
PHYSICAL REVIEW C 85, 034331 (2012)

Consistent description of nuclear charge radii and electric monopole transitions
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A systematic study of energy spectra throughout the rare-earth region (even-even nuclei from 58Ce to 74W)
is carried out in the framework of the interacting boson model (IBM), leading to an accurate description of
the spherical-to-deformed shape transition in the different isotopic chains. The resulting IBM Hamiltonians are
then used for the calculation of nuclear charge radii (including isotope and isomer shifts) and electric monopole
transitions with consistent operators for the two observables. The main conclusion of this study is that an IBM
description of charge radii and electric monopole transitions is possible for most of the nuclei considered but that
it breaks down in the tungsten isotopes. It is suggested that this failure is related to hexadecapole deformation.
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I. INTRODUCTION

The structural properties of excited 0+ states in deformed
even-even nuclei have been the subject of a long controversy.
According to the geometric model of Bohr and Mottelson [1],
a nucleus with an ellipsoidal equilibrium shape may undergo
oscillations of two different types, β and γ . The first type of
vibration preserves axial symmetry while the second allows
excursions toward triaxial shapes. These vibrations should be
combined with rotations exhibited by the deformed, vibrating
nucleus to yield a rotation-vibration spectrum. The geometric
model of Bohr and Mottelson, therefore, predicts an axially
deformed nucleus to display a spectrum of rotational bands
built on top of vibrational excitations. The lowest in energy
is the ground-state rotational band with Kπ = 0+ (i.e., of
which the projection of the angular momentum on the axis of
symmetry is zero) which corresponds to no intrinsic excitation.
Next in energy are the β- and γ -vibrational bands which
correspond to one intrinsic excitation of the β or γ type,
characterized by a rotational band with Kπ = 0+ or 2+,
respectively. At higher energies still, the geometric model
predicts rotational bands built on multiple excitations of β

and/or γ phonons.
While γ -vibrational bands are an acknowledged feature

of deformed nuclei, such is not the case for β-vibrational
bands. Confusion arises because excited 0+ states in nuclei can
be of many different characters, such as pairing isomers [2],
two-quasi-particle excitations [3], or so-called intruder states
that arise through the mechanism of shape coexistence [4].
A careful analysis of the observed properties of excited 0+
states seems to indicate that very few indeed satisfy all criteria
proper to a β-vibrational state [5]. In particular, although this
observation is obfuscated by a lack of reliable data, very few 0+
states decay to the ground state by way of an electric monopole
transition of sizable strength [6], as should be the case for a
β vibration [7]. It is therefore not surprising that alternative
interpretations of excited 0+ states in deformed nuclei, either
as pairing isomers (see, e.g., Refs. [8,9]) or through shape
coexistence and configuration mixing (see, e.g., Ref. [10])
have gained advocates over recent years.

The purpose of this paper is to examine to what extent a
purely collective interpretation of nuclear 0+ levels is capable

of yielding a coherent and consistent description of observed
charge radii and electric monopole transitions [11]. As noted
above, very few measured electric monopole transitions satisfy
the criteria proper to a matrix element from the ground-state to
the β-vibrational band and the present attempt therefore might
seem doomed to failure. However, collective excitations of
nuclei can also be described with the interacting boson model
(IBM) of Arima and Iachello [12–14], where they are modeled
in terms of a constant number of s and d (and sometimes g)
bosons which can be thought of as correlated pairs of nucleons
occupying valence shell-model orbits coupled to angular
momentum � = 0 and 2 (and 4), respectively. One of the
advantages of the IBM is that a connection with the shell model
[15] as well as with the geometric model [16–18] has been
established. In particular, one of its dynamical symmetries,
the SU(3) limit [13], displays energies reminiscent of the
rotation-vibration spectrum of the geometric model. It has
also been shown, however, that the first-excited 0+ state in
the SU(3) limit of the IBM has not exactly a β-vibrational
character but is a complicated mixture of intrinsic β and γ

vibrations [19]. The main purpose of this paper is to show that
a collective interpretation of excited 0+ states with the IBM is
not inconsistent with the electric monopole data, as observed
in the rare-earth region.

The outline of this paper as follows. In Sec. II the ground
is prepared by discussing charge radii and electric monopole
transitions in the context of different models that are applied
to even-even nuclei in the rare-earth region from Ce to W in
Sec. III. A qualitative explanation of the failure of this approach
in the W isotopes is offered in Sec. IV by invoking effects of
hexadecapole deformation. Finally, Sec. V summarizes the
conclusions of this work.

II. CHARGE RADII AND ELECTRIC MONOPOLE
TRANSITIONS

Electric monopole (E0) transitions between nuclear levels
proceed mainly by internal conversion with no transfer of
angular momentum to the ejected electron. If the energy of the
transition is greater than 2mec

2 (where me is the mass of the
electron), they can occur via electron-positron pair creation. A
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less probable de-excitation mode which can proceed via an E0
transition is two-photon emission. It is not a priori clear why
a connection exists between charge radii and E0 transitions.
In fact, the argument is rather convoluted and we begin this
section by recalling it. The argument can be generalized to
effective operators, leading to a relation between charge radii
and E0 transitions which forms the basis of the present study.

A. Relation between effective operators for charge radii and
electric monopole transitions

The total probability for an E0 transition between initial
and final states |i〉 and |f 〉 can be written as the product of an
electronic factor � and a nuclear factor ρ(E0), the latter being
equal to [20]

ρ(E0) = 〈f |
∑
k∈π

[(
rk

R

)2

− σ

(
rk

R

)4

+ · · ·
]
|i〉, (1)

with R = r0A
1/3 and where the summation runs over the Z

protons (π ) in the nucleus. The coefficient σ depends on the
assumed nuclear charge distribution but in any reasonable case
it is smaller than 0.1. The second term in Eq. (1) therefore can
be neglected if the leading term is not too small [20]. In this
approximation we have

ρ(E0) ≈ 1

R2
〈f |

∑
k∈π

r2
k |i〉. (2)

On the other hand, the mean-square charge radius of a state
|s〉 is given by

〈r2〉s = 1

Z
〈s|

∑
k∈π

r2
k |s〉. (3)

This is an appropriate expression insofar that a realistic
A-body wave function is used for the state |s〉. For the heavy
nuclei considered here the construction of such realistic wave
function is difficult and recourse to an effective charge radius
operator T̂ (r2) should be taken. In particular, if neutrons are
assigned an effective charge, the polarization of the protons
due to the neutrons is “effectively” taken into account, giving
rise to changes in the charge radius 〈r2〉 with neutron number.
The generalization of the expression (3) can therefore be
written as

〈r2〉s ≡ 〈s|T̂ (r2)|s〉 = 1

enN + epZ
〈s|

A∑
k=1

ekr
2
k |s〉

= 1

enN + epZ
〈s|en

∑
k∈ν

r2
k + ep

∑
k∈π

r2
k |s〉, (4)

where the first summation runs over all A nucleons while the
second and third summations run over neutrons (ν) and protons
(π ) only, and where en (ep) is the effective neutron (proton)
charge. If bare nucleon charges are taken (en = 0 and ep = e),
the summation extends over protons only and the original
expression (3) is recovered. If equal nucleon charges are taken
(en = ep), Eq. (4) is appropriate for the matter radius.

In the approximation σ ≈ 0, the starting expressions (2) and
(3) for the nuclear E0 transition strength and the mean-square

charge radius are identical (up to the constants R2 and Z).
It is therefore natural to follow the same argument as used
for the charge radius for the construction of a generalized E0
transition operator, leading to the expression [21]

T̂ (E0) =
A∑

k=1

ekr
2
k = en

∑
k∈ν

r2
k + ep

∑
k∈π

r2
k . (5)

In terms of this operator, the dimensionless quantity ρ(E0),
defined in Eq. (2) and referred to as the monopole strength, is
given by

ρ(E0) = 〈f |T̂ (E0)|i〉
eR2

. (6)

Since the matrix element (6) is known up to a sign only, usually
ρ2(E0) is quoted.

The basic hypothesis of the present study is to assume
that the effective nucleon charges in the charge radius and E0
transition operators are the same. If this is so, comparison of
Eqs. (4) and (5) leads to the relation

T̂ (E0) = (enN + epZ)T̂ (r2). (7)

This is a general relation between the effective operators used
for the calculation of charge radii and E0 transitions, which is
applied throughout this study.

B. Charge radii and electric monopole transitions
in the interacting boson model

Equation (7) can, in principle, be tested in the framework
of any model. This endeavor is difficult in the context of
the nuclear shell model because realistic wave functions,
appropriate for the calculation of 〈r2〉 or E0 matrix elements,
are hard to come by for heavy nuclei. As an alternative we
propose here to test the implied correlation with the use of a
simpler model, namely the IBM [12–14]. This requires that all
states involved [i.e., |s〉 in Eq. (4), and |i〉 and |f 〉 in Eq. (6)]
are collective in character and can be described by the IBM.

In the IBM-1, where no distinction is made between neutron
and proton bosons, the charge radius operator is taken as the
most general scalar expression that is linear in the generators
of U(6) [22],

T̂ (r2) = 〈r2〉c + αNb + η
n̂d

Nb

, (8)

where Nb is the total boson number (the customary notation N

is not used here to avoid confusion with the neutron number),
n̂d is the d-boson number operator, and α, η are parameters
with units of length2. The first term in Eq. (8), 〈r2〉c, is the
charge radius of the core nucleus. The second term accounts
for the (locally linear) increase in the charge radius due to the
addition of two nucleons (i.e., neutrons since isotope shifts
are considered in this study). The boson number Nb is the
number of pairs of valence particles or holes (whichever is
smaller) counted from the nearest closed shells for neutrons
and protons. If the bosons are particle-like, the addition of two
nucleons corresponds to an increase of Nb by one and α is
positive. In contrast, if the bosons are hole-like, the addition
of two nucleons corresponds to a decrease of Nb by one and
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α is negative. Therefore, care should be taken to change the
sign of α at midshell [22]. The third term in Eq. (8) stands for
the contribution to the charge radius due to deformation. It is
identical to the one given in Ref. [22] but for the factor 1/Nb.
This factor is included here because it is the fraction 〈n̂d〉/Nb

which is a measure of the quadrupole deformation (β2
2 in the

geometric collective model) rather than the matrix element
〈n̂d〉 itself. Since the inclusion of 1/Nb is nonstandard, also
results without this factor will be given in the following, that
is, with the charge radius operator:

T̂ ′(r2) = 〈r2〉c + α′Nb + η′n̂d . (9)

Once the form of the charge radius operator is determined,
that of the E0 transition operator follows from Eq. (7). In the
IBM-1 the E0 transition operators are therefore

T̂ (E0) = (enN + epZ)η
n̂d

Nb

, (10)

or

T̂ ′(E0) = (enN + epZ)η′n̂d . (11)

Since for E0 transitions the initial and final states are different,
neither the constant 〈r2〉c nor αNb in Eq. (8) or α′Nb in Eq. (9)
contribute to the transition, so they can be omitted from the
E0 operators.

Two other quantities can be derived from charge radii,
namely isotope and isomer shifts. The former measures the
difference in charge radius of neighboring isotopes. For the
difference between even-even isotopes one finds from Eq. (8)

�〈r2〉(A) ≡ 〈r2〉(A+2)
0+

1
− 〈r2〉(A)

0+
1

= |α| + η

(〈
n̂d

Nb

〉(A+2)

0+
1

−
〈
n̂d

Nb

〉(A)

0+
1

)
. (12)

The occurrence of the absolute value |α| is due to the
interpretation of the bosons as pairs of particles or holes, as
discussed above. Isomer shifts are a measure of the difference
in charge radius between an excited (here the 2+

1 ) state and the
ground state, and are given by

δ〈r2〉(A) ≡ 〈r2〉(A)
2+

1
− 〈r2〉(A)

0+
1

= η

(〈
n̂d

Nb

〉(A)

2+
1

−
〈
n̂d

Nb

〉(A)

0+
1

)
. (13)

Similar formulas hold for the charge radius operator (9) in
terms of the parameters α′ and η′. For ease of notation,
the superscript (A) in the isotope and isomer shifts shall be
suppressed in the following.

C. Estimate of the coefficients α and η

Although the coefficients α and η in Eq. (8) will be treated as
parameters and fitted to data on charge radii and E0 transitions,
it is important to have an estimate of their order of magnitude.
The term in α increases with particle number and therefore can
be associated with the “standard” isotope shift. This standard

contribution to the charge radius is given by [23]

〈r2〉(A)
0+

1 ,std
≈ 3

5 r2
0 A2/3. (14)

The term in η stands for the contribution to the nuclear
radius due to deformation. For a quadrupole deformation it
is estimated to be [23]

〈r2〉(A)
0+

1 ,def
≈ 5

4π
β2

2 〈r2〉(A)
0+

1 ,std
≈ 3

4π
β2

2 r2
0 A2/3, (15)

where β2 is the quadrupole deformation parameter of the
geometric model.

The estimate of |α| follows from

|α| = �〈r2〉(A)
std ≈ 3

5 r2
0 ((A + 2)2/3 − A2/3)

≈ 4
5 r2

0 A−1/3, (16)

which for the nuclei considered here (A ∼ 150) gives |α| ≈
0.2 fm2. The estimate of η can be obtained by associating the
deformation contribution (15) with the expectation value of
〈n̂d〉0+

1
in the IBM. This leads to the relation

η
β̄2

2

1 + β̄2
2

≈ 4

3
β̄2

2 r2
0 N2

b A−4/3, (17)

where use has been made of the approximate correspondence
β2 ≈ (4Nb/3A)

√
πβ̄2 between the quadrupole deformations

β2 and β̄2 in the geometric model and in the IBM, respectively
[24]. The relation (17) yields the estimate

η ≈ 4
3

(
1 + β̄2

2

)
r2

0 N2
b A−4/3. (18)

For typical values of Nb ∼ 10 and A ∼ 150 this gives a range
of possible η values between 0.25 and 0.75 fm2, corresponding
to weakly deformed (β̄2 
 1) and strongly deformed (β̄2 ≈√

2) nuclei, respectively.
Similar estimates can be derived for the coefficients in the

alternative form (9) of the charge radius operator. The estimate
for |α′| is identical to Eq. (16) while the one for η′ differs by
a factor Nb.

D. Estimate of the effective charges

The consistent definition of operators for charge radii and
E0 transitions leads to the introduction of neutron and proton
effective charges for both operators, as opposed to previous
treatments where this was done for E0 transitions only. This
opens the possibility to obtain an estimate of the effective
charges en and ep from data for charge radii which are widely
available.

A simple estimate can be obtained in a Hartree-Fock
approximation with harmonic-oscillator single-particle wave
functions. For the Hartree-Fock ground state |g.s.〉 of a nucleus,
simple counting arguments of the degeneracies of the three-
dimensional harmonic oscillator (see Sec. 2.2 of Ref. [25]),
lead to the following expression for the expectation value of
the neutron part of the charge radius operator:

〈g.s.|
∑
k∈ν

r2
k |g.s.〉 = 34/3

4
N4/3b2 = 3 · 21/3

5
r2

0 N4/3A1/3, (19)
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where b is the oscillator length of the harmonic oscillator
for which the estimate b = 27/63−1/65−1/2r0A

1/6 is used [25].
Equation (19) and its equivalent for the proton part of the
charge radius operator, can then be combined to yield

〈r2〉gs = 3 · 21/3

5
r2

0
(enN

4/3 + epZ4/3)A1/3

enN + epZ
. (20)

The separate effective charges en and eK cannot be obtained
from a fit of this expression to the data on charge radii,
but the ratio en/e2 can. There exists, unfortunately, a strong
dependence of this ratio on the value used for r0, as will be
discussed in Sec. III C.

E. Relating charge radii and electric monopole transitions
through configuration mixing

The idea of correlating observed E0 transitions with charge
radii is not new and, in particular, was already proposed by
Wood et al. [6]. These authors tested this proposal in the
context of a model assuming mixing between two different
coexisting configurations. Since in Sec. III results are quoted
for the few nuclei where this model has been applied, a brief
reminder of the method is given in this subsection.

Assume that the initial and final levels in the E0 transition
are orthogonal mixtures of some states |α1J 〉 and |α2J 〉, so
that

|iJ 〉 = aJ |α1J 〉 + bJ |α2J 〉,
(21)

|f J 〉 = aJ |α2J 〉 − bJ |α1J 〉.
The labels α1 and α2 refer to a different intrinsic structure
for the two sets of states (typically two bands), the members
of which are additionally characterized by their angular
momentum J . The aJ and bJ are mixing coefficients that
satisfy a2

J + b2
J = 1. If one assumes that no E0 transition

is allowed between states with a different intrinsic structure,
〈α1J |T̂ (E0)|α2J 〉 ≈ 0, it follows that

〈f J |T̂ (E0)|iJ 〉
≈ aJ bJ (〈α2J |T̂ (E0)|α2J 〉 − 〈α1J |T̂ (E0)|α1J 〉)
= aJ bJ (enN + epZ)(〈r2〉α2J − 〈r2〉α1J ), (22)

where the last equality is due to Eq. (7). Furthermore, it must
be hoped that the difference in 〈r2〉 appearing in Eq. (22) can
be identified with a measured isotope shift �〈r2〉 between
nuclei somewhere in the neighborhood and, therefore, that
the ground states of two nuclei in the neighborhood can be
identified with the unmixed intrinsic structures α1 and α2.
Finally, it must be assumed that this difference in 〈r2〉 does not
depend significantly on J or, equivalently, that isomer shifts
are identical for the intrinsic structures α1 and α2. With this
first set of assumptions the following relation holds:

ρ2
J (E0) = a2

J b2
J

(enN + epZ)2

e2R4
[�〈r2〉]2, (23)

which reduces to the result of Wood et al. [6] if bare nucleon
charges are taken. According to this equation the J dependence
of the E0 strength is contained in the coefficients aJ and bJ ,
which can be obtained from a two-state mixing calculation. An

additional input into the calculation, therefore, is the relative
position in energy of the intrinsic structures α1 and α2 and
the size of the mixing matrix element (itself assumed to be
independent of J ). These are the essential ingredients of the
calculations reported by Kulp et al. [10] of which the results
are quoted below.

III. SYSTEMATIC STUDY OF NUCLEI IN THE
RARE-EARTH REGION

To test the relation between charge radii and E0 transitions,
proposed in the previous section, a systematic study of all even-
even isotopic chains from Ce to W is carried out. This analysis
requires the knowledge of structural information concerning
the ground states and excited states which here is obtained by
adjusting an IBM-1 Hamiltonian to observed spectra in the
rare-earth region.

A. Hamiltonian and energy spectra

All isotope series in the rare-earth region from Z = 58
to Z = 74 have the particularity to vary from spherical to
deformed shapes and to display systematically a shape phase
transition. Such nuclear behavior can be parametrized in terms
of a simplified IBM-1 Hamiltonian which can be represented
on the so-called Casten triangle [26], as demonstrated for rare-
earth nuclei by Mc Cutchan et al. [27]. Alternatively, as shown
by Garcı́a-Ramos et al. [28], the same region of the nuclear
chart can be described with the full IBM Hamiltonian. The
latter approach is adopted here and a general one- and two-
body Hamiltonian is considered which is written in multipole
form as [22]

Ĥ = εd n̂d + a0P̂+ · P̂− + a1L̂ · L̂ + a2Q̂ · Q̂

+ a3T̂3 · T̂3 + a4T̂4 · T̂4, (24)

where n̂d is the d-boson number operator, P̂+ (P̂−) is a
boson-pair creation (annihilation) operator, L̂ is the angular
momentum operator, and Q̂, T̂3, and T̂4 are quadrupole,
octupole, and hexadecapole operators, respectively. (For the
definitions of these operators in terms of s and d bosons,
see Sec. 1.4.7 of Iachello and Arima [22].) If only excitation
and no absolute energies are considered, the expression (24)
defines the most general Hamiltonian with one- and two-body
interactions between the bosons in terms of six parameters. The
parameter χ in the quadrupole operator Q̂ can be arbitrarily
chosen (as long as it is different from zero) and is fixed here
to −√

7/2 for all nuclei.
Although reasonable results are obtained with constant

parameters for an entire chain of isotopes, the spherical-to-
deformed transition is better described if at least one parameter
is allowed to vary with boson number Nb. Garcı́a-Ramos
et al. [28] followed the procedure to vary the d-boson energy εd

with Nb. A different method is followed here by allowing the
variation of the coefficient a2 associated with the quadrupole
term. To reduce the number of parameters in the fit, we assume
that a2 depends linearly on the quantity NνNπ/(Nν + Nπ )
where Nν (Nπ ) is half the number of valence neutrons (protons)
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TABLE I. Parameters in the Hamiltonian (24) and the rms deviation σ , in units of keV.

Isotopes εd a0 a1 a′
2 a′′

2 a3 a4 σ

144−152
58Ce 1516.9 67.7 −8.6 −26.5 −2.2 −185.9 −113.1 81

146−156
60Nd 1701.0 55.9 −16.2 −17.2 −0.6 −78.1 −221.5 124

148−160
62Sm 944.2 −73.7 5.7 −0.2 −15.2 −227.4 70.0 107

150−162
64Gd 1857.2 69.1 −15.3 −8.4 −1.7 −52.8 −228.0 115

152−164
66Dy 1887.2 75.6 −12.3 −8.8 −0.7 −53.5 −219.2 97

154−170
68Er 1772.6 105.9 −10.9 −6.7 −0.9 −43.5 −222.0 87

156−176
70Yb 780.4 43.5 0.5 6.7 −5.2 −20.9 −41.4 91

160−182
72Hf 1061.7 62.5 −7.0 −7.0 −0.2 36.0 −128.2 103

164−190
74W 1068.4 73.0 −3.8 −7.0 −0.5 5.7 −136.7 103

particles or holes, whichever is smaller. The argument for
introducing such a dependence is related to the importance
of the neutron-proton interaction as the deformation-driving
mechanism in nuclei [29]. The parameter a2 can then be
decomposed into two terms as follows:

a2 = a′
2 + NνNπ

Nν + Nπ

a′′
2 . (25)

The parameters in the Hamiltonian (24) are determined
from a least-squares fit to levels of the ground-state band with
Kπ = 0+ and those of two more bands with Kπ = 0+ and
Kπ = 2+ (“quasi-β” and “quasi-γ ” bands). Since two-quasi-
particle excitations do not belong to the model space of the
IBM-1, states beyond the backbend cannot be described in
this version of the model and for this reason only levels up
to Jπ = 10+ are included in the fit. Similarly, near closed
shells, excitations might be of single-particle character and,
therefore, nuclei with N � 84 are excluded from the energy fit.
Nevertheless, the Hamiltonian (24) with the parametrization
(25) allows the extrapolation toward the N = 84 isotopes,
which is needed for some of the isotope shifts calculated in the
following. The total number of nuclei included in the fit is 78
and the total number of excited levels is 846. The parameters
are summarized in Table I as well as the root-mean-square
(rms) deviation σ for each isotope chain which typically is of
the order of 100 keV.

Figure 1 illustrates, with the examples of samarium,
gadolinium, and dysprosium, the typical evolution of the
energy spectrum of a spherical to that of a deformed nucleus
which is observed for every isotope series studied here. In each
nucleus are shown levels of the ground-state band up to angular
momentum Jπ = 10+ as well as the first few states of the
excited bands, together with their experimental counterparts,
if known.

For a given nucleus the choice of the subset of collective
states that should be included in the fit is often far from obvious.
While members of the ground-state and the γ -vibrational
bands in a deformed nucleus are readily identified, this is not
necessarily so for the “β-vibrational” band. As a result, guided
by the E0 transitions discussed in the next subsection, the
calculated first-excited Kπ = 0+ band is associated in some

nuclei not with the lowest observed Kπ = 0+ band but with
a higher-lying one. This is the case for 168−172Yb and also
for 166Er where the fourth Jπ = 0+ level at 1934 keV has
been recently identified as the band head of the β-vibrational
band on the basis of its large E0 matrix element to the ground
state [30].

Although the agreement with the experiment can be called
satisfactory, it should be noted from Table I that it is obtained
with rather large parameter fluctuations between the different
isotopic chains. This presumably is so because the parameters
are highly correlated and small changes in the fitted data
give rise to large fluctuations in some of the parameters.
The main purpose of this calculation, however, is not to
establish some parameter systematics with the Hamiltonian
(24) but rather to arrive at a reasonably realistic description
of the spherical-to-deformed transition. This will enable a
simultaneous calculation of charge radii and E0 transitions,
as discussed in the next two subsections.

B. Isotope and isomer shifts

Isotope shifts �〈r2〉, according to Eq. (12), depend on
the parameters |α| and η in the IBM-1 operator (8). These
parameters are expected to vary smoothly with mass number
A, according to Eqs. (16) and (18). The estimate (16) neglects,
however, the microscopic make-up of the pair of neutrons
which varies considerably from Ce to W. It is therefore
necessary to adjust |α| for each isotope series separately, and
the resulting values are given in the first row of Table II.
The value of η, on the other hand, is kept constant for
all isotopes, η = 0.50 fm2. The parameters thus derived are
broadly consistent with the estimates obtained in Sec. II C.

Similar remarks hold for the alternative parametrization (9)
of the charge radius operator. The values of |α′| are given in
the second row of Table II while η′ = 0.05 fm2.

The resulting isotope shifts are shown in Fig. 2. Only
marginal differences exist between the two sets of calculations,
with and without the factor 1/Nb in the charge radius operator.
The main reason for preferring the form (8) is that it lacks
a kink in �〈r2〉 at midshell. Although this seems to occur in
the Hf data, it is unlikely that the observed kink is associated
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FIG. 1. Experimental (points) and calculated (lines) energy levels in the Sm, Gd, and Dy isotopes: (a) ground-state band up to J π = 10+,
(b) first-excited Kπ = 0+ band up to J π = 4+, and (c) first-excited Kπ = 2+ band up to J π = 4+.

with a maximum of the boson number at midshell. Given the
similarity between the two sets of calculations, the subsequent
comments are valid for both.

The peaks in the isotope shifts are well reproduced in all
isotopic chains with the exception of Yb. The largest peaks
occur for 152−150Sm, 154−152Gd, and 156−154Dy, that is, for
the difference in radii between N = 90 and N = 88 isotopes.
The peak is smaller below Z = 62 for Ce and Nd, and fades
away above Z = 66 for Er, Yb, Hf, and W. The calculated
isotope shifts broadly agree with these observed features but
there are differences though. Notably, the calculated peak
in the Sm isotopes is much broader than the observed one,
indicating that the spherical-to-deformed transition occurs
faster in reality than it does in the IBM-1 calculation. Also, it
would be of interest to determine the character of the transition

in the Nd isotopes: the present IBM-1 calculation predicts
it to be rather smooth but data in the deformed region of
the transition are lacking to confirm this behavior. Likewise,
the IBM-1 calculation features a very fast transition for the
Gd isotopes with a sharp peak at N = 88 but isotope-shift
data are lacking for the nuclei in the spherical region of the
transition.

The feature of peaking isotope shifts is related to the onset
of deformation which is particularly sudden (as a function
of neutron number) for the Sm, Gd, and Dy isotopes. This
can be quantitatively understood as a result of the subshell
closure at Z = 64 [36], combined with the strongly attractive
interaction between neutrons in the 1νh9/2 orbit and protons
in the 1πh11/2 orbit. If the occupancies of the neutrons in the
1νh9/2 and of the protons in the 1πh11/2 orbit are both low, as

TABLE II. The parameters |α| and |α′| in the charge radius operators (8) and (9), in units of fm2, for the different isotope series.

Isotope Ce Nd Sm Gd Dy Er Yb Hf W

|α| 0.22 0.24 0.26 0.13 0.15 0.15 0.11 0.10 0.11
|α′| 0.23 0.25 0.26 0.09 0.12 0.12 0.09 0.11 0.15
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FIG. 2. Experimental (points) and calculated (lines) isotope shifts
�〈r2〉, in units of fm2, for isotopic chains in the rare-earth region from
Ce to W. The full (dashed) lines are for the charge radius operator
(8) [(9)], with parameters given in Table II and in the text. Data are
taken from Ref. [31] for Ce, from Ref. [32] for Nd, Sm, Dy, Er, and
Yb, from Ref. [33] for Gd, from Ref. [34] for Hf, and from Ref. [35]
for W.

is the case for N � 92 and Z � 64, the nucleus is expected
to be spherical. As soon as one of the two orbits becomes
significantly occupied, the strong neutron-proton interaction
will induce occupancy of the partner orbit and an onset of
deformation.

A further test of the calculated charge radii is obtained
from isomer shifts δ〈r2〉, depending only on η [see Eq. (13)]
or η′. The isomer shifts that are known experimentally are

TABLE III. Experimental and calculated isomer shifts δ〈r2〉, in
units of 10−3 fm2, in the rare-earth region.

Isotope δ〈r2〉 (10−3 fm2)

Th1a Th2b Th3c Expt. Ref.

150Sm 80 72 49.6 2.6 [37]
152Sm 37 37 19 25.0 7.0 [38]

19.0 [39]
14.0 1.0 [40]
12.0 [41]
18.0 4.0 [37]

154Sm 6 7 1.1 0.8 [42]
154Gd 28 31 15.0 2.0 [40]

19.0 6.0 [43]
18.5 2.5 [44]
20.0 3.9 [45]

156Gd 4 5 2.6 0.8 [46]
0.1 1.7 [44]
4.3 3.7 [45]

158Gd 3 4 0.4 0.3 [47]
1.5 0.8 [48]

−4.0 1.2 [44]
0.3 3.3 [45]

160Gd 1 1 0.3 0.8 [48]
−1.4 3.1 [44]
−2.1 3.2 [45]

170Yb 4 6 1.2 0.3 [46]
1.7 0.6 [49]

1.20 0.40 [50]
172Yb 3 5 0.41 0.20 [50]
174Yb 2 4 1.0 0.45 [49]

−0.44 0.19 [50]
176Yb 2 4 −0.17 0.10 [50]
182W 5 6 6.0 [51]

−0.6 [41]
−0.2 [52]

184W 8 9 0.16 [52]
0.5 0.3 [53]

186W 17 18 0.14 [52]

aWith the charge radius operator (8).
bWith the charge radius operator (9).
cConfiguration-mixing calculation of Ref. [10].

listed in Table III. The data are more than 30 years old and
often discrepant. Nevertheless, a clear conclusion can be drawn
from the isomer shifts measured in the Sm and Gd isotopes:
they are easily an order of magnitude smaller in the deformed
than they are in the spherical region. In spite of the extreme
sensitivity of this effect, a quantitative description is obtained
of the isomer shifts in the Gd isotopes. For the Sm isotopes
only a qualitative agreement is found since the experimentally
observed drop in isomer shift between 152Sm and 154Sm is
stronger than what is calculated in the IBM-1. This indicates
that the spherical-to-deformed transition is faster in reality
than it is in the calculation, in line with what can be concluded
from the isotope shifts.

From the preceding analysis the following picture emerges.
All considered isotopic chains exhibit an evolution from a
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spherical to a deformed shape which, at the phase-transitional
point, is characterized by a peak in the isotope shifts. The
height of the peak is proportional to the suddenness of the
transition. This effect is a direct consequence of the increase
in the mean-square radius of a nucleus due to its deformation.
The IBM-1 is able to provide an adequate description of this
transitional behavior. By adjusting the charge radius operator
of the IBM-1 to the observed height of the peak in the isotope
shifts, a first estimate of the parameter η (or η′) is obtained.
Its value follows more directly from isomer shifts since only
one parameter enters this quantity but, unfortunately, data are
scarce and often unreliable. The choice η = 0.50 fm2 (or η′ =
0.05 fm2) is a compromise between the value obtained from
a fit to �〈r2〉 of all isotopes and the one from δ〈r2〉 in the
Gd isotopes. The question is now whether this value of η (or
η′) reproduces the E0 transitions observed in the rare-earth
nuclei.

C. Electric monopole transitions

The calculation of the matrix elements of the E0 transition
operator (10) or (11) requires the knowledge of the effective
charges en and ep. In principle, an estimate of the ratio en/ep

can be obtained by fitting the expression (20) to the available
data on charge radii in the rare-earth region. The minimum
in the rms deviation is shallow though and, furthermore, the
correlation between r0 and en/ep is strong. In other words, a
slightly different choice of r0 gives an almost equally good fit to
the charge radii of 58 � Z � 74 nuclei but with a significantly
different ratio en/ep. A reasonable choice of parameters, close
to the optimum set, corresponds to r0 = 1.24 fm, en = 0.50e,
and ep = e.

In Table IV the available E0 data in the rare-earth region
are compared with the results of this calculation. The two
choices of E0 transition operator, Eqs. (10) and (11), again
yield comparable results. An overall comment is that the
present approach succeeds in reproducing the correct order
of magnitude for ρ2(E0), in particular in the Sm, Gd, and
Dy isotopes. However, some discrepancies can be observed in
heavier nuclei and especially concern 172Yb and 182−184W. A
possible explanation is that the ρ2(E0) measured for these
nuclei is not associated with collective states. This seems
to be the case in 172Yb where several ρ2(E0) have been
measured none of which is large. Only in the W isotopes does
it seem certain that the observed E0 strength is consistently
an order of magnitude smaller than the calculated value. It
is known that these nuclei are in a region of hexadecapole
deformation [55] and this may offer a qualitative explanation
of the suppression of the E0 strength, as argued in the next
section.

While in a spherical vibrator there is no appreciable E0
strength from the ground state to any excited 0+ state, this
is different in a deformed nucleus which should exhibit large
ρ2(E0)s from the ground-state toward the β-vibrational band
[1,7]. As a consequence, one predicts an increase in the E0
strength as the phase-transitional point is crossed. This seems
to be confirmed in the few isotopic chains where data are
available. Adopting a simple, schematic Hamiltonian, von

TABLE IV. Experimental and calculated ρ2(E0) values in the
rare-earth region.

Isotope Transition J ρ2(E0) × 103

Th1a Th2b Th3c Expt.d

150Sm 740 → 0 0 7 6 18 2
1046 → 334 2 16 13 100 40

152Sm 685 → 0 0 52 52 72 51 5
811 → 122 2 41 41 77 69 6

1023 → 366 4 29 29 84 88 14
1083 → 0 0 2 2 0.7 0.4
1083 → 685 0 47 47 22 9

154Sm 1099 → 0 0 41 49 96 42
152Gd 615 → 0 0 68 68 63 14

931 → 344 2 77 77 35 3
154Gd 681 → 0 0 84 102 89 17

815 → 123 2 66 80 74 9
1061 → 361 4 38 46 70 7

156Gd 1049 → 0 0 44 64 42 20
1129 → 89 2 41 59 55 5

158Gd 1452 → 0 0 30 51 35 12
1517 → 79 2 27 45 17 3

158Dy 1086 → 99 2 42 70 27 12
160Dy 1350 → 87 2 28 56 17 4
162Er 1171 → 102 2 38 64 630 460
164Er 1484 → 91 2 24 48 90 50
166Er 1460 → 0 0 9 20 127 60
170Yb 1229 → 0 0 32 72 27 5
172Yb 1405 → 0 0 30 76 0.2 0.03
174Hf 900 → 91 2 32 71 27 13
176Hf 1227 → 89 2 15 38 52 9
178Hf 1496 → 93 2 32 72 14 3
182W 1257 → 100 2 45 77 3.5 0.3
184W 1121 → 111 2 52 75 2.6 0.5

aWith the E0 transition operator (10).
bWith the E0 transition operator (11).
cConfiguration-mixing calculation of Ref. [10].
dFrom Ref. [54] for J = 0, except 154Sm and 166Er which are from
Ref. [30]; from Ref. [6] for J �= 0.

Brentano et al. [56] showed that also in the IBM-1 sizable
E0 strength should be observed in all deformed nuclei. The
present IBM-1 calculation is in qualitative agreement with this
geometric picture and with the results of von Brentano et al.
Nevertheless, it should be pointed out that, systematically,
the calculated ρ2(E0; 0+

2 → 0+
1 ) in Table IV diminishes once

the phase-transitional point is crossed. In the Gd nuclei, at
least, this behavior seems to be borne out by the data. It
indicates that the first-excited 0+ state in the IBM-1 has not
simple a β-vibrational character but has a more complicated
structure [5,19].

Tables III and IV also show the results of a configuration-
mixing calculation for 152Sm [10]. This approach leads to a
quantitative, detailed description of the data. Results of similar
good quality are obtained for 154Gd [57]. However, in view of
the employed methodology, as explained in Sec. II E, it seems
difficult to make systematic calculations of E0 properties of
nuclei with this model.
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IV. EFFECT OF G BOSONS ON ELECTRIC MONOPOLE
TRANSITIONS

An obvious extension of the sd-IBM is to include a
correlated pair of higher angular momentum for which the
most natural choice is the g boson with � = 4. Many articles
have been published over the years where the role of the g

boson has been investigated in detail, for which we refer the
reader to the review of Devi and Kota [58]. The sdg-IBM
has been used in the interpretation of structural properties
of nuclei in the rare-earth region. For example, properties
of the 154−160Gd isotopes, including energy spectra and E2,
E4, and E0 transitions were interpreted in the framework of
the sdg-IBM-1 [59]. The conclusion of this particular study,
namely that the g boson is indispensable for the explanation
of the character of some Kπ = 4+ bands, was confirmed in
transfer-reaction studies, see, e.g., Burke et al. [60,61]. Other
examples of studies of rare-earth nuclei in the sdg-IBM-1
include 168Er [62], 146−158Sm [63], and 144−150Nd [64,65].

In this section the possible influence of hexadecapole
deformation or, equivalently, of g bosons on E0 transitions is
discussed. The spherical-to-deformed shape phase transition
in the sdg-IBM-1 corresponds to a transition between the two
limits U(5) ⊗ U(9) and SU(3) [66]. The following schematic
Hamiltonian is adopted:

Ĥ = εd n̂d + εgn̂g − κQ̂ · Q̂, (26)

where Q̂μ is the SUsdg(3) quadrupole operator [67]

Q̂μ = [s† × d̃ + d† × s̃](2)
μ − 11

14

√
5

2
[d† × d̃](2)

μ

+ 9

7
[d† × g̃ + g† × d̃](2)

μ − 3

14

√
55[g† × g̃](2)

μ . (27)

For a convenient description of the phase transition, another
parametrization of the Hamiltonian (26) can be introduced in
terms of λ and ζ (sometimes referred to as control parameters)
which are related to εd , εg , and κ by

λ = εg

εd

, κ = ζ

4Nb(1 − ζ )
, (28)

where Nb is now the total number of s, d, and g bosons. The
Hamiltonian (26) then becomes

Ĥ = c

[
(1 − ζ )(n̂d + λn̂g) − ζ

4Nb

Q̂ · Q̂

]
, (29)

where c is a scaling factor. The U(5) ⊗ U(9) limit is obtained
for ζ = 0 whereas the SU(3) limit corresponds to ζ = 1. By
varying ζ from 0 to 1 one will cross the critical point ζc ≈ 0.5
at which the spherical-to-deformed transition occurs.

In the sdg-IBM-1 the charge radius operator is

T̂ (r2) = 〈r2〉c + αN̂b + η
n̂d

Nb

+ γ
n̂g

Nb

, (30)

while the E0 transition operator is

T̂ (E0) = (enN + epZ)

(
η

n̂d

Nb

+ γ
n̂g

Nb

)
, (31)

which are straightforward extensions of the expressions (8)
and (10). Again, the total number operator N̂b = n̂s + n̂d + n̂g

does not contribute to the E0 transition and is1pt not included
in the operator (31).

Analytic expressions can be derived for the matrix elements
of the operators n̂s , n̂d , and n̂g for the limiting values of ζ in
the Hamiltonian (29). They are known for arbitrary angular
momentum J but for simplicity’s sake results are quoted for
J = 0 only. In the U(5) ⊗ U(9) limit they are trivial,

〈0+
1 |n̂s |0+

i 〉 = Nbδi1,

〈0+
1 |n̂d |0+

i 〉 = 0, (32)

〈0+
1 |n̂g|0+

i 〉 = 0.

In the SU(3) limit one finds for the ground-state expectation
values,

〈0+
1 |n̂s |0+

1 〉 = Nb(4Nb + 1)

5(4Nb − 3)
,

〈0+
1 |n̂d |0+

1 〉 = 16(Nb − 1)Nb(4Nb + 1)

7(4Nb − 3)(4Nb − 1)
, (33)

〈0+
1 |n̂g|0+

1 〉 = 64(Nb − 1)Nb(2Nb − 3)

35(4Nb − 3)(4Nb − 1)
,

and for the transition matrix elements from the ground to the
first-excited 0+ state,

〈0+
1 |n̂s |0+

2 〉 = 4

5

[
2(Nb − 1)Nb(2Nb − 1)(4Nb + 1)

3(4Nb − 5)2(4Nb − 3)

]1/2

,

〈0+
1 |n̂d |0+

2 〉 = 4

7

[
2(Nb − 1)Nb(2Nb − 1)(4Nb − 13)2(4Nb + 1)

3(4Nb − 5)2(4Nb − 3)(4Nb − 1)2

]1/2

, (34)

〈0+
1 |n̂g|0+

2 〉 = −96

35

[
2(Nb − 1)Nb(2Nb − 3)2(2Nb − 1)(4Nb + 1)

3(4Nb − 5)2(4Nb − 3)(4Nb − 1)2

]1/2

.

It is instructive to compare these results to the correspond-
ing ones in the sd-IBM-1 which is done in Table V in the
classical limit Nb → ∞. Considering first the expectation
values of n̂� in the ground state, one notes that d bosons are

dominant in 0+
1 both in the sd- and sdg-IBM-1 and that the

contribution of g bosons in the sdg-IBM-1 is fairly modest.
One therefore does not expect a significant effect of the g boson
on the nuclear radius, and this should be even more so away
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TABLE V. Matrix elements in the classical limit of SU(3) in the sd-IBM-1 and the sdg-IBM-1.

IBM 〈0+
1 |n̂�|0+

1 〉 〈0+
1 |n̂�|0+

2 〉
� = 0 � = 2 � = 4 � = 0 � = 2 � = 4

sd 1
3 Nb

2
3 Nb – 2

3

√
Nb

2 − 2
3

√
Nb

2 –

sdg 1
5 Nb

4
7 Nb

8
35 Nb

2
5

√
Nb

3
2
7

√
Nb

3 − 24
35

√
Nb

3

from the SU(3) limit for a realistic choice of boson energies,
0 < εd < εg . In other words, the schematic Hamiltonian (26)
captures the obvious feature that effects of deformation on
the nuclear radius are mainly of quadrupole character, and
that hexadecapole deformation plays only a marginal role. In
terms of model calculations it also means that the parameter
γ in the operator (30) is ill determined from radii because
the expectation value of n̂g in the ground state is small.

(a)

(b)

01 nd 01 sd

01 nd 01 sdg

01 ng 01 sdg

0 0.5 1
0

5

Ζ

01 nd 02 sd
2

01 nd 02 sdg
2

01 ng 02 sdg
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0

1

2
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Ζ

FIG. 3. The matrix elements (a) 〈0+
1 |n̂�|0+

1 〉 and (b) 〈0+
1 |n̂�|0+

2 〉2

for � = 2 and � = 4 in the spherical-to-deformed transition of the
sd-IBM-1 and the sdg-IBM-1. In the sd-IBM-1 the transition is from
U(5) to SU(3) and in the sdg-IBM-1 from U(5) ⊗ U(9) to SU(3) with
λ ≡ εg/εd = 1.5. The number of bosons is Nb = 8.

Nevertheless, on physical grounds one expects η as well as γ

to be positive and of the same order since both the quadrupole
and hexadecapole deformation have the effect of increasing
the nuclear radius.

Turning to the 〈0+
1 |n̂�|0+

2 〉 matrix elements, one notes first of
all that in the sd-IBM-1 only � = 2 contributes to the 0+

2 → 0+
1

E0 transition with a coefficient η fixed from the isotope shifts.
As discussed in the preceding section, this typically leads to a
large ρ2(E0) from the “β-vibrational” to the ground band. The
situation is, however, drastically different in the sdg-IBM-1.
It is seen from Table V that the matrix elements of n̂g is
larger than that of n̂d and of different sign. Therefore, while
changes in the nuclear radius due to the g boson are expected
to be negligible, one cannot rule out its significant impact on
ρ2(E0; 0+

2 → 0+
1 ) in deformed nuclei.

This argument can be made more quantitative by studying
the spherical-to-deformed shape transition of the Hamiltonian
(26). The matrix elements of n̂d and n̂g can be calculated
for arbitrary ζ with the numerical code ARBMODEL [68]. A
reasonable choice for the ratio of boson energies is λ = 1.5.
The results are shown in Fig. 3 and compared to the matrix
elements of n̂d calculated for the U(5)-to-SU(3) transition in
the sd-IBM-1. Figure 3(a) confirms the dominance of the d

boson in the ground state of deformed nuclei both in the sd-
and sdg-IBM-1. Moreover, the expectation value of n̂d varies
with ζ in very much the same way in both models. In fact, for
the entire transition the relation 〈0+

1 |n̂s |0+
1 〉sd ≈ 〈0+

1 |n̂s |0+
1 〉sdg

approximately holds, meaning that by choosing η + γ in the
sdg-IBM-1 equal to η in the sd-IBM-1 all results of the
preceding section concerning radii are reproduced.

In the sd-IBM-1 as well as in the sdg-IBM-1 a sharp
increase in 〈0+

1 |n̂d |0+
2 〉2 is observed around ζc ≈ 0.5, see

Fig. 3(b). Up to that point, ζ < 0.5, there is essentially no con-
tribution to ρ2(E0; 0+

2 → 0+
1 ) from the g boson. Consequently,

all sd-IBM-1 results up to the phase-transitional point are not
significantly modified by the g boson. As can be seen from
Fig. 3(b), in the deformed regime this is no longer true since,
in the sdg-IBM-1, a sharp decrease of 〈0+

1 |n̂d |0+
2 〉2 occurs

at ζ ≈ 0.6 and, furthermore, 〈0+
1 |n̂g|0+

2 〉2 rapidly increases
beyond ζ ≈ 0.5 and dominates 〈0+

1 |n̂d |0+
2 〉2 for ζ � 0.7. The

explanation of this dominance is that 〈0+
1 |n̂d |0+

2 〉 changes sign
before reaching its value in the SUsdg(3) limit, in agreement
with the analytical results quoted above.

V. CONCLUSIONS

In this paper we proposed a consistent description of nuclear
charge radii and electric monopole transitions. The ingredients
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at the basis of such a description are (i) the derivation of
a relation between the effective operators describing nuclear
charge radii and electric monopole transitions, (ii) the mapping
of these operators from the shell model to the interacting
boson model, (iii) the description of spectroscopic properties
of chains of isotopes through the shape-transitional point with
the interacting boson model, and (iv) the assumption that initial
and final states in the considered electric monopole transitions
have a collective character and can be adequately described
with the interacting boson model.

The validity of this approach was tested with an application
in even-even nuclei in the rare-earth region (58 � Z �
74) which systematically display a spherical-to-deformed
transition. This transitional behavior could be successfully
reproduced with the interacting boson model and was shown to
be correlated with peaks in the isotope shifts, as observed at the
phase-transitional point. In particular, the correlation between
the suddenness of the shape transition and the height of the
peak in the isotope shift could be correctly reproduced by the
model. With the charge radius operator determined in this way
from isotope and isomer shifts, an essentially parameter-free
and systematic calculation of electric monopole transitions
in the rare-earth region could be undertaken. The observed
electric monopole strengths were reproduced to within a factor
3, except in the isolated case of 172Yb and in the W isotopes.
As a possible explanation for the failure of the approach in

the latter isotopes, the role of hexadecapole deformation or,
equivalently, of the g boson was explored in a schematic model.
It was concluded that the effect of the g boson is marginal on
charge radii but can be strong on electric monopole transitions.

We are aware that our explanation of electric monopole
strength is based on a geometric picture of the nucleus, in con-
trast to an alternative explanation in terms of shape coexistence
and configuration mixing. While there are undoubtedly regions
of the nuclear chart (e.g., Sr, Zr, and Mo isotopes) where the
latter mechanism is needed to explain the observed electric
monopole strength, we have presented here a comprehensive
analysis of this quantity in rare-earth nuclei that lends support
to the geometric interpretation.
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