and K. Ikeda, Prog. Theor. Phys.

116, 1 (2006).

034338-7

http://dx.doi.org/10.1103/PhysRevLett.55.2676
http://dx.doi.org/10.1103/PhysRevC.82.041304
http://dx.doi.org/10.1103/PhysRevC.84.014320
http://dx.doi.org/10.1103/PhysRevLett.32.1207
http://dx.doi.org/10.1103/PhysRevC.13.1018
http://dx.doi.org/10.1103/PhysRevC.13.50
http://dx.doi.org/10.1103/PhysRevC.13.50
http://dx.doi.org/10.1103/PhysRevC.62.064311
http://dx.doi.org/10.1016/S0375-9474(01)01305-7
http://dx.doi.org/10.1016/j.nuclphysa.2005.05.148
http://dx.doi.org/10.1016/j.nuclphysa.2007.01.093
http://dx.doi.org/10.1016/j.nuclphysa.2007.01.093
http://dx.doi.org/10.1016/j.physletb.2008.12.052
http://dx.doi.org/10.1016/0370-2693(92)91216-V
http://dx.doi.org/10.1103/PhysRevLett.99.252501
http://dx.doi.org/10.1103/PhysRevC.84.064306
http://dx.doi.org/10.1103/PhysRevC.84.064306
http://dx.doi.org/10.1016/j.physletb.2006.05.092
http://dx.doi.org/10.1016/j.physletb.2006.05.092
http://dx.doi.org/10.1103/PhysRevC.80.027301
http://dx.doi.org/10.1103/PhysRevLett.94.052501
http://dx.doi.org/10.1103/PhysRevC.78.044308
http://dx.doi.org/10.1103/PhysRevC.78.044308
http://dx.doi.org/10.1103/PhysRevC.75.031301
http://dx.doi.org/10.1103/PhysRevC.75.031301
http://dx.doi.org/10.1103/PhysRevC.38.410
http://dx.doi.org/10.1103/PhysRevC.73.034318
http://dx.doi.org/10.1103/PhysRevC.73.034318
http://dx.doi.org/10.1103/PhysRevC.76.054309
http://dx.doi.org/10.1103/PhysRevC.76.054309
http://dx.doi.org/10.1103/PhysRevC.80.014315
http://dx.doi.org/10.1016/j.physletb.2010.06.034
http://dx.doi.org/10.1016/0370-1573(83)90112-6
http://dx.doi.org/10.1016/S0370-1573(98)00002-7
http://dx.doi.org/10.1143/PTP.116.1
http://dx.doi.org/10.1143/PTP.116.1


TAKAYUKI MYO, YUMA KIKUCHI, AND KIYOSHI KATŌ PHYSICAL REVIEW C 85, 034338 (2012)
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[38] T. Myo, K. Katō, and K. Ikeda, Prog. Theor. Phys. 113, 763
(2005).

[39] J. Aguilar and J. M. Combes, Commun. Math. Phys. 22, 269
(1971); E. Balslev and J. M. Combes, ibid. 22, 280 (1971).

[40] W. J. Romo, Nucl. Phys. 116, 617 (1968).
[41] M. Homma, T. Myo, and K. Katō, Prog. Theor. Phys. 97, 561
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