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We analyze the effect of pairing on particle transport in time-dependent theories based on the Hartree-Fock-
Bogoliubov (HFB) or BCS approximations. The equations of motion for the HFB density matrices are unique
and the theory respects the usual conservation laws defined by commutators of the conserved quantity with
the Hamiltonian. In contrast, the theories based on the BCS approximation are more problematic. In the usual
formulation of time-dependent Hartree-Fock (TDHF) + BCS, the equation of continuity is violated and one sees
unphysical oscillations in particle densities. This can be ameliorated by freezing the occupation numbers during
the evolution in TDHF + BCS, but there are other problems with the BCS approximation that make it doubtful for
reaction dynamics. We also compare different numerical implementations of the time-dependent HFB equations.
The equations of motion for the U and V Bogoliubov transformations are not unique, but it appears that the usual
formulation is also the most efficient. Finally, we compare the time-dependent HFB solutions with numerically
exact solutions of the two-particle Schrödinger equation. Depending on the treatment of the initial state, the HFB
dynamics produces a particle emission rate at short times similar to that of the Schrödinger equation. At long
times, the total particle emission can be quite different, due to inherent mean-field approximation of the HFB
theory.
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I. INTRODUCTION

Pairing is essential to the global description of nuclear
ground-state and low-excited-state properties; the Hartree-
Fock-Bogoliubov (HFB) and Hartree-Fock augmented by BCS
(HF + BCS) theories are in common use to treat the pairing
degrees of freedom [1]. Also in nuclear reactions, many
phenomena are expected to be influenced by pairing corre-
lations: collective motion, fusion, fission, transfer reactions,
and nuclear breakup. The obvious candidate theory to treat
these effects is the time-dependent Hartree-Fock-Bogoliubov
(TDHFB) theory [2], and there has been much effort in the last
decade to apply it. However, the TDHFB theory turns out to be
much more complicated to implement than the corresponding
time-dependent Hartree-Fock theory, and the applications
have been mainly performed in its small-amplitude limit, the
quasiparticle random-phase approximation (QRPA) [3–10].
However, most of the phenomena quoted above are far
from small-amplitude excursions from the ground state, and
transport theories able to treat large-amplitude collective
motion (LACM) are mandatory. Recently, several groups have
applied the TDHFB theory [11–13] to nuclear dynamics. An
approximate version of this theory, called TDHF + BCS, has
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also been considered [14]. We will discuss its properties as
well. Most recent applications have been to small-amplitude
collective motion in nuclei, where the theory is equivalent to
the QRPA. Still, it is important to understand and solve the the-
ory here as a first step toward treating large-amplitude motion.

The aim of the present article is first to present from a rather
general point of view different dynamical theories that incor-
porate pairing correlations. We find that the TDHFB has many
good properties, but it is difficult to find further simplifying
approximations. We find that the TDHF + BCS approximation
leads to a breakdown of the continuity equation. This failure
might induce serious difficulties in the description of physical
processes. The second aim of the article is to test various
implementations of the pair theory in a model problem. For
this purpose, we examine a one-dimensional model of particle
evaporation for which we also have a numerical exact solution.

II. FORMALISM

The TDHFB theory and the TDHF + BCS approximations
have been recently applied to nuclear physics in Refs. [11–14].
In this section we briefly summarize the main features.

A. The TDHFB theory

The main equations of TDHFB theory, Eqs. (5) and (6)
below, can be derived in at least two different ways. One way
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is from the general variational principle,

S =
∫ tf

ti

〈�(t)|ih̄∂t − H |�(t)〉dt (1)

(see, e.g., Ref. [15]). Here H denotes the Hamiltonian and
|�〉 is a HFB wave function. The equations may also be
derived by demanding that the operators for the ordinary and
anomalous densities, ρ̂ij = a

†
j ai and κ̂ij = ajai , respectively,

satisfy Ehrenfest’s theorem:

ih̄∂t 〈�|a†
j ai |�〉 = 〈�|[a†

j ai, H ]|�〉, (2)

ih̄∂t 〈�|ajai |�〉 = 〈�|[ajai,H ]|�〉. (3)

In the following, we further assume that H is a two-body
Hamiltonian,

H =
∑
ij

h0
ij a

†
i aj + 1

4

∑
ijkl

v̄ijkla
†
i a

†
j alak. (4)

where v̄ denotes the antisymmetric two-body matrix elements.
The derived TDHFB equations are

ih̄
d

dt
ρ = hρ − ρh + κ�∗ − �κ∗, (5)

ih̄
d

dt
κ = hκ + κh∗ + �(1 − ρ∗) − ρ�. (6)

Here ρ, κ , h, and � are all matrices of dimension equal to
that of the single-particle space. The matrices h and � are the
mean field and pairing field of the Hamiltonian, defined as

hij = h0
ij +

∑
kl

v̄iljkρkl,�ij = 1

2

∑
kl

v̄ijklκkl . (7)

The dynamical equation can be recast in a more compact
form by introducing the generalized density matrix R and
generalized single-particle Hamiltonian H:

R =
(

ρ κ

−κ∗ 1 − ρ∗

)
, H =

(
h �

−�∗ −h∗

)
. (8)

With these definitions the equation of motion becomes [15],
Eq. (9.61a)]

ih̄
d

dt
R = [H, R]. (9)

This generalizes the usual TDHF picture by replacing the
one-body density by R. Similarly to the TDHF case, the
generalized density satisfiesR2 = R and has only eigenvalues
equal to 0 and 1 [15,16].

Going back to ordinary Hartree-Fock theory, it is compu-
tationally advantageous to factorize the density matrix and
express it as a sum over the contributions from occupied
orbitals to obtain equations of motion for the individual
orbitals. There is no obvious advantage for the factorization
in TDHFB because all of the single-particle orbitals in
Fock space contribute to the generalized density matrix R.
Nevertheless, the factorization is usually applied to obtain the
actual equations to be solved numerically. To write equations
in this form, one needs an explicit form of the Bogoliubov

transformation,

βα =
∑

i

U ∗
iαai + V ∗

iαa
†
i . (10)

The density matrices are expressed as ρ = V ∗V T and κ =
V ∗UT , and the generalized density matrix is

R =
(

V ∗

U ∗

)
(V T UT ). (11)

One can then easily see that Eq. (9) will be satisfied if we
require the {U,V } matrix be a solution of

ih̄
d

dt

(
U

V

)
=

(
h �

−�∗ −h∗

) (
U

V

)
. (12)

The numerical solution of the TDHFB equations are usually
carried out in this representation [12,13]. However, it should
be remembered that there are redundant variables in the {U,V }
representation corresponding to unitary transformations of the
quasiparticle basis, and in fact Eqs. (12) are not unique.

We may derive another form of the TDHFB equations
as follows. The wave function |�〉 at any time t is the
quasiparticle vacuum associated with the Bogoliubov trans-
formation that transforms the physical vacuum to |�(t)〉.
In that representation, the Hamiltonian has zero-, two-, and
four-quasiparticle terms that can act on |�(t)〉 [16]. Neglecting
the four-quasiparticle excitation amplitudes, the result is

H |�(t)〉 � H ′(t)|�(t)〉

=
[
〈H 〉 + 1

2

∑
αβ

H 20
αββ†

α(t)β†
β(t)

]
|�(t)〉, (13)

with [16], Eq. (E.22)]

H 20 = U †hV ∗ − V †hT U ∗ + U †�U ∗ − V †�∗V ∗. (14)

According to the Thouless theorem, any state of the form
(1 + ∑

αβ Zαββ†
αβ

†
β)|�〉 can be expressed as a new quasi-

particle vacuum [16]. To lowest order in Z, the Bogoliubov
transformation to the new vacuum from the physical vacuum
is given by

(U ′V ∗′) = (UV ∗)

(
1 Z∗

Z∗ 1

)
. (15)

We can thus derive an equation of motion by demanding that
the changes in U and V just match the two quasiparticle
excitations generated by H . After a lengthy but straightforward
derivation, it may be shown that the corresponding equations
of motion for U and V can be written as

ih̄∂tU = ρh†U − κh∗V
− κ�∗U + ρ�V,

ih̄∂tV = −(1 − ρ∗)h∗V − κ∗h†U
− κ∗�V − (1 − ρ∗)�∗U. (16)

These equations differ from (12) but nevertheless lead to the
same TDHFB equation for the generalized density.
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B. The TDHF + BCS approximation

The TDHF + BCS treatment of pairing dynamics is moti-
vated by the simple form the wave function has in the BCS
approximation,

|�〉 =
∏
k>0

(uk + vka
†
ka

†
k̄
)| 〉. (17)

The TDHF + BCS approximation may be derived from a
variational principle [17] or by an approximate reduction of
the TDHFB equations [14]. For the reduction of the TDHFB
equations, we first note that wave function can be put into BCS
form at any fixed time by transforming the U and V matrices
to the canonical basis. In that basis, ρ is diagonal and the κ

matrix is 0 except for one element on each row (or column)
representing the pair iī. Assuming that the � matrix has the
same structure as κ , Ref. [14] shows that the TDHFB time
evolution preserves the same canonical structure with orbitals
that evolve by the mean-field Hamiltonian,

ih̄∂t |ϕk〉 = h|ϕk〉, (18)

where h has been defined in Eq. (7). The equations of motion
for ρ and κ in this time-dependent basis are1

ih̄
d

dt
nk = �kκ

∗
k − �∗

kκk, (19)

ih̄
d

dt
κk = +�k(1 − 2nk). (20)

Here nk , κk , and �k are short-hand notations for ρkk , κkk̄ , and
�kk̄ , respectively.

One technical point should be mentioned. When
Eq. (18) is integrated, there is an irrelevant phase factor
exp(−i

∫ t 〈ϕk(t ′)|hHF(t ′)|ϕk(t ′)〉dt ′) introduced into the time-
dependent orbitals. For computational reasons the phase is
removed by integrating

ih̄∂t |ϕk〉 = (h[ρ] − ηk)|ϕk〉 (21)

instead of Eq. (18), with ηk(t) = 〈ϕk(t)|hHF|ϕk(t)〉. At the same
time, Eq. (20) is replaced by

ih̄
d

dt
κk = κk(ηk + ηk) + �k(1 − 2nk). (22)

Finally, we mention that the TDHF + BCS approximation was
found to work well with a separable pairing interaction and in
the small-amplitude limit [14].

C. Conservation laws and equation of continuity

Since the TDHFB density matrix satisfies Ehrenfest’s theo-
rem, it is trivial to show that the conservation laws for one-body
observables are respected by the TDHFB dynamics. It was
also shown that conservation laws for important observables
such as particle number are satisfied in TDHF + BCS [14].
However, for transport we are interested in local conservation
laws as well. In particular, if the interaction is local the

1Note that these equations slightly differ from those from Ref. [14],
due to the definition of κk here.

coordinate-space density n(x, t) should satisfy the equation
of continuity,

dn(x, t)

dt
= −�∇ · �j (x, t), (23)

where �j (x) is the particle current. Assuming a local interaction,
Eq. (23) may be derived from Ehrenfest’s theorem, evaluating
the commutator on the right-hand side as

�∇ · �j (x) = 〈[n̂(x),H ]〉 = − h̄2

2m
〈[n̂(x),∇2]〉. (24)

This is sufficient to guarantee that TDHFB obeys the equation
of continuity under the stated condition. Unfortunately, this is
not true for the TDHF + BCS dynamics.

Within TDHF + BCS, the local density is given by

n(x, t) =
∑

i

ni(t)|ϕi(x, t)|2, (25)

and its evolution satisfies

dn(x, t)

dt
=

∑
i

ni[ϕ
∗
i (x, t)∂tϕi(x, t) + ϕi(x, t)∂tϕ

∗
i (x, t)]

+
∑

i

|ϕi(x, t)|2∂tni(t). (26)

The first terms on the left are just the evolution of the orbitals
under a mean-field potential, and so the same reduction applies
as in Eq. (23). The result is

dn(x, t)

dt
= −�∇ · �j (x, t) +

∑
i

|ϕi(x, t)|2
(

dni(t)

dt

)
. (27)

Thus continuity cannot be guaranteed unless the occupation
numbers are fixed. We show below that TDHF + BCS can
produce unphysical density oscillations when the occupations
are allowed to vary.

III. APPLICATION TO PARTICLE EVAPORATION

Recently two of us (D.L. and K.W.) began investigating the
effect of pairing on particle evaporation, and we obtained the
results shown in Fig. 1. Skipping over the details, the number
of particles escaping an initially excited nucleus is shown as
a function of time using either the three-dimensional TDHF
code of Refs. [19–21] or an upgraded version including pairing
using the TDHF + BCS theory proposed in Refs. [14,17].
As we can see, the standard mean-field calculation presents
the expected long time decay due to particle evaporation
[22]. When pairing is included, the number of particles in
the nucleus first decays and then starts to oscillate. Clearly,
this result is unphysical. It was this unphysical result that
motivated us to undertake the present more general study. For
the present article, we consider a more simplified Hamiltonian
that permits us to compare a number of approximations with
each other and with a numerically exact solution. In the
present article, we investigate whether the observed problem is
systematic in theories where pairing is included or if it comes
from the specific treatment of pairing in the TDHF + BCS
approximation using zero range interaction. Our study is also
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FIG. 1. (Color online) Top: Schematic illustration of neutron
evaporation from a nucleus of O22 excited by a monopole boost
at t = 0. Bottom: Number of neutrons inside a sphere of size 10 fm
around the nucleus as a function of time obtained with TDHF and
TDHF+BCS (from Ref. [18]).

the occasion to benchmark different theories, TDHF + BCS
and TDHFB, to describe particle emission.

A. A one-dimensional model

For comparing the different treatments of pairing dynamics,
we consider a one-dimensional system composed of N

particles in a box with x in the range −Xmax < x < Xmax

and a Hamiltonian of the form

H =
N∑
i

{
p2

i

2m
+ U (xi)

}

+
N(N−1)/2∑

i<j

v(xi − xj )[1 − Pσiσj
]. (28)

Here, Pσiσj
denotes the spin-exchange operator. The potential

U (x) is taken to be a Woods-Saxon well centered at the

origin:

U (x) = U0

1 + exp[(|x| − X0)/a]
. (29)

The two-body interaction v(x − x ′) is taken to be a finite-range
Gaussian:

v(x − x ′) = v0 exp

(
− (x − x ′)2

2σ 2
0

)
. (30)

In the limit where the range σ0 goes to 0, v(x − x ′) is a contact
interaction and our model is similar to the model considered
in Ref. [23] to analyze the onset of vortices in rotating Fermi
gas using TDHFB. The advantage of a finite range is that it
does not have to be renormalized for use in BCS or HFB.

The TDHFB is formulated in a Fock space and the space has
finite dimension in numerical implementations. Our particle
creation and annihilation operators ψ†

σ and ψσ are defined on
a uniform mesh of points {x} with spacing �x; σ =↑ or ↓ is the
spin label. Then we can write the quasiparticle transformation
as [23]

β†
α = �x

∑
x

[uα(x, t)ψ†
↑(x) + vα(x, t)ψ↓(x)], (31)

β
†
α′ = �x

∑
x

[uα′ (x, t)ψ†
↓(x) + vα′(x, t)ψ↑(x)]. (32)

In the following, we use the convention �x
∑

x → ∑
x and do

not distinguish between the quasiparticle sets α and α′, with
the properties uα′(x, t) = uα(x, t) and vα′ (x, t) = −vα(x, t).
The discretized time-dependent equations in version Eq. (12)
of the TDHFB take the explicit forms

ih̄
∂

∂t
uα(x, t) =

{
− h̄2�(2)

x

2m(�x)2
+ U (x) + 
(x)

}
uα(x, t)

−
∑
x ′

�(x, x ′)vα(x ′, t) (33)

and

ih̄
∂

∂t
vα(x, t) = −

{
− h̄2�(2)

x

2m(�x)2
+ U (x) + 
∗(x)

}
vα(x, t)

−
∑
x ′

�∗(x, x ′)uα(x ′, t), (34)

with


(x) =
∑
x ′

v(x − x ′)ρ(x ′, x ′), (35)

�(x, x ′) = v(x − x ′)κ(x, x ′). (36)

Here �(2)
x is the second-difference operator, �(2)φ(i) = φ(i +

1) − 2φ(i) + φ(i − 1).
The normal and anomalous density matrices are given by

ρ(x, x ′) =
∑

α

v∗
α(x, t)vα(x ′, t), (37)

κ(x, x ′) =
∑

α

v∗
α(x)uα(x ′). (38)

B. Exact solution for the two-particle case

One interesting aspect of the model considered here is that
for two particles it can be solved exactly numerically. Indeed,
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FIG. 2. (Color online) S = 0 component of the two-body density
matrix ρ(2)(x1 ↑, x2 ↓) in 10−3 (unit of length)−2 at time t = 0 for
the four theories studied here. This figure corresponds to the set of
parameters (c) (see text).

assuming that the system is a spin singlet, the two-body wave
function reads

�(x1, σ1, x2, σ2) = 1√
2

(
δσ1↑δσ2↓ − δσ1↓δσ2↑

)
φ(x1, x2), (39)

where φ(x1, x2) is a symmetric function that satisfies the
Schrödinger equation:

ih̄
d

dt
φ(x1, x2) = [

h0
1 + h0

2 + v(x1 − x2)
]
φ(x1, x2). (40)

Because the discussion here might be applied not only
to nuclear systems but also to other field of physics like
condensed matter or atomic physics, we consider here reduced
units. The length, time scale, and energy scale given below are
respectively written in units of �x, m�x2/h̄, and h̄2/(m�x2),
where �x is the discretization mesh step. Accordingly, all
quantities below are presented without specific units. The
parameters of the central potential are set to a = 2, X0 = 4.5,
and σ0 = 2.5, and the initial harmonic constraint is taken
as λ = 6.173 × 10−4. Three interaction strengths, v0, equal
to −1.096 × 10−2, −3.344 × 10−2, and −6.280 × 10−2 are
considered. The three cases will be referred respectively to
cases (a), (b), and (c) below. In each case, the depth of the
Woods-Saxon potential has been adjusted to get the same
binding energy E = −2.2 × 10−2, leading to U0 = −2.7 ×
10−2, −1.929 × 10−2, and −7.716 × 10−3, respectively. For
cases (a) and (b) the interaction is below the strength needed
for a condensate in the HFB or BCS theory at a mean particle
number of 2.

An illustration of the two-body density matrix obtained at
different levels of approximation for the case (a) is shown in
Fig. 2. Due to the attractive nature of the two-body interaction
used, the two-body density presents a clear correlation along

the axis (x1 + x2)/2 that is completely neglected at the
Hartree-Fock level. Such a correlation is partially recovered
when pairing is included in the HFB or BCS theory.

C. Some numerical aspects for dynamics with pairing

It is important to integrate the time-dependent equations
of motion with a high-order method, because wave-function
conditions such as normalization and conserved quantities
such as energy can be easy lost. The time scale for single-
particle motion and direct reactions is several thousands of
units of time, and we require numerical accuracy up to those
times. For most of the results we present below, we have
used the fourth-order Runge-Kutta algorithm (RK4). The
calculations in Ref. [13] on the other hand use a sixth-order
Adam-Bashford algorithm, and we have tested that as well.

Typically, we take a box of dimension Xmax = 500, giving
the HFB matrices a dimension of 4Xmax/�x = 2000. The
single-particle Hamiltonian has a range up to ∼2, which
requires a fairly small time step. We take �t = 0.263.

1. Ehrenfest vs Thouless equation of motion

As has been stressed in Sec. II A, the equations of motion on
the (uα, vα) components are not unique. We have implemented
two of the formulations below, namely, the “Ehrenfest”
[Eq. (12)] and the “Thouless” [ Eq. (16)] equations of motion.
The numerical integration can be carried out very accurately
using each version of the equations. We found that the Thouless
equation has a better precision than the Ehrenfest equation
using RK4 at a fixed time step. However, it turns out that the
Ehrenfest formulation is 3 or 4 times faster than the Thouless
one, due to the smaller number of matrix operations in Eqs. (12)
compared to that in Eqs. (16). Since the computational time
is a crucial aspect of the numerical treatment, the standard
Ehrenfest equation is a better choice. The density formulation
[Eqs. (5) and (6)] would have a number of matrix operations
similar to that of the Thouless formulation, but we have
not investigated the numerical performance of this third
alternative.

2. Imaginary absorbing potential

Particle loss is monitored by computing the number of
particles having |x| < X0/2. Particles can be reflected from
the edges of the box and obscure this measure of evaporation,
so we have to add an absorbing potential hi near the edges. As
mentioned in Ref. [12], the specific form of the absorbing
potential is not obvious, because it should decrease the
particle number without affecting the normalization of the
wave function. It can be shown that the following prescription
satisfies these requirements,

ih̄
∂

∂t

(
u

v

)
=

(
h − ρhi −� − κhi

−�∗ + κ∗hi −h∗ + (1 − ρ∗)hi

) (
u

v

)
.

In particular, the above equation preserves the unitarity
property uu† + v∗vt = 1.
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FIG. 3. (Color online) Evolution of the local one-body density
n(x) of a system of N = 10 particles. The system is initially
confined in a harmonic trap. At t � 0, the external constraint is
relaxed.

In applications below, the imaginary potential is taken as

hi(x) = 0 for |x|〈(Xmax − xim),

hi(x) = iVim
|x| − Xmax + xim

xim
, for |x|〉(Xmax − xim),

with Xmax = Lmax/2, Vim = −7.716 × 10−3, and
xim = 37.5.

We compared TDHFB evolution in a small box including
the imaginary potential with the corresponding evolution
in a very large box to check that the present method
is a practical way to suppress the reflected particles. We
also found that a simplier prescription is also adequate
for our purposes. Namely, one can apply the imaginary
potential to the v amplitudes alone, with the equation of
motion

ih̄
∂

∂t

(
u

v

)
=

(
h −�

−�∗ −h∗ + hi

) (
u

v

)
.

This prescription violates unitarity, but the results using it
could not be distinguished from the correct evolution.

D. Particle evaporation

To simulate an evaporating system, we start with a wave
function that is constrained to be largely inside the potential
well U (x). This is achieved by adding a small harmonic
constraining field, λr2, to the Hamiltonian and solving for
the HFB ground state. At time t � 0, the harmonic constraint
is removed inducing a monopole oscillation of the system
that is eventually damped out by particle evaporation. This
is illustrated in Fig. 3, showing snapshots of the density
at different times with the system evolved with the TDHF
equations of motion, i.e., without pairing.

1. Comparison between the exact solution and TDHFB

In this section we compare the particle emission of TDHFB
with that given by the two-particle Schrödinger equation,
solved numerically. One should not expect close agreement
under all conditions for two reasons. The total emission
probability in the final state can be calculated easily in the
Schrödinger dynamics by taking the overlap of the initial state

with the bound solutions. The TDHFB dynamics on the other
hand may have no binding when the average particle number
on the nucleus becomes small.

It is also not possible to set the initial conditions for the HFB
wave function to correspond exactly to the two-particle wave
function of the Schrödinger equation; one sees this already in
Fig. 2. As described above, the initial state for the Schrödinger
equation is squeezed ground state, namely, the lowest state
of the two-particle system in the presence of a harmonic
external potential. A corresponding HFB wave function could
be constructed by using the BCS form of the wave function and
requiring that it have the same one-particle density matrix. This
turns out to not work well, due to high momentum components
in the wave function that are not properly controlled by the
HFB pairing field. We found that a better prescription is
to make a corresponding squeezed ground state in the HFB
treatment. We use this prescription for the comparison shown
below.

We measure the number of particles inside the system by
the quantity

N (t) =
∫

|x|〈Xbox

2n(x, t)dx, (41)

where Xbox here is taken as 100. Note that the system is
centered at x = 0. The evolution of N (t) for several cases
is shown in Fig. 4, comparing the exact results with those of
the HFB approximation.

In cases (a) and (b), TDHF and TDHFB are identical.
Indeed, the minimization of the HFB equation to get the
initial state leads to a pure Slater determinant state. In these
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FIG. 4. (Color online) Number of particles evaporated from an
initially compressed system with initially N = 2 as a function of time
obtained with the exact solution (solid black line), TDHF (solid green
triangle), and TDHFB (open blue squares). Results with different two-
body interaction strengths [cases (a), (b), and (c)] are, respectively,
shown from top to bottom (see text).
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cases, the TDHF evolution is very close to the exact solution.
Note that, in this regime, the evaporation is dominated by
the mean-field contribution and pairing has a weak effect on
particle emission. As the interaction strength increases, the
TDHFB and TDHF results start to deviate from each other as
well as from the exact evolution. As the interaction strength
increases, the role of pairing and, more generally, correlations
on evaporation becomes more important. The TDHF evolution
largely underestimate the emission in case (c). This stems from
the fact that the mean field is not able to properly describe
the diffusion of the occupation probability around the Fermi
energy in the initial state and the dynamical scattering of
single particles during the evolution induced by correlations
beyond the Hartree-Fock. In the bottom panel of Fig. 4, the
lack of evaporation in TDHF is due to the fact that all initial
occupied states can be decomposed onto bound states of the
corresponding mean field. A similar situation occurs for the
N = 10 case presented below.

A precise study of the strongest coupling case [case (c)],
which is the only case above the HFB threshold for the
initial state, shows that the time scale associated with particle
evaporation is properly accounted for in TDHFB. This can
indeed be seen in the bottom part of Fig. 4 where we see
that the time at which N (t) starts to decrease is the same in
the exact case and in the TDHFB case. This shows that the
time scale associated with the evaporation process is the same
in the exact case and in the TDHFB case. In the long time
limit, TDHFB overestimates the average number of emitted
particles. Accordingly, it could be anticipated that the internal
motion of the system would be more damped in the latter case
than in reality. We indeed have checked that the damping width
of the monopole resonance is larger in TDHFB compared to
the exact solution.

It should be noted that the approximation leading to TDHFB
can only be justified for the short time evolution. Indeed, even
starting from a quasiparticle state, correlation beyond TDHFB
might build up in time, like, for instance, four-quasiparticle
excitations.

2. Comparison between the exact solution and T DH F + BC S

Here, the results obtained by using the TDHF + BCS
equation of motion discussed in Sec. II B are presented. In
Fig. 5, an illustration of the result obtained in case (c) is shown.

Independently of the set of parameters used in the model
case, it is generally observed that the TDHF + BCS theory
leads to unrealistically fast early emission of particles com-
pared to the exact case. This fast emission seems to be a generic
feature of the BCS approach as illustrated in Fig. 6 where
N = 10 particles are considered. This observed fast emission
is very likely connected to the problem of applying BCS when
continuum states are present in the wave functions. The BCS
ground state has an unphysical gas of particles in the continuum
rather than an exponential decay into the vaccum [24]. This
was one of the historical reason why HFB was preferred to
BCS in nuclear structure studies. It is of course possible to
reduce the continuum problem by truncating the number of
single-particle states that contribute to pairing. However, we
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FIG. 5. (Color online) Number of particles evaporated from an
initially compressed system with initially N = 2 as a function of time
obtained with the exact solution (solid black line), TDHF (dashed
green line), and TDHF + BCS theory (thin red line) in the case of
parameter set (c).

do not know any systematic way to carry this out without
reference to more reliable calculational methods.

In studies dedicated to nuclear structure, this is generally
circumvented by reducing significantly the number of single-
particle states that contribute to pairing. Then, only states with
single-particle energy within a given range �E around the
Fermi energy are used, where �E is of the order of a few MeV.
In Figs. 4–6, this restriction has not been made and a large set
of single particles is retained. If the energy window �E is
reduced, the time scale associated with particle evaporation
is increased and eventually becomes more consistent with
the exact dynamics. Conjointly, the asymptotic number of
evaporated particles is significantly reduced and approaches
the TDHF case as �E goes to 0.

It should be mentioned that in realistic three-dimensional
calculations, there is no flexibility in the selection of single-
particle states contributing to the dynamics. Indeed, static
calculations are already made with a specific choice of
single-particle space in such a way that, with an effective
force in the pairing channel, the gap has a reasonable value.
Accordingly, the dynamics should be made with the same set
of single-particle states as has already been done in Ref. [14].
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FIG. 6. (Color online) Number of particles evaporated from an
initially compressed system with initially N = 10 as a function of
time obtained with TDHF (solid line), TDHFB (dotted line), and
TDHF + BCS theory (dashed line).
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3. Spurious oscillation in T DH F + BC S theory

In the long time evolution, oscillation of the number of
particles, similar to those displayed in Fig. 1, is observed in
TDHF + BCS (see Figs. 5 and 6). Such oscillations are absent
in the TDHFB theory. From the application presented here, we
can conclude that the spurious oscillation is a generic effect
in TDHF + BCS. It occurs even if a finite range interaction is
used. Finally, this problem is solved when TDHFB is used.

To better characterize the oscillation, N (t) can be expressed
in the canonical basis as

N (t) =
∑

i

ni(t)Pi(t), (42)

where ni(t) and Pi(t) denote respectively the occupation
numbers and the probability of the canonical orbital i inside
the box:

Pi(t) =
∫

|x|〈Xbox

|ϕi(x, t)|2dx. (43)

An illustration of N (t) for the two-particle case (c) is given in
Fig. 7. The observed evolution is mainly due to the evolution
of the two closest levels below and above the particle emission
threshold labeled respectively by “1” and “2”. These two levels
verify n1(t) + n2(t) � 1. During time evolution, the unbound
level is continuously emitted while the bound level remains in
the box, i.e., P1(t) = 1. Assuming, that only these two levels
contribute to the particle emission, an estimate N ′(t) of the
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FIG. 7. (Color online) Top: Evolution of occupation numbers
of the two closest states above (state 2, dashed line) and below
(state 1, solid line) the Fermi energy as a function of time obtained
in TDHF + BCS [parameters set (c)]. Middle: Evolution of the
corresponding portion of the wave function remaining inside the box.
Bottom: Evolution of N (t) (thin line) and of N ′(t) (thick line) as a
function of time.
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FIG. 8. Top: Evolution of occupation numbers of the three
main single-particle canonical states contributing to the particle
evaporation for the exact dynamics. The corresponding values of
Pi(t) are shown in the bottom part.

number of evaporated particles is given by2

N ′(t) = 2 [n1(t)P1(t) + n2(t)P2(t)] . (44)

The evolution of ni(t) and Pi(t) for i = 1 and 2, as well as of
N ′(t), is shown in Fig. 7 attesting to the validity of the two-level
approximation. As seen in the bottom part of this figure, N ′(t)
is very close to its exact value N (t) and oscillations are due to
oscillations in occupation numbers

Such oscillations of occupation numbers are expected in
any theory beyond TDHF, including the TDHFB and/or exact
evolution (see Fig. 8). However, these theories do not lead to
unphysical evolution of the particle number. The difference
between TDHF + BCS and the two other theories stems from
the approximation made to get the equation of motion. Indeed,
by neglecting the off-diagonal matrix elements of the pairing
field, the single-particle evolution reduces to self-consistent
mean-field dynamics, similar to the TDHF one. The effect of
correlation only enters into the occupation numbers’ evolution
and only affects the single-particle evolution through the
density dependence of the self-consistent mean field.

Usually, correlation is expected to induce a mixing of
single-particle states. Indeed, the evolution of the one-body
density matrix in the presence of correlation is given by

ih̄
∂ρ

∂t
= [h(ρ), ρ] + T r2[v12, C12], (45)

where h(ρ) is the mean field of the correlated state while
v12 and C12 denote the two-body interaction and correlation
matrix, respectively (see Ref. [25] for more details). In both
TDHFB and exact solution, the second term induces an
extra mixing of single-particle states that is neglected in
TDHF + BCS. It turns out that this mixing is essential to
compensate the possible oscillations in occupation numbers.
This is clearly illustrated in Fig. 8 where the quantity Pi(t)

2Note that the factor 2 here comes from the initial degeneracy.
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is shown to oscillate coherently with ni(t) in the exact case
(similar behavior is observed in the TDHFB evolution).

4. Link with the breakdown of continuity equation in
T DH F + BC S

Starting from the expression (27) derived for TDHF +
BCS, the evolution of the particle number inside the box is
given by

dN(t)

dt
= −

∫
|x|〈Xbox

div[j (x, t)]dx

+
∑

i

Pi(t)

(
dni(t)

dt

)
. (46)

Introducing two sets of real functions Ri(x, t) and Si(x, t) for
each wave packet such that

ϕi(x, t) = Ri(x, t) exp[iSi(x, t)/h̄], (47)

and making use of partial integration technique, the first term
in Eq. (46) can be recast as∫

|x|〈Xbox

div[j (x, t)]dx = 2
∑

i

ni |ϕi(Xbox, t)|2vi(Xbox, t),

where vi denotes the local velocity of the particle defined
through vi(x, t) ≡ ∇Si(x, t)/m.

This term is the expected physical term expected to appear
in any well-defined transport theory that relates the number
of particles inside the box to the flow of particles outgoing at
the boundary of the box. However, due to the presence of the
second term in Eq. (46), oscillation of occupation numbers that
are not compensated by oscillation of the probability Pi(t) (see
Fig. 7) leads to spurious behavior of the particle number. The
only way to avoid this problem in a TDHF + BCS approach
is to freeze the occupation numbers during the evolution.

5. T DH F + BC S with frozen occupation numbers

To incorporate pairing in a transport model we are facing
the difficulty that the TDHFB theory is very demanding
numerically. A possible solution to this difficulty would be
to use the simpler TDHF + BCS approach. However, in view
of the preceding sections, the approximation made to obtain
TDHF + BCS leads to unphysical behavior especially when
continuum plays a significant role: strange behavior of particle
emission, gas problem.

We have seen in Sec. III D3 that the pathologies of
TDHF + BCS come from the evolution of occupation that
should normally be accompanied by a consistent mixing
of the single-particle states along the dynamical path. This
approximation does not seem to be critical in the study of static
properties of nuclei, and most often, for not too exotic nuclei,
BCS theory provides a fairly good approximation to HFB.

A simple prescription to avoid nonphysical evolution in
TDHF + BCS is to assume that the occupation numbers are
frozen during the time evolution; this approximation is called
hereafter the frozen occupation approximation (FOA). An
illustration of the FOA effect on particle evaporation is shown
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FIG. 9. (Color online) Evolution of the number of particles
evaporated from an initially compressed system of N = 2 particles.
The exact result (thick solid line) is compared to the TDHF + BCS
with (dashed line) and without (thin solid line) the frozen occupation
number approximation. The simulation has been made with the same
parameter set as for the lower panel of Fig. 4.

in Fig. 9 (dashed line). As anticipated, spurious oscillations of
the particle number evaporation disappear in the FOA. It turns
out that, for the specific set of parameters used in the example
of Fig. 4, the asymptotic number of particles evaporated is in
very good agreement with that of the exact case, much better
than the TDHFB solution (see Fig. 4). However, the agreement
depends on the parameters that are used and no systematic
conclusion can be drawn. Note that this approximation has
already been used in realistic calculations, for example, to
study dipole giant resonances [26].

IV. SUMMARY

In this article, different transport theories able to incorporate
pairing are discussed. One important conclusion is that theories
like TDHF + BCS where the continuity equation is not
respected can lead to unphysical results. More specifically, the
effect of pairing on particle emission has been analyzed here
using a simple one-dimensional Hamiltonian that can be solved
exactly for the case of two particles. From the systematic
study we have made by changing the interaction strength
and/or particle number, pairing does affect significantly the
particle number emission. While the TDHF approach generally
underestimates significantly the number of emitted particles,
an enhancement of particle evaporation is observed when
pairing is included. This effect is automatically included in
both TDHFB or TDHF + BCS theory. Only TDHFB provides
a good description of particle emission at short times but
might deviate from the exact dynamics at longer times due
to accumulated correlation effects beyond this approach.

While the asymptotic number of emitted particles is quite
reasonable, TDHF + BCS leads to unphysical rapid emission
and spurious oscillations of the number of emitted particles.
The direct use of TDHF + BCS, which would be highly
desirable from the practical point of view, is plagued with
unphysical behavior, and, as we have shown, it is preferable to
use a simplified version where occupation numbers are frozen
to their initial value.
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In summary, both TDHFB and TDHF + BCS with constant
occupation numbers can eventually be used to describe a
physical system while TDHF + BCS with varying occupation
numbers should be avoided. While TDHFB is expected to have
a richer dynamics, due to its simplicity, the second transport
theory remains quite attractive.
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