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The present work discusses, from an ab initio standpoint, the definition, the meaning, and the usefulness of
effective single-particle energies (ESPEs) in doubly closed shell nuclei. We perform coupled-cluster calculations
to quantify to what extent selected closed-shell nuclei in the oxygen and calcium isotopic chains can effectively
be mapped onto an effective independent-particle picture. To do so, we revisit in detail the notion of ESPEs in
the context of strongly correlated many-nucleon systems and illustrate the necessity of extracting ESPEs through
the diagonalization of the centroid matrix, as originally argued by Baranger. For the purpose of illustration, we
analyze the impact of correlations on observable one-nucleon separation energies and nonobservable ESPEs in
selected closed-shell oxygen and calcium isotopes. We then state and illustrate the nonobservability of ESPEs.
Similarly to spectroscopic factors, ESPEs can indeed be modified by a redefinition of inaccessible quantities while
leaving actual observables unchanged. This leads to the absolute necessity of employing consistent structure and
reaction models based on the same nuclear Hamiltonian to extract the shell structure in a meaningful fashion
from experimental data.
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I. INTRODUCTION

The concept of single-nucleon shells dates back to the early
days of nuclear physics and constitutes the basic pillar of the
nuclear shell model [1]. The independent-particle approxi-
mation provides a zeroth-order picture of the structure of
nuclei on top of which correlations are added to provide
a more realistic description. Based on such a rationale, the
correlated shell model has been able to explain the occurrence
of extraordinarily stable configurations for specific neutron
and proton numbers, known as magic numbers. As a matter of
fact, the universal character of such magic numbers over the
nuclear chart remains an open question today [2]. Recently,
the evolution of shell structure and the understanding of the
neutron drip-line location in oxygen isotopes have received
considerable experimental and theoretical attention [3–5]; e.g.,
significant shell gaps have been identified in 22O and 24O,
leading to the interpretation of new magic shell closures at
N = 14, 16 in Z = 8 nuclei.

Identifying the underlying mechanisms responsible for the
occurrence or the disappearance of magic numbers in specific
regions of the nuclear chart requires improvement of the
traditional shell model by allowing for a more systematic and
consistent inclusion of correlations. In particular, questions
related to the impact of continuum degrees of freedom [6–8]
and of three-nucleon forces on the evolution of nuclear shells
is a frontier driving low-energy nuclear physics research in
connection with radioactive ion beam facilities [5,9,10].

Whether a certain nucleon number qualifies as a (new)
magic number cannot be postulated a priori. Experimentally,
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several quantities, e.g., the excitation energy and the collective
character of the first 2+ state in even-even isotopes, the
size of the gap in the one-nucleon addition or removal
spectrum, and the spectroscopic factors of associated low-
lying states in odd-even neighbors, need to be extracted in
order to make such an assessment. Theoretically, the same
quantities need to be computed while including all many-
body correlations that could play a role in order to check
whether the picture associated with a magic number eventually
holds.

It can be useful in this context, for analysis and interpreta-
tion purposes, to extract a single-nucleon shell structure, i.e.,
a set of effective single-particle energies (ESPEs) associated
with an underlying independent-particle-like picture on which
the system is mapped. However, immediate nontrivial ques-
tions arise that are at the heart of the present study:

(i) Can a single-nucleon shell structure be unambiguously
defined in a system that is intrinsically correlated? In
other words, can ESPEs be computed on the sole basis
of outputs of the many-body Schrödinger equation
and not as a result of an a priori given zeroth-order
approximation picture?

(ii) Correspondingly, to which auxiliary independent-
particle problem are ESPEs related, i.e., which one-
body Hamiltonian are ESPEs the eigenvalues of?

(iii) To what extent do correlations impact the effective
independent-particle picture provided by such ESPEs?

(iv) In which way are ESPEs related to underlying nuclear
forces?

(v) Given that an unambiguous definition of ESPEs exists,
is the associated simplified picture needed and benefi-
cial or potentially misleading? In particular, are ESPEs
physically observable quantities?
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Several of the above questions have been answered long
ago while others still necessitate further clarification. The
procedure to extract ESPEs unambiguously (cf. point 1 above)
goes back to French and Baranger [11–13] and can be utilized
to address points 2, 3, 4, and 5. Such a procedure defines ESPEs
as centroid energies denoting barycenters of correlated total
binding energy differences between the A-nucleon state on
which the one-nucleon transfer is performed and the complete
set of eigenstates of the A + 1 and A − 1 systems. Eventually,
centroid energies can be related [12–14] to the monopole part
[15,16] of underlying nuclear interactions, which effectively
answers points 2 and 4 above.

In spite of the existence of an unambiguous procedure to
compute ESPEs, difficulties exist that can lead to improper
conclusions, e.g., conclusions based on an analysis whose
model dependence has not been properly identified and
stated. On the experimental side, extracting a centroid energy
necessitates the identification of all many-body states with
a given Jπ from both one-nucleon stripping and pick-up
reactions, which is not often possible. This is particularly
critical as one moves away from doubly closed shell nuclei.

Theoretically, various levels of model dependence arise
in the computation of ESPEs. On the deepest level, it is
essential to understand that ESPEs depend, in contrast to
true observables, on the resolution scale � used to define and
solve the nuclear many-body problem. As a result, changing �

through, e.g., a unitary transformation on Fock space, changes
ESPEs while leaving actual observables invariant. In this sense
ESPEs are similar to spectroscopic factors; i.e., they can be
used as a �-dependent analysis tool but cannot be seen as
fundamental observable quantities. Moreover, and on a less
fundamental level, approximations are often introduced in the
computation of ESPEs that generate an artificial dependence
on the single-particle basis used. These various points will be
discussed and illustrated in the present paper.

Difficulties may also arise when comparing ESPEs com-
puted from an ab initio approach on the one hand and
from more effective methods, e.g., shell-model and energy
density functional methods, on the other. For instance, while
the empirical shell model “anchors” ESPEs on one-nucleon
addition (removal) energies to (from) the closed-shell core
nucleus of reference, this is not the case in an ab initio context,
as will be illustrated below.

The present paper follows the approach by Baranger as
a way to delve further into the meaning and the usefulness
of ESPEs by addressing questions 3 and 5 above, as well
as by quantifying the error made when using approximations
to Baranger’s definition. The paper is organized as follows.
Section II collects essentially known results regarding the
definition and the computation of ESPEs. Such a rather
exhaustive introductory part is needed to discuss points that
have often been overlooked over the years. Section III details
the computation of ESPEs within the framework of the
coupled-cluster method. Section IV reports our results and
illustrates various key properties of ESPEs. Specifically, the
effect of correlations on both one-nucleon separation energies
and ESPEs is discussed, focusing first on a few specific
examples before addressing systematics in oxygen and calcium
isotopes. Starting from the ab initio perspective provided by

our results, the textbook rationale behind the truncated shell
model is then briefly justified. Next, errors made by computing
ESPEs in approximate ways are addressed before illustrating
the deeper model dependence of ESPEs associated with their
intrinsic resolution-scale dependence. Conclusions are given
in Sec. V.

II. EFFECTIVE SINGLE-PARTICLE ENERGIES

In low-energy nuclear structure theory, one usually starts
from an independent-particle model to convey the basic
notions of single-particle states and shell structure. In this
context, one resorts to systems that can be postulated a priori
as being little influenced by correlations such that an effective
independent-particle picture can be safely used. In a second
step, actual correlations are introduced to explain, e.g., the
fragmentation of the single-particle strength visible in one-
nucleon transfer reactions. Such a pedagogical presentation
makes it difficult to picture the possibility of defining and
extracting a posteriori an effective, underlying single-particle
shell structure in the presence of correlations, i.e., for A-body
systems that are, strictly speaking, always correlated. It is
thus more instructive to start from a realistic picture of the
nucleus, i.e., a rather strongly correlated system, and extract
a posteriori an effective single-particle shell structure from
which correlations are to a large extent, but not entirely,
screened out [12].

To do so, we introduce the nuclear Hamiltonian under
the form1 H = T + V 2N + V 3N + . . ., where T denotes the
kinetic energy operator while V BN corresponds to a B-nucleon
interaction. We limit ourselves to two-nucleon (2N) and
three-nucleon (3N) interactions throughout the formal part of
the paper and to 2N forces in actual applications. Studying
the impact of 3N interactions and forces of higher rank is
postponed to future works. Given H , the eigenstates and
eigenenergies of the A-nucleon system are obtained by solving

H
∣∣�A

μ

〉 = EA
μ

∣∣�A
μ

〉
, (1)

where the symmetry quantum number denoting the particle
number has been singled out. The label μ collects a principal
quantum number nμ, total angular momentum Jμ, the projec-
tion of the latter along the z axis, Mμ, parity �μ, and isospin
projection along the z axis, Tμ, of the many-body state of
interest. Use of the Greek label κμ will be made to denote
the subset of quantum numbers κμ ≡ (�μ, Jμ, Tμ). Due to
rotational invariance of the nuclear Hamiltonian, eigenenergies
EA

μ ≡ EA
nμκμ

are independent of Mμ.
In the following, we consider a spherical single-particle

basis {a†
p} appropriate to discussing the spherical shell struc-

ture. Basis states are labeled by p ≡ {np, πp, jp,mp, τp} ≡

1The complication associated with the self-bound character of the
nucleus, i.e., the need to subtract the center-of-mass motion in order
to deal with internal many-body states and eigenenergies [17], is
overlooked in the present paper. Dealing with this difficulty in actual
calculations is mandatory but would unnecessarily complicate the
analytical expressions presented here without modifying significantly
the outcome.
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{np,mp, αp}, where np represents the principal quantum
number, πp the parity, jp the total angular momentum, mp

its projection along the z axis, and τp the isospin projection
along the same axis.

We also consider the direct-product basis {b†�rστ
}, where �r is

the position vector, σ the projection of the nucleon spin along
the z axis, and τ its isospin projection.

A. Spectroscopic amplitudes

The physical processes providing information on the single-
particle shell structure are one-nucleon transfer reactions.
Although the discussion can be carried out for the transfer
on any initial [13]. many-body state, we restrict ourselves
in the following to the transfer on the ground state |�A

0 〉 of
an even-even system, i.e., a Jπ = 0+ state. Furthermore, we
consider this nucleus to be of doubly closed shell character.2

In this context, let us introduce Uμ (Vν) as the amplitude
to reach a specific eigenstate |�A+1

μ 〉 (|�A−1
ν 〉) of the A + 1

(A − 1) system by adding (removing) a nucleon in a specific
single-particle state to (from) the ground state of the A-body
system |�A

0 〉. Such spectroscopic amplitudes can be defined
through their representation in any given single-particle basis.
In basis {a†

p}, they read

Up
μ ≡ 〈

�A+1
μ |a†

p|�A
0

〉∗
, (2a)

V p
ν ≡ 〈

�A−1
ν

∣∣ap

∣∣�A
0

〉∗
, (2b)

whereas their representation in basis {b†�rσq
} provides the

associated wave functions or overlap functions

Uμ(�rστ ) ≡ 〈
�A+1

μ

∣∣b†�rστ

∣∣�A
0

〉∗
, (3a)

Vν(�rστ ) ≡ 〈
�A−1

ν

∣∣b�rστ

∣∣�A
0

〉∗
. (3b)

An important property regarding the asymptotic behavior of
overlap functions derives from their equation of motion given
by [18]

[h∞ + �(ω)]ω=E+
μ
Uμ = E+

μ Uμ, (4)

and similarly for (Vν,E
−
ν ), where (observable) one-nucleon

separation energies are defined through

E+
μ ≡ EA+1

μ − EA
0 , (5a)

E−
ν ≡ EA

0 − EA−1
ν . (5b)

The energy-dependent potential �(ω) denotes the dynam-
ical part of the irreducible self-energy [18] that naturally
arises in self-consistent Green’s-function theory and that is
to be evaluated at the eigensolution E+

μ in Eq. (4). The static
field h∞ is defined in Eq. (18) and contains both the kinetic
energy and the energy-independent part of the one-nucleon
self-energy. One can show from Eq. (4) that the long-distance
behavior of the radial part of the overlap function is governed

2Such a notion relates to the filling of shells in the uncorrelated,
e.g., Hartree-Fock, picture.

by the corresponding one-nucleon separation energy, e.g., for
E+

μ < 0

Uμ(rστ ) −→
r→+∞ A+

μ

e−ς+
μ r

ς+
μ r

, (6)

where A+
μ denotes the so-called asymptotic normalization

coefficient (ANC) while the decay constant is given by ς+
μ ≡

(−2mE+
μ /h̄2)1/2, where m is the nucleon mass.3 A similar

result can, of course, be obtained for Vν(rστ ) whose decay
constant ς−

ν relates to E−
ν .

From spectroscopic amplitudes one defines addition S+
μ and

removal S−
ν spectroscopic probability matrices associated with

states |�A+1
μ 〉 and |�A−1

ν 〉, respectively. Their matrix elements

read in basis {a†
p}

S+pq
μ ≡ 〈

�A
0

∣∣ap

∣∣�A+1
μ

〉〈
�A+1

μ

∣∣a†
q

∣∣�A
0

〉
(7a)

= Up
μ Uq ∗

μ ,

S−pq
ν ≡ 〈

�A
0

∣∣a†
q

∣∣�A−1
ν

〉〈
�A−1

ν

∣∣ap

∣∣�A
0

〉
(7b)

= V p ∗
ν V q

ν ,

such that their diagonal parts, when expressed in the coor-
dinate space basis, are nothing but transition densities for
the one-nucleon transfer from |�A

0 〉 to |�A+1
μ 〉 and |�A−1

ν 〉,
respectively.

Tracing the two spectroscopic probability matrices over
the one-body Hilbert space H1 gives access to spectroscopic
factors

SF+
μ ≡

∑
p∈H1

∣∣Up
μ

∣∣2 =
∑
στ

∫
d�r |Uμ(�rστ )|2, (8a)

SF−
ν ≡

∑
p∈H1

∣∣V p
ν

∣∣2 =
∑
στ

∫
d�r |Vν(�rστ )|2 , (8b)

which are nothing but the (basis-independent) norm of spec-
troscopic amplitudes. A spectroscopic factor characterizes
to what extent an eigenstate of the A + 1 (A − 1) system
can be described as a nucleon added to (removed from) a
single-particle state on top of the ground state of the A-nucleon
system. Such a feature intrinsically depends on the resolution
scale � characterizing the nuclear Hamiltonian and is thus
not, strictly speaking, observable [19,20]. Still, spectroscopic
factors can serve as a tool to analyze the results obtained at a
given resolution scale.

B. Spectral function and strength distribution

We now gather the complete spectroscopic information
associated with one-nucleon addition and removal processes
in the so-called spectral function S(ω) ≡ S+(ω) + S−(ω). The
spectral function denotes an energy-dependent matrix over H1

whose elements in basis {a†
p} are defined through

Spq(ω) ≡
∑

μ∈HA+1

S+pq
μ δ(ω − E+

μ ) +
∑

ν∈HA−1

S−pq
ν δ(ω − E−

ν ),

3Subtracting the center-of-mass motion would lead to using the
reduced mass of the added or removed nucleon.
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where the first (second) sum is restricted to eigenstates of H

in the Hilbert space HA+1 (HA−1) associated with the A + 1
(A − 1) system. It is of interest to introduce the nth moment
of the spectral function that defines an energy-independent
matrix over H1 through

M(n) ≡
∫ +∞

−∞
ωn S(ω) dω. (9)

One can easily obtain from {ap, a
†
q} = δpq that the zeroth

moment is nothing but the identity matrix

M(0)
pq =

∑
μ∈HA+1

S+pq
μ +

∑
ν∈HA−1

S−pq
ν = δpq, (10)

such that the diagonal matrix element of S(ω) possesses the
meaning of a probability distribution function (PDF) in the
statistical sense; i.e., the combined probability of adding and
removing a nucleon to or from a specific single-particle basis
state |p〉 integrates to 1 when summing over all final states in
the A ± 1 systems.

Last, but not least, we introduce the spectral strength
distribution (SSD) as the trace of the spectral function matrix

S(ω) ≡ TrH1 [S(ω)]

=
∑

μ∈HA+1

SF+
μ δ(ω − E+

μ ) +
∑

ν∈HA−1

SF−
ν δ(ω − E−

ν ), (11)

which is a basis-independent function of the energy.

C. Independent-particle versus correlated systems

It is of pedagogical interest to discuss the typical pat-
terns displayed by the spectral strength distribution for both
independent-particle and correlated systems. The goal of this
exercise is to illustrate in what sense observable one-nucleon
separation energies cannot be interpreted as single-particle
energies as soon as correlations are present in the system.

Figure 1 provides a schematic display of one-nucleon
addition and removal spectroscopic information for an

FIG. 1. (Color online) Schematic representation of one-nucleon
addition and removal spectroscopic information for an independent-
particle system. Left: Binding energy for the ground state of an even-
even system and for the states of neighboring nuclei reached by direct
one-nucleon addition and removal processes. Right: Corresponding
spectral strength distribution.

FIG. 2. (Color online) Same as Fig. 1 for a correlated system.

independent-particle system. As many-body eigenstates of H

take the form of Slater determinants in such a case, there exists
a particular single-particle basis of H1 in which addition and
removal spectroscopic probability matrices read

S+pq
μ = δpμ δpq δpa,

(12a)
S−pq

ν = δpν δpq δpi,

where i and a characterize occupied (“hole”) and unoccupied
(“particle”) states in the Slater determinant associated with
the A-nucleon ground state, respectively. Consequently, the
many-body states reached by direct one-nucleon addition and
removal processes are in one-to-one correspondence with
single-particle basis states. As a result of such a bijection,
one-nucleon separation energies are good candidates to play
the role of single-particle energies. As a matter of fact,
one has E+

μ = εa δaμ and E−
ν = εi δiν , where εa and εi

denote eigenvalues of the one-body Hamiltonian governing the
uncorrelated system associated with unoccupied and occupied
single-particle states, respectively. Because the SSD integrates
to the dimension of H1 by construction, spectroscopic factors
of the corresponding states are equal to 1, whereas they are
equal to zero for all the remaining states that are not reached
by the direct one-nucleon transfer.

Let us now move to a correlated system. In any single-
particle basis {a†

p} of H1, S
+pq
μ (S−pq

ν ) is now different from
zero for any combination4 of μ,p, and q (ν, p, and q) indices.
The SSD is thus fragmented as schematically displayed in
Fig. 2, i.e., a larger number of many-body states are reached
through the direct addition and removal of a nucleon compared
to the uncorrelated case.5 Consequently, the number of peaks
with nonzero strength in the SSD is greater than the dimension
of H1, which forbids the establishment of a bijection between
this set of peaks and any basis ofH1. Accordingly, and because
the SSD still integrates to the dimension of H1 by construction
[see Eq. (10)], spectroscopic factors are smaller than one. The
impossibility of realizing such a bijection constitutes the most
direct and intuitive way to understand why observable one-
nucleon separation energies cannot be rigorously associated

4This is true except for selection rules dictated by symmetries that
lead, according to Eq. (20), to πp = πμ, jp = Jμ and τp = Tμ − T0.

5Of course, the dimension of HA+1 or HA−1 remains the same
whether or not the system is correlated.
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with single-particle energies when correlations are present in
the system, i.e., as soon as many-body eigenstates of H differ
from Slater determinants.

D. Effective single-particle energies

The discussion provided above underlines the fact that
a rigorous definition of ESPEs is yet to be provided in
the realistic context of correlated many-nucleon systems. A
key question is the following: How can one extract a set
of single-particle energy levels that (i) are in one-to-one
correspondence with a basis of H1, (ii) are independent of the
particular single-particle basis one is working with, (iii) are
computable only using quantities coming out of the correlated
A-body Schrodinger equation, and (iv) reduce to Hartree-Fock
(HF) single-particle energies in the HF approximation to the
A-body problem?

Let us make the hypothesis that ideal one-nucleon pick-
up and stripping reactions have been performed such that
separation energies (E+

μ ,E−
ν ) and spectroscopic amplitudes

(overlap functions) [Uμ(�rστ ), Vν(�rστ )] have been extracted
consistently, i.e., in a way that is consistent with the chosen
nuclear Hamiltonian H (�) defined at a resolution scale �. In
such a context, a meaningful definition of ESPEs does exist
and goes back to French [11] and Baranger [12]. It involves
the computation of the so-called centroid matrix, which, in an
arbitrary spherical basis of H1 {a†

p}, reads

hcent
pq ≡

∑
μ∈HA+1

S+pq
μ E+

μ +
∑

ν∈HA−1

S−pq
ν E−

ν , (13)

and is nothing but the first moment M(1) of the spectral function
matrix [see Eq. (9)]. Effective single-particle energies and
associated states are extracted, respectively, as eigenvalues
and eigenvectors of hcent, i.e., by solving

hcent ψcent
p = ecent

p ψcent
p , (14)

where the resulting spherical basis is denoted as {c†p}. Written
in that basis, centroid energies invoke diagonal spectroscopic
probabilities6

ecent
p ≡

∑
μ∈HA+1

S+pp
μ E+

μ +
∑

ν∈HA−1

S−pp
ν E−

ν (15)

and acquire the meaning of an average of one-nucleon
separation energies weighted by the probability to reach the
corresponding A + 1 (A − 1) eigenstates by adding (remov-
ing) a nucleon to (from) the single-particle state ψcent

p . Centroid
energies are by construction in one-to-one correspondence
with states of a single-particle basis of H1, which, as already
pointed out before, is not the case of correlated one-nucleon
separation energies with nonzero spectroscopic strength.

Equation (14) ensures that ψcent
p (�rστ ) and ecent

p are consis-
tent in the sense that the asymptotic behavior of the former

6The definition of ecent
p sometimes incorporates the denominator∑

μ∈HA+1
S+pp

μ + ∑
ν∈HA−1

S−pp
ν in Eq. (15) to compensate for the

possibility that, e.g., experimentally, normalization condition (10)
might not be exhausted.

is driven by the latter; e.g., for ecent
p < 0 the radial part of the

wave function behaves asymptotically as

ψcent
p (rστ ) −→

r→+∞ Cp

e−ξp r

ξp r
, (16)

where ξp ≡ (−2mecent
p /h̄2)1/2. Such a result underlines that

single-particle wave functions associated with ESPEs are in-
trinsically different from overlap functions Uμ(rστ ) [Vν(rστ )]
which are probed in transfer experiments.

Experimentally, the extraction of ESPEs requires collecting
the full spectroscopic strength up to high enough missing
energies, i.e., the complete set of separation energies and
cross sections from both one-nucleon stripping and pickup
reactions. This unfortunately limits the possibility to perform
sound comparisons on a systematic basis. Indeed, there are at
best only a few nuclei along a given isotopic or isotonic chain
that are characterized by complete enough spectroscopic data.

E. Sum rule

It is tedious but straightforward to prove that the nth
moment of S(ω) fulfils the identity

M(n)
pq = 〈

�A
0

∣∣{
n commutators︷ ︸︸ ︷

[. . . [[ap,H ],H ], . . .], a†
q}

∣∣�A
0

〉
. (17)

By using the second quantized form of T , V 2N, and V 3N,
together with identities provided in the Appendix and symme-
tries of interaction matrix elements, Eq. (17) applied to n = 1
leads to [12,13,21]

hcent
pq = Tpq +

∑
rs

V̄ 2N
prqs ρ[1]

sr + 1

4

∑
rstv

V̄ 3N
prtqsv ρ[2]

svrt

≡ h∞, (18)

where V̄ 2N
prqs and V̄ 3N

prtqsv are antisymmetrized matrix elements
and where

ρ[1]
pq ≡ 〈

�A
0

∣∣a†
qap

∣∣�A
0

〉 =
∑

μ

V p
μ

∗
V q

μ , (19a)

ρ[2]
pqrs ≡ 〈

�A
0

∣∣a†
r a

†
s aqap

∣∣�A
0

〉
(19b)

denote one- and two-body density matrices of the correlated
A-body ground state, respectively. The static field h∞, already
introduced in Sec. II A, contains both the kinetic energy and
the energy-independent part of the one-nucleon self-energy in
the A-body ground state [21].

Equation (18) demonstrates that the centroid matrix is a
one-body field possessing a simple structure and an intuitive
meaning. In particular, the centroid field reduces to the HF
mean field in the HF approximation. As a result, ESPEs are
nothing but HF single-particle energies in such a case and
are equal to one-nucleon separation energies according to
Koopmans’ theorem [22]. Consistently, overlap, centroid, and
HF single-particle wave functions coincide in that limit. Of
course, centroid energies also reduce to eigenvalues of the one-
body Hamiltonian in the limit of an uncorrelated system. When
correlations beyond HF are switched on, ESPEs are modified
through the presence of correlated density matrices in Eq. (18);
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FIG. 3. (Color online) Schematic picture. Top: Total binding
energies [Eq. (1)] of three successive nuclei and associated one-
nucleon addition and removal energies [Eq. (5)] from the ground state
of the intermediate system. Bottom left: Spectral strength distribution
[Eq. (11)]. Bottom right: Corresponding ESPE spectrum [Eq. (15)].
The color coding underlines that ESPEs close to the Fermi energy
contain significant contributions from both addition and removal
channels.

i.e., the B-nucleon interaction is folded with the correlated
(B-1)-body density matrix ρ[B−1]. Through that transition,
ESPEs continuously evolve as centroid energies rather than as
observable separation energies such that Koopmans’ theorem
no longer holds. Centroid energies are schematically compared
to observable binding and separation energies in Fig. 3.

On the practical side, Eq. (18) underlines that the averaged
information contained in ESPEs only requires the computation
of the A-body ground state. As long as one is not interested in
the full spectroscopic strength of the A ± 1 systems but only in
their centroids, one only needs to compute one nucleus instead
of three. In practice however, Eq. (22) is rarely computed
in terms of the correlated density matrix, e.g., shell-model
applications usually invoke a filling approximation typical of
an independent-particle approximation. This is believed to be
a decent approximation as long as (i) low-lying states carry
a major part of the single-particle spectroscopic strength,
as for the transfer on a doubly closed-shell nucleus, and
(ii) nucleons of the other species are themselves not strongly
correlated, because of pairing for example. See, e.g., Ref. [23]

and references therein for a related discussion. Such an issue
becomes critical whenever one is looking into, e.g., the neutron
shell structure of a neutron open-shell nucleus. In such a
situation, a normal filling is inappropriate and it is mandatory
to fold the monopole interaction in Eq. (22) with a density
matrix reflecting the presence of correlations in the system.

Since the even-even ground state on which the one-nucleon
transfer is performed is a J� = 0+ state, Wigner-Eckart’s
theorem allows one to obtain the explicit dependence of
spectroscopic amplitudes on mp and Mμ, i.e.,

Up
μ ≡ U

np [αp]
nμ

δκμαp
δMμmp

, (20a)

V p
ν ≡ V

np [αp]
nν

δκναp
δMν−mp

(−1)mp , (20b)

such that the single-particle operator picks out the angular
momentum, the parity, and the isospin projection of the A ± 1
state to which the transfer goes, i.e., jp = Jμ, πp = �μ, and
τp = Tμ − T0. Consequently, the one-body density matrix of
the A-body ground state reads

ρ[1]
pq ≡ ρ[α]

npnq
δαpαq

δmpmq
, (21)

such that, retaining the 2N force only for simplicity and
expressing its antisymmetrized matrix elements in a jj -
coupled scheme, one obtains [12–14] in basis {c†p}

ecent
np[αp] = t

[αp]
npnp

+
∑
nqnr

∑
αq

v̄
[αpαqαpαs ]
npnqnpnr

ρ
[αq ]
nrnq

, (22)

where v̄
[αpαqαpαq ]
npnqnpnr

is the reduction of the 2N interaction to
its so-called monopole, i.e., angular averaged, part. Higher
multipoles and in particular the quadrupole part that drives the
dominant part of correlations are screened out from ESPEs.

F. Resolution-scale dependence

Let us briefly explain the intrinsic resolution-scale depen-
dence of ESPEs. Such a feature derives directly from the
resolution scale of spectroscopic amplitudes [19,20] entering
the definition of the centroid matrix [see Eq. (13)]. Following
the philosophy of the similarity renormalization group (SRG)
[24,25], we consider a change of resolution scale via a unitary
transformation U (�) of the Hamiltonian

H (�) ≡ U (�) H U †(�) (23a)

≡ T + V 2N(�) + V 3N(�) + . . . , (23b)

where the scale characterizing the initial H is omitted for
simplicity. As can be trivially shown, Eq. (23a) induces a
transformation of eigenvectors of Eq. (1),∣∣�A

μ (�)
〉 ≡ U (�)

∣∣�A
μ

〉
, (24)

such that7 the associated observable, i.e., the eigenenergy,
remains unchanged: EA

μ (�) = EA
μ . Similarly, any observable

7In practical applications, such an invariance is broken to some
extent due to the approximate way of performing the transformation
of the Hamiltonian, e.g., neglecting induced many-body interactions
in Eq. (23b), and to approximations performed when solving the A-
body problem [26,27]. However, the discussion of the present section
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associated with a Hermitian operator O must remain invariant,
which imposes the transformation of O according to O(�) ≡
U (�) O U †(�).

Let us now come to ESPEs. The key difference from an
observable resides in the fact that the very nature of ESPEs
is to inform us of effective single-nucleon degrees of freedom
inside the nuclear medium, independently of the form of the
Hamiltonian. In other words, the choice is made to keep
the definition of ESPEs independent of �. Before or after
transformation (23a), ESPEs are always extracted through
Eq. (13), where S

± pq
μ (�) retains the same formal expression

as before, i.e., they invoke spectroscopic amplitudes computed
through

Up
μ (�) ≡ 〈

�A+1
μ (�)

∣∣a†
p

∣∣�A
0 (�)

〉∗
, (25a)

V p
ν (�) ≡ 〈

�A−1
ν (�)

∣∣ap

∣∣�A
0 (�)

〉∗
. (25b)

In contrast to the many-body states involved, operators a
†
p

and ap are not transformed in Eq. (25), which generates
automatically an intrinsic dependence of U

p
μ and V

p
ν on �.

One could, of course, choose to transform operators a
†
p and

ap in the definition of spectroscopic amplitudes in order to
make the latter invariant under the unitary transformation.
However, transforming a

†
p, e.g., would result in a linear

combination of operators of the form a
†
q , a†

qa
†
r as, . . ., such that

the spectroscopic amplitude would not provide the information
one was after in the first place, e.g., the overlap between
eigenstates of H (�) in the A + 1 (A − 1) system and the state
obtained by adding (removing) a nucleon to (from) a given
single-particle state |p〉 on top of the A-body ground state.
Eventually, the resolution-scale dependence of spectroscopic
amplitudes propagates to their norm, i.e., spectroscopic factors
[19,20], and to ESPEs.

The discussion provided above points to an important
conclusion. The information one is sometimes after, e.g.,
computing spectroscopic factors and ESPEs, is not necessarily
observable. Such information is not absolute and can be
modified by a redefinition of inaccessible quantities, i.e., the
Hamiltonian and its eigenvectors in the present case, which
leaves of course true observables untouched. It remains to
be seen how much ESPEs are changed in actual calculations
by varying the resolution scale � over a reasonable interval
of interest. This question is addressed in Sec. IV. It could
very well be that the induced variation of the ESPEs is
negligible compared to other sources of uncertainties, e.g.,
approximations in their computation. Still, it is of prime
importance to keep such an intrinsic model dependence of
ESPEs in mind.

III. COUPLED-CLUSTER METHOD

One-nucleon separation energies and spectroscopic ampli-
tudes introduced, respectively, in Eq. (5) and Eqs. (2) and (3)

is concerned with tracking what happens in the hypothesis of an
exact unitary transformation and an exact solution of the A-body
Schrödinger equation.

are defined without any reference to a particular method used
to solve the many-body problem.

We are presently interested in using the ab initio coupled-
cluster method (CCM). Let us briefly outline the procedure
to compute ground and excited states of a closed (sub)shell
nucleus A and of odd A ± 1 neighbors within the CCM. From
there, all needed quantities to compute ESPEs can be extracted.
In the CCM, the exact ground state is written in the exponential
form ∣∣�A

0

〉 = eT |�0〉, (26)

where |�0〉 is an uncorrelated single-reference Slater de-
terminant built from a convenient spherical single-particle
basis, usually chosen as mean-field HF orbitals. Many-body
correlations beyond the mean field are introduced by the op-
erator T = T1 + T2 + . . . + TA, which is a linear expansion in
n-particle–n-hole excitation operators Tn, with n = 1, . . . , A.

The only approximation occurring in the CCM regards the
truncation of T to a given low-lying excitation level; e.g., T ≈
T1 + T2 is the most commonly used approximation known as
the coupled-cluster method with single and double excitations
(CCSD). By inserting the coupled-cluster ansatz (26) into the
A-body Schrödinger equation [Eq. (1)] and projecting from
the left with 〈�0|e−T , 〈�a

i |e−T , and 〈�ab
ij |e−T , respectively,

coupled-cluster equations are obtained in the form

〈�0|e−T HeT |�0〉 = EA
0 , (27a)〈

�a
i

∣∣e−T HeT |�0〉 = 0, (27b)〈
�ab

ij

∣∣e−T HeT |�0〉 = 0. (27c)

These equations determine the unknown amplitudes entering
T1 and T2 as well as the ground state energy EA

0 . Here 〈�a
i | and

〈�ab
ij | are one-particle–one-hole and two-particle–two-hole

excited reference states.
Equation (27) underlines that the similarity-transformed

Hamiltonian H̄ ≡ e−T HeT plays a key role such that its
ground state is nothing but the reference state |�0〉. The
operator H̄ is not Hermitian, which implies that coupled-
cluster theory is manifestly nonvariational. The nonvariational
nature of the CCM makes it necessary to access both right
and left eigenstates of H̄ to compute associated one- and
two-body density matrices. Such eigenstates of H̄ can be
computed through the so-called equation-of-motion coupled-
cluster method (EOM-CCM). The idea of the EOM-CCM
is essentially to diagonalize H̄ within a subspace of n-
particle–m-hole excited reference functions. Within the EOM-
CCSD approximation, right and left eigenstates of closed-shell
nucleus A are given by∣∣RA

μ

〉 = RA
μ |�0〉, (28a)〈

LA
μ

∣∣ = 〈�0|LA
μ, (28b)

where RA
μ (LA

μ) is a linear combination of one-particle–
one-hole and two-particle–two-hole (de-)excitation operators.
Similarly, the EOM-CCM is the method of choice to access
eigenstates of odd A ± 1 neighboring nuclei according to
|RA±1

μ 〉 = RA±1
μ |�A

0 〉 and 〈LA±1
μ | = 〈�̃A

0 |LA±1
μ , where now
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RA±1
μ (LA±1

μ ) denotes a linear combination of one-particle
(one-hole) and two-particle–one-hole (one-particle–two-hole)
(de-)excitation operators (see, for example, Ref. [28] for
further details). Left and right eigenstates form a biorthogonal
set, i.e.,

〈Lμ|Rμ′ 〉 = δμμ′ . (29)

where we have dropped the superscript referring to nucleus A
and A ± 1. Right eigenstates Rμ are solutions of the eigenvalue
problem

(H̄Rμ)C |�0〉 = EμRμ|�0〉, (30)

and similarly for left eigenstates Lμ. Here, (H̄Rμ)C denotes
all terms that connect H̄ with Rμ. The one- and two-body
density matrices of the A-body ground state together with
one-nucleon spectroscopic amplitudes and probabilities can
now be computed according to

ρ[1]
pq ≡ 〈�0|LA

0 a
†
qap|�0〉, (31a)

ρ[2]
pqrs ≡ 〈�0|LA

0 a
†
r a

†
s aqap|�0〉 (31b)

and to

S+pq
μ ≡ 〈�0|LA

0 apRA+1
μ |�0〉〈�0|LA+1

μ a
†
q |�0〉, (32a)

S−pq
μ ≡ 〈�0|LA

0 a
†
qR

A−1
μ |�0〉〈�0|LA−1

μ ap|�0〉. (32b)

Using the Baker-Campbell-Hausdorff commutator expansion,
one can derive finite and closed-form algebraic expressions for

similarity-transformed operators ap, a
†
p, a

†
qap, and a

†
r a

†
s aqap.

See Refs. [29,30] for details on the derivation and computation
of spectroscopic factors within coupled-cluster theory.

IV. RESULTS

Results shown below have been obtained using a 2N
force only, thereby omitting forces of higher rank. In order
to improve convergence properties and make the nuclear
many-body problem more perturbative, we use a soft Vlow−k

2N interaction [31] obtained with a smooth regulator [32] for
various cutoff values between � = 2.0 and 3.0 fm−1. These
soft Vlow−k interactions are obtained by evolving down the
next-to-next-to-next-to-leading order (N3LO) chiral interac-
tion [33] with cutoff �χ = 500 MeV. For the single-particle
model space, we use the HF basis built from N + 1 = 13
major oscillator shells, with a fixed oscillator frequency of
h̄ω = 16 MeV. This model space is sufficient to obtain fully
converged results for medium-mass nuclei with soft Vlow−k

interactions (see Ref. [17]).

A. Turning on correlations in a controlled way

Let us first illustrate in a pedagogical manner the effect
of correlations on both one-nucleon separation energies and
ESPEs. To do so, we apply Wick’s theorem with respect to
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FIG. 4. (Color online) One-neutron addition energies E+
μ on 16O

ground-state and corresponding ESPEs ecent
p as a function of the

residual interaction strength.

the HF vacuum |�HF
0 〉 and write the Hamiltonian in normal-

ordered form using the HF single-particle basis {d†
p}, i.e.,

H = hHF + Vres, (33)

where

hHF ≡ EHF
0 +

∑
p

εHF
p : d†

pdp :, (34a)

Vres ≡ 1

4

∑
pqrs

V̄ 2N
pqrs : d†

pd†
qdsdr :, (34b)

together with

EHF
0 ≡

A∑
p=1

Tpp + 1

2

A∑
p,q=1

V̄ 2N
pqpq, (34c)

εHF
p ≡ Tpp +

A∑
q=1

V̄ 2N
pqpq . (34d)

Scaling the residual interaction Vres by a factor λ ∈ [0, 1],
one defines a parameter-dependent Hamiltonian Hλ ≡ hHF +
λ Vres that tunes correlations between the two limits of interest,
i.e., from the uncorrelated regime H0 = hHF to the fully
correlated regime H1 = H . Eventually, we solve EOM-CC
equations repeatedly for several values of λ ∈ [0, 1] and for
the specific cutoff value � = 2.4 fm−1.

As a first example, Fig. 4 displays, as a function of the
residual interaction strength, one-neutron separation energies
between 16O ground-state and low-lying states in 17O along
with corresponding ESPEs. Plotted separation energies corre-
spond to the (main) lowest peak in the additional sector of the
SSD for each Jπ symmetry block. As expected, one-neutron
separation energies and ESPEs are equal in the uncorrelated
limit (λ = 0) and are nothing but HF single-particle energies,
i.e., Koopmans’ theorem is fulfilled. When switching on
the correlations, two important features manifest themselves.
First, the SSD is fragmented such that the separation energy
of the state carrying the largest strength for a given Jπ
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FIG. 5. Removal spectroscopic factor SF −
1/2+ of the lowest

1/2+ state in 23O as a function of the residual interaction
strength.

goes down significantly. Second, correlations only slightly
impact centroid energies that keep a strong memory of
HF single-particle energies. Thus, although ESPEs are not
independent of correlations, the latter are essentially screened
out as discussed earlier. Eventually, one-nucleon separation
energies and corresponding ESPEs can differ by several MeV.
This clearly points to the fact that separation energies should
not be identified as ESPEs and vice versa.

Let us now include more detail by focusing on the lowest
1/2+ state in 23O, which can be accessed by removing a
neutron from the ground state of 24O. Figure 5 displays the
corresponding spectroscopic factor SF−

1/2+ as a function of
the residual interaction strength. While SF−

1/2+ = 1 for λ = 0
as expected, it decreases gently as the residual interaction is
switched on, to reach a value of 0.92 in the fully correlated
case. By using it as a (scale-dependent) analysis tool, such a
spectroscopic factor tells us that the lowest 1/2+ state keeps
a well-pronounced single-particle character even in the fully
correlated limit.

Figure 6 shows corresponding neutron separation energy
and ESPE as a function of λ. In the uncorrelated limit, i.e., λ =
0, the separation energy and ESPE coincide, while for larger λ

they start to deviate. While ecent
2 1/2+ is only slightly influenced

by correlations, E−
1/2+ dives significantly as λ increases from

0 to 1. Eventually, correlations add about 1.5 MeV to the
separation energy, such that it differs from ecent

2 1/2+ by 1.7 MeV
for λ = 1. Even though the 1/2+ state retains to a large extent
its single-particle nature, its energy is strongly impacted by
correlations and does not provide clean information about the
effective single-particle shell structure.

B. Systematics in oxygen and calcium isotopes

We now discuss the evolution and trends of low-lying
one-neutron addition and removal energies together with
ESPEs in doubly closed shell oxygen and calcium isotopes.
The present calculations are performed with the specific cutoff
value � = 2.4 fm−1. As a result, the neutron drip line in
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FIG. 6. (Color online) Same as Fig. 5 for one-neutron removal
energy E−

1/2+ and ESPE ecent
2s1/2

.

oxygen and calcium isotopes is wrongly predicted to be located
beyond 28O and 60Ca, respectively. Three-body forces seem to
be mandatory to correctly reproduce the drip-line location at
24O [5] for oxygen isotopes. It remains to be seen in which way
forces of higher rank modify qualitatively or quantitatively the
conclusions of the present investigation.

Figures 7 and 8 show that separation energies (E+
μ ,E−

ν )
systematically and significantly differ from corresponding
centroid energies. As for the energetics, these results illustrate
that ab initio approaches describe doubly magic nuclei
such as 16,24O and 40,48Ca as strongly correlated systems.
Most importantly, how much separation energies differ from
centroid energies significantly depends on the nucleus and
state, in a way that cannot easily be traced back to one specific
feature. Consequently, opening or closing of shell gaps in the
separation energy spectrum are not in a one-to-one relationship
with those emerging in the ESPE spectrum. One does observe
that 16O and 40Ca display the strongest correlations of all,
which may be related to their N = Z character. By tracing
the isospin dependence of correlations in oxygen and calcium
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FIG. 7. (Color online) Evolution of selected one-neutron separa-
tion energies E+

μ and corresponding ESPEs ecent
p from 16O to 28O.
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FIG. 8. (Color online) Same as Fig. 7 from 40Ca to 60Ca.

isotopic chains, there seems to be a systematic trend with
increasing asymmetry N -Z. In both oxygen and calcium
chains, correlations become less important for the neutrons
close to the Fermi surface when increasing isospin asymmetry
N -Z. This trend is consistent with Ref. [34], where it was
found that the spectroscopic factor for removing a neutron
close to the Fermi surface increases with increasing isospin
asymmetry and is close to one for 28O, while the spectroscopic
factor for removing the outermost protons is largely quenched
with increasing isospin asymmetry.

One can conclude from Figs. 7 and 8 that inferring one-
nucleon separation energies from ESPEs is not straightfor-
ward, even in doubly closed shell nuclei. One should thus
simply not use one for the other.

C. Effective shell model

Equation (18) was obtained following an ab initio strategy,
i.e., considering all nucleons as active and interacting via
realistic 2N and 3N interactions in a large enough single-
particle Hilbert space. In the traditional effective shell model,
however, the equivalent of Eq. (18) is derived from an effective
Hamiltonian defined for nval active nucleons in a restricted
valence space above a closed core composed of ncore nucleons
and below an excluded space.

In such a context, ESPEs are “anchored” on (experimental)
one-nucleon addition energies to the core nucleus, i.e., ecore

p ≡
E+

μ δpk . As seen in previous sections, this constitutes in fact
a bad approximation when taking an ab initio perspective.
However, and as confirmed by the present investigation,
low-lying states obtained by adding (removing) one nucleon to
(from) a doubly closed shell nucleus do possess a well-defined
single-particle character. The reason why the corresponding
ESPE differs significantly from the separation energy is
because the former collects small strength rejected to rather
high missing energies. Eventually, the fact that low-lying
states carry most of the strength makes them good candidates
to represent quasi-single-particle degrees of freedom. Such
a textbook result constitutes the basic justification for the
effective shell model that omits the high-lying fragmented
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FIG. 9. (Color online) ESPEs ecent
p compared to diagonal matrix

elements of the centroid field hcent
qq in the underlying HF basis. Results

are displayed from 16O to 28O.

strength and recollects the full strength into low-lying states
of the core+one-nucleon system.

D. Using a fixed single-particle basis

Computing ESPEs in an approximate fashion generates a
model dependence that may compromise their usefulness. It
is, for example, customary to use uncorrelated occupations of
single-particle states in place of the correlated one-body den-
sity matrix in Eq. (18) and/or to define ESPEs as the diagonal
matrix elements of the centroid field hcent in an a priori chosen
single-particle basis, e.g., a harmonic oscillator basis, rather
than as its eigenvalues. The latter approximation is formally
questionable as it provides a basis-dependent definition of
ESPEs, the quality of which depends on the realistic character
of the chosen basis. In practice, the quantitative impact of such
an approximate scheme depends on the situation.

Figure 9 compares in oxygen isotopes properly computed
ESPEs with diagonal matrix elements of hcent in the HF
basis used in the calculation.8 As can be inferred from the
comparison with Fig. 7, the approximation induces errors on
ESPEs that are of the same order as their difference with
one-nucleon separation energies and that are, in some cases,
significant relative to their absolute values. The error depends
both on the state and on the system; i.e., it might go in opposite
directions depending on the state and/or the nucleus under
consideration.

Interestingly, there exist cases for which the ordering of
approximate ESPEs at the Fermi level is inverted compared

8A more drastic approximation not shown here consists in using
diagonal matrix elements in a harmonic oscillator basis. This is the
choice usually made within the framework of the interacting shell
model. In practice, the model space is usually small enough to contain
only one state per symmetry block, e.g., (l, j, m) block in spherical
symmetry. In such a case the arbitrarily chosen basis is necessarily
the eigenbasis of the centroid field, underpinning the strong impact
of using a severely restricted model space.
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to full-fledged ones, e.g., for 2s1/2 and 1d5/2 levels in 22O.
Knowing that full-blown ESPEs reproduce the ordering of
one-neutron separation energies across the whole set of oxygen
and calcium isotopes, one sees that such an inversion is of
noticeable importance. The inversion seen in 22O is consistent
with Fig. 2(a) of Ref. [5], where ESPEs were computed
as diagonal matrix elements of hcent in an a priori chosen
harmonic oscillator basis. The fact that 2s1/2 and 1d5/2 levels
are actually not inverted in Fig. 2(a) of Ref. [5] is simply
because ESPEs are anchored on empirical values in 17O.
Correcting mentally for such a fact, one recovers the level
inversion seen for “Diag-ESPE” in Fig. 9 of the present paper.

E. Resolution-scale dependence

A more fundamental model dependence of ESPEs that
remains even when computing them as eigenvalues of the
centroid matrix relates to the resolution scale characterizing the
Hamiltonian. We start from a chiral Hamiltonian built with a
cutoff �χ (e.g., 500 MeV here) up to a given order (e.g., N3LO
here). This in itself carries a truncation error with respect to
using the complete effective field theory Lagrangian. Still, this
constitutes our reference Hamiltonian, which at N3LO contains
both 2N and 3N interactions. In a second step, the resolution
scale of the Hamiltonian is lowered to a value � through
a renormalization group transformation, defining in this way
H (�) ≡ Hlow−k. Doing so softens the interactions and induces
multibody forces, e.g., 3N interactions are induced from the
original 2N one, while preserving the original truncation error.
As � is lowered, true observables remain the same as with the
original chiral Hamiltonian as long as induced interactions are
kept in the calculation and the many-body problem is solved
exactly. Contrarily, even in such conditions, nonobservable
quantities such as ESPEs are modified when changing �. This
constitutes the intrinsic scale dependence of ESPEs discussed
in Sec. II F and that we presently wish to characterize. Of
course, whenever induced interactions are discarded and/or
the many-problem is not solved exactly, both observable
and nonobservable quantities acquire an additional artificial
dependence on �.

As original and induced three-body forces, as well as
clusters beyond singles and doubles, are discarded in the
present calculation, ESPEs display the two sources of �

dependence. In order to extract the intrinsic one, one must
first pin down the artificial scale dependence to subtract it
eventually. By definition, the latter can be accessed by focusing
on true observables. Figure 10 displays one-neutron removal
energies with Jπ = 1/2+, 5/2+ in 24O for various values9 of
the momentum cutoff � of the 2N interaction Vlow−k. Lowering
� from 3.0 to 2.0 fm−1 changes one-neutron removal energies

9We keep the oscillator frequency fixed at h̄ω =16 MeV in the
present calculations. For large cutoff values, the optimal oscillator
frequency is larger, e.g., h̄ω = 24 MeV for � = 2.6 fm−1, such that
corresponding values shown in Fig. 10 are not fully converged; e.g.,
they changed by about 100 keV for � = 2.6 fm−1 when using h̄ω =
24 MeV. Conclusions of the present section are however not modified
by using fully converged values.
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FIG. 10. (Color online) Neutron ESPEs and removal energies in
24O for J π = 1/2+, 5/2+ and � ∈ [2.0, 3.0] fm−1.

by about 7 MeV. Eventually, including induced many-body
interactions, i.e., three- and possibly four-body forces [26,27],
and including triples will remove such an artificial dependence
of one-neutron removal energies on �.

Figure 10 also shows ESPEs ecent
2s1/2

and ecent
1d5/2

in 24O. Clearly,
they display a significantly larger cutoff variation than corre-
sponding one-neutron removal energies. Such a feature, visible
in all isotopes and for all states, is identified with the additional
intrinsic scale dependence of ESPEs. Mentally subtracting the
cutoff dependence of one-neutron removal energies, one sees
that such an intrinsic scale dependence increases with � as
the system becomes less and less perturbative, making ESPEs
differ more and more from separation energies. Quantitatively
speaking, the intrinsic cutoff dependence of ecent

2s1/2
and ecent

1d5/2

amounts to about 6 MeV when varying � from 2.0 to 3.0 fm−1,
which is obviously significant. More specifically, one notes
that both ESPEs do not vary identically across the range of �

values. As a matter of fact, one observes an inversion of the
ESPE ordering that is not reflected in one-neutron separation
energies. Besides removing (most of) their artificial cutoff
dependence, it will be of interest to see how much 3N forces
modify the intrinsic scale dependence of ESPEs. It is anyway
likely that the latter will remain significant.

The above result demonstrates that ESPEs are not absolute
and can be changed significantly by modifying mildly the
character of the Hamiltonian, i.e., by varying � over a rather
limited range of values, while keeping true observables invari-
ant. Consequently, extracting the single-particle shell structure
and its evolution, e.g., with isospin, from experimental data is
an illusory objective. However, it remains possible to perform
a meaningful, i.e., internally consistent, analysis of a set of
experimental data by extracting ESPEs through consistent
structure and reaction models based on the same nuclear
Hamiltonian. Eventually, conclusions regarding the extracted
shell structure, e.g., its evolution with isospin, will however
necessarily remain resolution-scale dependent. In particular,
working at large scales is somewhat inappropriate in the
sense that the extracted shell structure will not fit with the
phenomenological low-energy picture in such a case [21].
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V. CONCLUSIONS

The present work discusses, from an ab initio standpoint,
the definition, the meaning, and the usefulness of ESPEs in
doubly closed shell medium-mass nuclei. Illustrating the var-
ious points with state-of-the-art coupled-cluster calculations,
we reach the following conclusions.

(i) A meaningful single-particle shell structure fulfilling
a minimal set of properties and known limits, such
as being independent of the particular single-particle
basis one is working with, can be extracted from
correlated one-nucleon separation energies and as-
sociated spectroscopic amplitudes. Such a definition
relates effective single-particle energies to the so-called
centroid eigenvalues introduced by Baranger [12].

(ii) The corresponding noninteracting problem is gov-
erned by the one-body centroid field hcent, which
sums the kinetic energy and the energy-independent
part of the irreducible one-nucleon self-energy that
naturally arises in self-consistent Green’s-function
methods.

(iii) It is customary in low-energy nuclear theory to compute
ESPEs in an approximate fashion, e.g., by defining
them as diagonal matrix elements of hcent in an a
priori chosen single-particle basis rather than as its
eigenvalues. We have illustrated the fact that such
approximations are unsafe.

(iv) Even when fulfilling the required set of minimal
properties, ESPEs are not strictly observable as they
intrinsically depend on the resolution scale � of the
Hamiltonian; i.e., they change under a unitary trans-
formation of the Hamiltonian while true observables
remain invariant. We have indeed demonstrated that
ESPEs vary substantially when modifying mildly the
resolution scale, i.e., when scanning a rather limited
range of � values while correcting for the artificial
dependence due to the omission of induced short-
range many-forces. Such a result demonstrates that the
objective of extracting a unique single-nucleon shell
structure from correlated observables, e.g., pinning
down the nuclear shell evolution from experimental
data, is intrinsically illusory. Still, it is possible to
perform a consistent analysis of experimental data
and extract a meaningful shell structure. To do so,
one must use consistent structure and reaction models
based on the same nuclear Hamiltonian. Eventually,
conclusions regarding the extracted shell structure will
anyway remain resolution-scale dependent; i.e., two
practitioners using (the same) consistent method but
starting from different, though unitarily equivalent,
Hamiltonians will extract different single-nucleon shell
structures from identical observables, e.g., spectra and
cross sections. This constitutes a puzzling but important
result that sheds new light on how one should look at
the single-particle shell structure. In particular, working
at large scales is somewhat inappropriate in the sense
that the extracted shell structure will not fit with
the phenomenological low-energy picture in such a
case.

(v) Extracting an effective single-particle shell structure
is often done for interpretation and analysis purposes
and sometimes done to infer the behavior of actual
observables that are believed to be strongly correlated
to patterns in the ESPE spectrum. In the present paper,
we have focused on one-nucleon separation energies
to low-lying states around closed-shell nuclei. The
conclusion is that correlations are too strong, even with
low-scale interactions, for such separation energies to
be in quantitative (sometimes qualitative) correspon-
dence with effective single-particle energies around the
Fermi energy. This is true even for states that retain
a strong single-particle character, i.e., states carrying
spectroscopic factors close to one. In a forthcoming
study, the same type of analysis will be performed in
connection with the energy of the 2+ excited state in
closed-shell nuclei; i.e., we will study how much such
excitation energies correlate with the Fermi gap in the
ESPE spectrum.

(vi) The present study was conducted on the basis of two-
nucleon interactions only. It remains to be seen to what
extent forces of higher rank modify our conclusions.
At the price of computing ESPEs correctly, i.e., as
eigenvalues of the centroid matrix rather than as its
diagonal matrix elements in an a priori given (harmonic
oscillator) basis, the authors of Refs. [5,9] could easily
repeat the present analysis within the framework of
the shell model and characterize the impact of three-
nucleon forces in a systematic way.

(vii) In the present work, ESPEs were defined based on the
hypothesis that eigenstates of the nuclear Hamiltonian
are also eigenstates of the particle number operator.
Ab initio calculations of open-shell nuclei are currently
being developed on the basis of many-body methods
breaking particle-number symmetry, i.e., using meth-
ods formulated over Fock space rather than over the
Hilbert space associated with a definite number of
particles. This is the case of the so-called self-consistent
Gorkov-Green’s function theory [35]. Extending the
definition of ESPEs accordingly [35], one will be able
to address properties of ESPEs in open-shell nuclei and
conclude on their relevance in such a context.
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APPENDIX: USEFUL IDENTITIES

Using Wick’s theorem, one can demonstrate the following identities:

{[ap, a†
r as], a

†
q} = +δpr δqs,

{[ap, a†
r a

†
s atav], a†

q} = + δpr δqv a†
s at − δpr δqt a†

s av

− δps δqv a†
r at + δps δqt a†

r av,

{[ap, a†
r a

†
s a

†
t awavau], a†

q} = + δpr δqu a†
s a

†
t awav − δpr δqv a†

s a
†
t awau + δpr δqw a†

s a
†
t avau

− δps δqu a†
r a

†
t awav + δps δqv a†

r a
†
t awau − δps δqw a†

r a
†
t avau

+ δpt δqu a†
r a

†
s awav − δpt δqv a†

r a
†
s awau + δpt δqw a†

r a
†
s avau.
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