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J. Kotila* and F. Iachello†

Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut 06520-8120, USA
(Received 9 November 2011; revised manuscript received 24 February 2012; published 19 March 2012)

A complete and improved calculation of phase-space factors for 2νββ and 0νββ decay is presented. The
calculation makes use of exact Dirac wave functions with finite nuclear size and electron screening and includes
lifetimes, single and summed electron spectra, and angular electron correlations.
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I. INTRODUCTION

Double-β decay is a process in which a nucleus (A,Z)
decays to a nucleus (A,Z ± 2) by emitting two electrons (or
positrons) and, usually, other light particles:

(A,Z) → (A,Z ± 2) + 2e∓ + anything. (1)

Double-β decay can be classified in various modes according
to the various types of particles emitted in the decay.

For β−β−, the process 2νββ [Fig. 1(a)],

(A,Z) → (A,Z + 2) + 2e− + 2ν̄, (2)

is allowed by the standard model and expected to occur
with calculable probability. In recent years, the process 0νββ

[Fig. 1(b)],

(A,Z) → (A,Z + 2) + 2e−, (3)

has become of great interest, due to the discovery of neutrino
oscillation [1–3]. The process is of utmost importance for
obtaining the neutrino mass since its decay probability is
proportional to the square of the average neutrino mass 〈mν〉.
A third process has been also considered, 0νββM [Fig. 1(c)],

(A,Z) → (A,Z + 2) + 2e− + M0, (4)

in which a massless Nambu-Goldstone boson, called a ma-
joron, is emitted. However, most of the interest in this mode has
disappeared in recent years and hence it will not be considered
here. For β+β+ decay, the corresponding modes 2νββ and
0νββ are

(A,Z) → (A,Z − 2) + 2e+ + 2ν,
(5)

(A,Z) → (A,Z − 2) + 2e+.

In this case, there are also competing modes in which either one
or two electrons are captured from the electron cloud (EC),
2νβEC, 2νECEC, 0νβEC, and 0νECEC.

For processes allowed by the standard model (2νββ,
2νβEC, and 2νECEC) the half-life can be, to a good
approximation, factorized in the form[

τ 2ν
1/2

]−1 = G2ν |M2ν |2, (6)

where G2ν is a phase-space factor and M2ν is the nuclear matrix
element. For processes not allowed by the standard model the
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half-life can be factorized as

[
τ 0ν

1/2

]−1 = G0ν |M0ν |2 |f (mi,Uei)|2 , (7)

where G0ν is a phase-space factor, M0ν is the nuclear matrix
element, and f (mi,Uei) contains physics beyond the standard
model through the masses mi and mixing matrix elements Uei

of neutrino species. For both processes, two crucial ingredients
are the phase-space factors and the nuclear matrix elements.
Recently, we have initiated a program for the evaluation of both
quantities. For the nuclear matrix elements we have developed
an approach based on the microscopic interacting boson model
(IBM-2) and presented some results in Ref. [4]. Additional
preliminary results have been presented in Refs. [5–7] and will
be discussed in a forthcoming publication [8]. In this paper,
we concentrate on phase-space factors.

A general theory of phase-space factors in double-β decay
was developed years ago by Doi et al. [9,10] following previ-
ous work of Primakoff and Rosen [11] and Konopinski [12]. It
was reformulated by Tomoda [13], whose work we follow here.
Tomoda also presented results for a selected number of nuclei.
These results were obtained by approximating the electron
wave functions at the nuclear radius and without inclusion of
electron screening. In this paper we take advantage of some
recent developments in the numerical evaluation of Dirac wave
functions and in the solution of the Thomas-Fermi equation
to calculate more accurate phase-space factors for double-β
decay in all nuclei of interest. Our results are of particular
interest in heavy nuclei (where αZ is large), where relativistic
and screening corrections play a major role. Studies similar to
ours were done for single-β decay in the 1970s [14]. In this
paper we report results for β−β−, which at the moment is the
most promising decay mode. In a subsequent publication, we
will present results for β+β+, β+EC, and ECEC, which has
very recently attracted some attention [15].

II. ELECTRON WAVE FUNCTIONS

The key ingredients for the evaluation of phase-space
factors in single- and double-β decay are the (scattering)
electron wave functions (and for electron capture the bound
wave functions). The general theory of relativistic electrons
can be found, e.g., in the book of Rose [16]. We use, for β
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FIG. 1. Double-β decay mechanism for (a) two-neutrino,
(b) neutrinoless, and (c) neutrinoless decay with Majoron emission.

decay, positive energy Dirac central field wave functions,

ψεκμ(r) =
(

gκ (ε, r)χμ
κ

ifκ (ε, r)χμ
−κ ,

)
, (8)

where χμ
κ are spherical spinors and gκ (ε, r) and fκ (ε, r) are

radial functions, with energy ε, depending on the relativistic
quantum number κ defined by κ = (l − j )(2j + 1). Given an
atomic potential V (r) the functions gκ (ε, r) and fκ (ε, r) satisfy
the radial Dirac equations

dgκ (ε, r)

dr
= −κ

r
gκ (ε, r) + ε − V + mec

2

ch̄
fκ (ε, r),

(9)
dfκ (ε, r)

dr
= −ε − V − mec

2

ch̄
gκ (ε, r) + κ

r
fκ (ε, r).

The electron scattering wave function, denoted here by es (ε, r),
where s is the projection of the spin, can then be expanded in
terms of spherical waves as

es(ε, r) = e
S1/2
s (ε, r) + e

P1/2
s (ε, r) + e

P3/2
s (ε, r) + · · · , (10)

where

e
S1/2
s (ε, r) =

(
g−1(ε, r)χs

f1(ε, r)(p̂ · �σ )χs

)
,

e
P1/2
s (ε, r) =

(
ig1(ε, r)(r̂ · �σ )(p̂ · �σ )χs

−if−1(ε, r)(r̂ · �σ )χs

)
, (11)

e
P3/2
s (ε, r) =

(
ig−2(ε, r)[3(r̂ · p̂) − (r̂ · �σ )(p̂ · �σ )]χs

if2(ε, r)[3(r̂ · p̂)(p̂ · �σ ) − (r̂ · �σ )]χs

)
.

The large and small components gκ (ε, r) and fκ (ε, r), respec-
tively, with ε =

√
(mec2)2 + (pc)2 of the radial wave functions

are normalized so that they asymptotically oscillate with(
gκ (ε, r)

fκ (ε, r)

)

∼ e−iδκ
h̄

pr

⎛
⎝

√
ε+mec2

2ε
sin

(
kr − l π

2 − η ln(2kr) + δκ

)
√

ε−mec2

2ε
cos

(
kr − l π

2 − η ln(2kr) + δκ

)
⎞
⎠ ,

(12)

where

k ≡ p

h̄
=

√
ε2 + (mec2)2

ch̄
(13)

is the electron wave number, η = Ze2/h̄v is the Sommerfeld
parameter, and δk is the phase shift. (For the neutrino wave

functions appearing in the 2ν decay mode the limit Z → 0 is
taken, in which case the wave functions become the spherical
Bessel functions.)

The radial wave functions are evaluated by means of the
subroutine package RADIAL [17], which implements a robust
solution method that avoids the accumulation of truncation
errors. This is done by solving the radial equations by
using a piecewise-exact power-series expansion of the radial
functions, which then are summed up to the prescribed
accuracy so that truncation errors can be completely avoided.
The input in the package is the potential V . This potential is
primarily the Coulomb potential of the daughter nucleus with
charge Zd , V (r) = −Zd (αh̄c)/r . As in the case of single-β
decay [14] we include nuclear size corrections and screening.

The nuclear size corrections are taken into account by a
uniform charge distribution in a sphere of radius R = r0A

1/3

with r0 = 1.2 fm, i.e.,

V (r) =
[

−Zd (αh̄c)
r

, r � R,

−Zd (αh̄c)
( 3−(r/R)2

2R

)
, r < R.

]
(14)

The introduction of finite nuclear size has also the advantage
that the singularity at the origin in the solution of the Dirac
equation is removed. (Other charge distributions, for example
a Woods-Saxon distribution, can be used if needed.)

The contribution of screening to the phase-space factors
was extensively investigated in single-β decay [18,19]. The
screening potential is of order VS ∝ Z

4/3
d α2 and thus gives a

contribution of order α = 1/137 relative to the pure Coulomb
potential VC ∝ Zdα. We take it into account by using the
Thomas-Fermi approximation. The Thomas-Fermi function
ϕ(x), which is the solution of the Thomas-Fermi equation

d2ϕ

dx2
= ϕ3/2

√
x

(15)

with x = r/b and

b = 1

2

(
3π

4

)2/3
h̄2

mee2
Z

−1/3
d � 0.8853a0Z

−1/3
d , (16)

where a0 is the Bohr radius, is obtained by solving Eq. (15)
for a point charge Zd with boundary conditions

ϕ(0) = 1, ϕ(∞) = 2

Zd

. (17)

This takes into account the fact that the final atom is a positive
ion with charge +2. With the introduction of this function, the
potential V (r) including screening becomes

V (r) ≡ ϕ(r) ×
[

−Zd (αh̄c)
r

, r � R,

−Zd (αh̄c)
( 3−(r/R)2

2R

)
, r < R.

]
(18)

This can be rewritten in terms of an effective charge Zeff =
Zdϕ(r), where Zeff now depends on r . In order to solve
Eq. (15), we use the Majorana method described in Ref. [20],
which is valid both for a neutral atom and a positive
ion. The method requires only one quadrature and is thus
amenable to a simple solution. It is particularly useful here,
since we want to evaluate screening corrections in several
nuclei. The Thomas-Fermi electron density is approximate,
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FIG. 2. (Color online) Electron radial wave functions g−1(ε, r), f−1(ε, r) (left panel) and f1(ε, r), g1(ε, r) (right panel) for Zd = 62,
ε = 2.0 MeV, and R = 6.38 fm (vertical line). The notations WF1, WF2, and WF3 correspond to leading finite-size Coulomb, exact finite-size
Coulomb, and exact finite-size Coulomb with electron screening, respectively.

especially at the origin. However, the screening correction is
only of order α relative to the Coulomb potential and the
error on this small correction is therefore negligible. (A better
method would be to do an atomic Hartree-Fock calculation
and then fit the result to the expansion

V (r) = [−Zd (αh̄c)/r]
∑

i

ai exp(−bix), (19)

where x = r/b as in Eq. (15). However, it has been shown in
single-β decay that this method gives results comparable to the
Thomas-Fermi approximation [19], except in very light nuclei,
Z � 8, which we do not discuss here.) We also do not consider
radiative corrections to the phase-space factors, which are of
order α3 and thus negligible to the order of approximation we
consider here.

In order to show the improvement in our calculation as
compared with the approximate solution used in the literature
we show in Fig. 2 a comparison of the radial wave functions
for 150Nd decay, Zd = 62, at ε = 2.0 MeV.

III. PHASE-SPACE FACTORS IN DOUBLE-β DECAY

A. Two-neutrino double-β decay

The 2νββ decay [Fig. 1(a)] is a second-order process in
the effective weak interaction. It can be calculated in a way
analogous to single-β decay. Neglecting the neutrino mass,

considering only S-wave states, and noting that with four
leptons in the final state we can have angular momentum 0, 1,

and, 2, we see that both 0+ → 0+ and 0+ → 2+ decays can
occur. We denote by Qββ the Q value of the decay, by EN the
excitation energy in the intermediate nucleus, and by Ã the
excitation energy with respect to the average of the initial and
final ground states,

Ã = 1
2W0 + EN − EI = 1

2 (Qββ + 2mec
2) + EN − EI . (20)

The situation is illustrated in Fig. 3.

1. 0+ → 0+
1 2νββ decay

The differential rate for the 0+ → 0+
1 2νββ decay is given

by ( [9–13,21])

dW2ν = (a(0) + a(1) cos θ12)w2νdω1dε1dε2d(cos θ12), (21)

where ε1 and ε2 are the electron energies, ω1 and ω2 are the
neutrino energies, θ12 is the angle between the two emitted
electrons, and

w2ν = g4
A(G cos θC)4

64π7h̄
ω2

1ω
2
2(p1c)(p2c)ε1ε2. (22)

The quantities a(0) and a(1) are a sum of the contributions of
all the intermediate states and depend on the energy EN of the
intermediate state in the odd-odd nucleus and on the nuclear
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FIG. 3. Notation used in this paper. The example is for 150Nd
decay.

matrix elements M2ν . Introducing the short-hand notation

〈KN 〉 = 1

ε1 + ω1 + 〈EN 〉 − EI

+ 1

ε2 + ω2 + 〈EN 〉 − EI

,

(23)

〈LN 〉 = 1

ε1 + ω2 + 〈EN 〉 − Ei

+ 1

ε2 + ω1 + 〈EN 〉 − EI

,

where 〈EN 〉 is a suitably chosen excitation energy in the odd-
odd nucleus, one can write [13], to a good approximation,

a(0) = 1
4f

(0)
11 |M2ν |2Ã2

[
(〈KN 〉 + 〈LN 〉)2 + 1

3 (〈KN 〉− 〈LN 〉)2
]
,

(24)

a(1) = 1
4f

(1)
11 |M2ν |2Ã2

[
(〈KN 〉 + 〈LN 〉)2 − 1

9 (〈KN 〉− 〈LN 〉)2
]
,

where M2ν are the nuclear matrix elements and f
(0)
11 and f

(1)
11

are products of radial wave functions. Since Eq. (24) is an
approximation to the exact expression, which is, however, of
crucial importance for the separation of the decay probability
into a phase-space factor and a nuclear matrix element, we
have investigated the dependence of a(0) and a(1) on the
energy 〈EN 〉. Since 〈EN 〉 appears both in the denominator of
Eq. (24) through 〈KN 〉 and 〈LN 〉 and in the numerator through
Ã2 = [W0/2 + 〈EN 〉 − EI ]2, the dependence on 〈EN 〉 cancels
almost completely, as already remarked years ago by Tomoda
[13] and as will be shown by explicit calculation in the
following paragraphs.

The functions f
(0)
11 and f

(1)
11 are defined as

f
(0)
11 = |f −1−1|2 + |f11|2 + |f −1

1|2 + |f1
−1|2,

(25)
f

(1)
11 = −2Re[f −1−1f ∗

11 + f −1
1f1

−1∗].

with

f −1−1 = g−1(ε1)g−1(ε2),

f11 = f1(ε1)f1(ε2),
(26)

f −1
1 = g−1(ε1)f1(ε2),

f1
−1 = f1(ε1)g−1(ε2).

The functions g−1(ε) and f1(ε) are obtained from the electron
wave functions. We have used several ways to obtain g−1(ε)

and f1(ε) following an approach similar to that used in single-β
decay. We write

g−1(ε) =
∫ ∞

0
w(r)g−1(ε, r)r2dr,

(27)

f1(ε) =
∫ ∞

0
w(r)f1(ε, r)r2dr.

In approximation (I) we use the weighing function w(r) =
δ(r − R)/r2 in which case

g−1(ε) = g−1(ε, R),
(I) (28)

f1(ε) = f1(ε, R);

that is, the electron wave functions are evaluated at the nuclear
radius r = R. This is the simplest approximation and is
commonly used in single-β decay. We adopt it in this paper. In
approximation (II) we use the weighing function w(r) = 3/R3

for r � R and w(r) = 0 for r > R (a uniform distribution of
radius R). This is not a good approximation, since the inner
states cannot decay due to Pauli blocking and the decay occurs
at the surface of the nucleus. Nevertheless, it is sometimes
used. It essentially amounts to an evaluation of g−1(ε) and
f1(ε) at a radius r = √

3R/
√

5, as one can show by explicitly

Β

FIG. 4. (Color online) (a) Skeleton of the 110Pd decay scheme.
The ground state of the intermediate 110Ag nucleus is 1+, lead-
ing to the lowest possible value for EN to be E1+

1
= 0.0 MeV.

(b) Behavior of the phase-phase factor G
(0)
2ν as a function of Ã.

The value obtained using the single-state dominance hypothesis,
Ã = 1.893 MeV, is denoted by a red circle and the value obtained
using Ã = 1.12 × 1101/2 MeV = 11.75 MeV is denoted by a blue
square.
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TABLE I. Phase-space factors G
(0)
2ν and G

(1)
2ν obtained using screened exact finite-size Coulomb wave functions. The Q values are taken from

experiment when available, or from tables of recommended values. Ã is taken from Ref. [21] or estimated by the systematics, Ã = 1.12A1/2 MeV,
where A without tilde denotes the mass number. Phase-space factors G

(0)
2ν SSD and G

(1)
2ν SSD correspond to values obtained using the SSD model,

in which case the ÃSSD used is listed in the last column.

Nucleus G
(0)
2ν (10−21 yr−1) G

(0)
2ν SSD (10−21 yr−1) G

(1)
2ν (10−21 yr−1) G

(1)
2ν SSD (10−21 yr−1) Qββ (MeV) Ã (MeV) ÃSSD (MeV)

48Ca 15550 −11930 4.27226(404) 7.717h

76Ge 48.17 −26.97 2.039061(7)a 9.411h

82Se 1596 −1075 2.99512(201) 10.08h

96Zr 6816 7825 −4831 −5477 3.35037(289) 10.97 2.203
100Mo 3308 4134 −2263 −2762 3.03440(17)b 11.20 1.685
110Pd 137.7 146.9 −79.56 −84.45 2.01785(64)c 11.75 1.893
116Cd 2764 3176 −1857 −2108 2.81350(13)d 12.06 1.875
124Sn 553.0 −342.7 2.28697(153) 12.47
128Te 0.2688 0.2727 −0.1047 −0.1061 0.86587(131)e 12.53h 1.685
130Te 1529 −993.9 2.52697(23)d 13.27h

136Xe 1433 −927.2 2.45783(37)f 13.06
148Nd 324.8 −195.5 1.92875(192) 13.63
150Nd 36430 −26860 3.37138(20)g 13.72
154Sm 9.591 −4.816 1.21503(125) 13.90
160Gd 193.8 −114.2 1.72969(126) 14.17
198Pt 15.36 −8.499 1.04717(311) 15.76
232Th 11.31 −6.779 0.84215(246) 17.06
238U 14.57 −9.543 1.14498(125) 17.28

aReference [28].
bReference [29].
cReference [30].
dReference [31].
eReference [32].
fReference [33].
gReference [34].
hReference [21].

evaluating

g−1(ε) = 3

R3

∫ R

0
g−1(ε, r)r2dr,

(II) (29)

f1(ε) = 3

R3

∫ R

0
f1(ε, r)r2dr.

approximate
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Nd

Nd

Ca

Ge

Se

Zr

Mo

Pd

Cd

Sn

Te

TeXe

Sm

Gd

Pt

Th

U

40 60 80 100 120 140 160 180 200 220 240

1

10

100

1000

10 000

Mass number

G
20

10
21

yr
1

FIG. 5. (Color online) Phase-space factors G
(0)
2ν in units of

10−21 yr−1. The label “approximate” refers to the results obtained
by the use of approximate electron wave functions. The figure is in
semilogarithmic scale.

The third and most accurate approximation (III) is that in
which the weighing function is the square of the wave function,
Rnl(r), of the nucleon undergoing the decay,

g−1(ε) =
∫ ∞

0
|Rnl(r)|2g−1(ε, r)r2dr,

(III) (30)

f1(ε) =
∫ ∞

0
|Rnl(r)|2f1(ε, r)r2dr.

By using harmonic oscillator wave functions and assuming
that only one orbital is involved, the integrals in Eq. (30) can
be easily evaluated. Approximation (III) essentially amounts
to an evaluation of g−1(ε) and f1(ε) at a radius

√
〈r2〉nl . For

harmonic oscillator wave functions

Rnl(r) =
√

2n!

b3�(n + l + 3/2)

( r

b

)l

e−r2/2b2
Ll+1/2

n (r2/b2),

(31)

with

b2 = h̄

Mω
� 1.0A1/3 fm2, (32)

one has

〈r2〉nl = b2
(
2n + l + 3

2

)
. (33)
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FIG. 6. Single-electron spectra (left panel), summed energy spectra (middle panel), and angular correlations between two outgoing electrons
(right panel) for the 136Xe →136Ba 2νββ decay. The scale in the left and middle panels should be multiplied by N2ν when comparing with
experiment.

This approximation has the disadvantage that it must be done
separately for each nucleus. Since in this paper we are seeking
greater generality and do not wish to make a commitment to
definite nucleonic orbitals, we make use of approximation (I).
However, our computer program is written in such way as to
allow the possibility of using Eq. (30) instead of Eq. (28).
Also in Sec. IV we study in a specific case, 110Pd, where the
transition is between 1g9/2 and 1g7/2 orbitals, the error we
make by using Eq. (28) instead of Eq. (30).

All quantities of interest are obtained by integration of
Eq. (21). In the approximation described above, all quantities
are separated into a phase-space factor (independent of nuclear
matrix elements) and the nuclear matrix elements. The two
phase-space factors are

F
(0)
2ν = 2Ã2

3 ln 2

∫ Qββ+mec
2

mec2

∫ Qββ+mec
2−ε1

mec2

∫ Qββ−ε1−ε2

0
f

(0)
11

× (〈KN 〉2 + 〈LN 〉2 + 〈KN 〉〈LN 〉)w2νdω1dε2dε1,

(34)

F
(1)
2ν = 2Ã2

9 ln 2

∫ Qββ+mec
2

mec2

∫ Qββ+mec
2−ε1

mec2

∫ Qββ−ε1−ε2

0
f

(1)
11

× [2(〈KN 〉2 + 〈LN 〉2) + 5〈KN 〉〈LN 〉]w2νdω1dε2dε1,

(35)

where ω2 is determined as ω2 = Qββ − ε1 − ε2 − ω1. It has
become customary to normalize these to the electron mass,
mec

2. Also since the axial vector coupling constant gA is
renormalized in nuclei it is convenient to separate it from
the phase-space factors and define quantities

G
(i)
2ν = F

(i)
2ν

g4
A(mec2)2

. (36)

These quantities are then in units of inverse years. From these,
we obtain (i) the half-life[

τ 2ν
1/2

]−1 = G
(0)
2ν g4

A|mec
2M2ν |2, (37)

(ii) the differential decay rate

dW2ν

dε1
= N2ν

dG
(0)
2ν

dε1
, (38)

where N2ν = g4
A|mec

2M2ν |2, (iii) the summed energy spec-
trum of the two electrons,

dW2ν

d(ε1 + ε2 − 2mec2)
= N2ν

dG
(0)
2ν

d(ε1 + ε2 − 2mec2)
, (39)

and (iv) the angular correlation between the two electrons,

α(ε1) = dG
(1)
2ν /dε1

dG
(0)
2ν /dε1

. (40)

FIG. 7. Same as Fig. 6 but for the 82Se →82Kr 2νββ decay.
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FIG. 8. (Color online) Same as Fig. 6 but for the 150Nd →150Sm 2νββ decay. The figure also shows the difference between our “exact”
calculation and the previously used approximate calculation.

We can evaluate the phase-space factors G
(i)
2ν for any value

〈EN 〉. The dependence of G
(0)
2ν on Ã = (Qββ + 2mec

2)/2 +
〈EN 〉 − EI is shown in Fig. 4(b) for the specific case of 110Pd
decay. We see that G

(0)
2ν depends mildly on Ã (<1%) except

very close to threshold 〈EN 〉 = 0, where the dependence is
∼7%. A similar situation occurs for G

(1)
2ν . We have done a

calculation of G
(0)
2ν and G

(1)
2ν in the list of nuclei shown in Table I

with Ã from Ref. [21] or estimated by the systematics Ã =
1.12A1/2 MeV, which approximately represents the energy of
the giant Gamow-Teller (GT) resonance in the intermediate
odd-odd nucleus. The obtained G

(0)
2ν values are also shown in

Fig. 5, where they are compared with previous calculations
[22]. These values of Ã are those estimated in the closure
approximation and should be combined with the closure matrix
elements

M2ν �
(

gV

gA

)2
MF

2ν

ÃF
− MGT

2ν

ÃGT
, (41)

where MF
2ν = 〈0+

F | ∑nn′ τnτn′ |0+
I 〉 and MGT

2ν =
〈0+

F | ∑nn′ τnτn′ �σn · �σn′ |0+
I 〉. Here ÃF is the closure energy for

0+ states in the odd-odd intermediate nucleus and it can be
approximately taken as the energy of the isobaric analog state.

In recent years, it has been suggested that, in some
nuclei, the lowest 1+ intermediate state dominates the decay.

FIG. 9. (Color online) Single-electron spectra for the 110Pd →
110Cd 2νββ decay obtained using the two approximations discussed
in the text, namely, the closure approximation and the single-state
dominance hypothesis. The scale should be multiplied by N2ν when
comparing with experiment.

This is called the single-state dominance hypothesis (SSD)
[23–27]. This situation is likely to occur in 96Zr, 100Mo, 110Pd,
and 116Cd, where protons occupy mostly the 1g9/2 level and
neutrons mostly the 1g7/2 level, and in 128Te, where protons
occupy mostly the 2d5/2 level and neutrons mostly the 2d3/2

level, which are spin-orbit partners of each other. In the SSD
model the energy 〈EN 〉 is that of the single state, 〈EN 〉 = E1+

1
.

We have done a calculation of G
(0)
2ν and G

(1)
2ν for the nuclei

mentioned above in the SSD case. This is also shown in Table I
in columns 3 and 5. In this case, G

(0)
2ν and G

(1)
2ν should be

combined with the matrix elements

MGT
2ν = 〈0+

F ||τ+�σ ||1+
1 〉〈1+

1 ||τ+�σ ||0+
I 〉

1
2 (Qββ + 2mec2) + E1+

1
− EI

. (42)

Finally, using our program, one can evaluate the sum∑
N

G
(i)
2ν,N

〈0+
F ||τ+�σ ||1+

N 〉〈1+
N ||τ+�σ ||0+

I 〉
1
2 (Qββ + 2mec2) + EN − EI

(43)

if the individual GT matrix elements are known from a
calculation, and we can evaluate a similar sum for Fermi matrix
elements. In this case, there is no separation between 2νββ

phase-space factors and nuclear matrix elements.
We also have available upon request for all nuclei in

Table I the single-electron spectra, summed energy spectra, and
angular correlations between the two outgoing electrons. As
examples we show the cases of 136Xe →136Ba decay (Fig. 6)
of very recent interest to the Enriched Xenon Observatory
(EXO) experiment [35] and the case of 82Se →82Kr (Fig. 7) of
interest to the Neutrino Ettore Majorana Observatory (NEMO)
experiment [36]. The use of our “exact” calculation makes a
considerable difference, as shown in Fig. 8. For the SSD case
there is a difference in the single-electron spectra at small
energies ε1, as is shown in Fig. 9 for 110Pd and previously
emphasized in Refs. [26,27].

2. 0+ → 0+
2 2νββ decay

The decay to the excited 0+ state, 0+
2 (Fig. 3), is also of inter-

est. The phase-space factor for this decay can be calculated us-
ing the formulas of the previous section, with Qββ replaced by

Qββ − Ex(0+
2 ) = Qββ(0+

2 ). (44)

The results of this calculation are shown in Table II.
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TABLE II. Phase-space factors G
(0)
2ν and G

(1)
2ν for decay to the first excited 0+ states, 0+

2 , obtained using screened exact finite-size Coulomb
wave functions. Phase-space factors G

(0)
2ν SSD and G

(1)
2ν SSD correspond to values obtained using the SSD model.

Nucleus G
(0)
2ν (10−21 yr−1) G

(0)
2ν SSD (10−21 yr−1) G

(1)
2ν (10−21 yr−1) G

(1)
2ν SSD (10−21 yr−1) E(0+

2 ) (MeV) Qββ (0+
2 ) (MeV)

48Ca 0.3627 −0.1505 2.99722(16) 1.27504(253)
76Ge 0.06978 −0.02380 1.122283(7) 0.916757(167)
96Zr 175.4 185.3 −103.8 −109.2 1.14813(7) 2.20224(296)
100Mo 60.55 65.18 −33.54 −35.89 1.13032(10) 1.90408(27)
110Pd 0.004842 0.004864 −0.001371 −0.001377 1.47312(12) 0.54773(76)
116Cd 0.8727 0.8878 −0.3642 −0.3701 1.756864(24) 1.056636(154)
124Sn 0.01988 −0.006408 1.657283(22) 0.629687(1552)
130Te 0.07566 −0.02705 1.79352(11) 0.73345(34)
136Xe 0.3622 −0.1451 1.578990(23) 0.878840(393)
148Nd 0.009911 −0.003339 1.42446(4) 0.50429(196)
150Nd 4329 −2934 0.740382(22) 2.630998(222)
154Sm 0.01850 −0.006583 0.6806673(18) 0.5343627(12518)
160Gd 0.006318 −0.002178 1.279941(23) 0.449749(1283)
232Th 0.00004221 −0.00001944 0.69142(9) 0.15073(255)
238U 0.0004635 −0.0002289 0.94146(8) 0.20352(133)

3. 0+ → 2+
1 2νββ decay

The half-life for 0+ → 2+
1 2νββ decay is given by equations

similar to those of Sec. III A1 [9,21,37]. The lepton phase-

space factor F
(0)0+→2+

1
2ν is now

F
(0)0+→2+

1
2ν = 2Ã6

ln 2

∫ Qββ (2+
1 )+mec

2

mec2

∫ Qββ (2+
1 )+mec

2−ε1

mec2

×
∫ Qββ (2+

1 )−ε1−ε2

0
f

(0)
11 (〈KN 〉 − 〈LN 〉)2

×w2νdω1dε2dε1, (45)

TABLE III. Phase-space factors G
(0)
0ν and G

(1)
0ν obtained using

screened exact finite-size Coulomb wave functions.

Nucleus G
(0)
0ν (10−15 yr−1) G

(1)
0ν (10−15 yr−1) Qββ (MeV)

48Ca 24.81 −23.09 4.27226(404)
76Ge 2.363 −1.954 2.03904(16)
82Se 10.16 −9.074 2.99512(201)
96Zr 20.58 −18.67 3.35037(289)
100Mo 15.92 −14.25 3.03440(17)
110Pd 4.815 −4.017 2.01785(64)
116Cd 16.70 −14.83 2.81350(13)
124Sn 9.040 −7.765 2.28697(153)
128Te 0.5878 −0.3910 0.86587(131)
130Te 14.22 −12.45 2.52697(23)
136Xe 14.58 −12.73 2.45783(37)
148Nd 10.10 −8.506 1.92875(192)
150Nd 63.03 −57.76 3.37138(20)
154Sm 3.015 −2.295 1.21503(125)
160Gd 9.559 −7.932 1.72969(126)
198Pt 7.556 −5.868 1.04717(311)
232Th 13.93 −10.95 0.84215(246)
238U 33.61 −28.13 1.14498(125)

with Qββ(2+
1 ) = Qββ − Ex(2+

1 ) (Fig. 3), from which the
lifetime can be calculated as[

τ 2ν
1/2(0+ → 2+)

]−1 = F
(0)0+→2+
2ν

∣∣M (2+)
2ν

∣∣2
. (46)

The nuclear matrix elements can be written, in the closure
approximation, as

M
(2+)
2ν � −M

GT(2+)
2ν

Ã3
, (47)

where

M
GT(2+)
2ν = 〈2+

F |
∣∣∣∣∣
∑
nn′

τnτn′ [�σn ⊗ �σn′](2)

∣∣∣∣∣|0+
I 〉. (48)

Since this decay contains the term 〈KN 〉 − 〈LN 〉, it is
suppressed, due to cancellations, and it will not be considered
further. Also, other models (SSD and no-closure models) can
be used, if needed.

B. Neutrinoless double-β decay

The theory of 0νββ decay was first formulated by Furry [38]
and further developed by Primakoff and Rosen [11], Molina
and Pascual [37], Doi et al. [9], and Haxton and Stephenson
[21]. Here we follow mainly the formulation of Tomoda [13].
The phase-space factors for 0νββ decay are simpler than
those of 2νββ because of the absence of integration over the
neutrino energies. Also, with two leptons in the final state and
S-wave decay we can only form angular momentum 0 or 1 and
therefore the decay to 2+ is forbidden.

1. 0+ → 0+
1 0νββ decay

The differential rate for the decay is given by Refs. [9,13]

dW0ν = (a(0) + a(1) cos θ12)w0νdε1d(cos θ12), (49)
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FIG. 10. (Color online) Phase-space factors G
(0)
0ν in units of

10−15 yr−1. The label “approximate” refers to the results obtained
by the use of approximate electron wave functions. The figure is in
semilogarithmic scale.

where ε1 and ε2 are the electron energies, θ12 is the angle
between the two emitted electrons, and

w0ν = g4
A(G cos θC)4

16π5
(mec

2)2(h̄c2)(p1c)(p2c)ε1ε2. (50)

This decay is forbidden by the standard model and can occur
only if the neutrino has mass and/or there are right-handed
currents. In view of recent experiments on neutrino oscillations
[1–3] it appears that neutrinos have a mass and we therefore
consider the phase-space factors for this case. The quantities
a(0) and a(1) in Eq. (49) can then be written as [13]

a(i) = f
(i)
11

∣∣∣∣ 〈mν〉
me

∣∣∣∣
2

|M0ν |2 , (51)

i = 0, 1, where M0ν is the nuclear matrix element and f
(0)
11 and

f
(1)
11 are the quantities given in Eq. (25).

All quantities of interest are then given by integration of
Eq. (49). Introducing

F
(i)
0ν = 2

ln 2

∫ Qββ+mec
2

mec2
f

(i)
11 w0νdε1, (52)

where ε2 is determined as ε2 = Qββ + mec
2 − ε1, and defining

the quantities

G
(i)
0ν = F

(i)
0ν

g4
A(4R2)

, (53)

where R = r0A
1/3 and r0 = 1.2 fm is the nuclear radius, we

can calculate (i) the half-life

[
τ 0ν

1/2

]−1 = G
(0)
0ν g4

A

∣∣∣∣ 〈mν〉
me

∣∣∣∣
2

|M0ν |2, (54)

(ii) the single-electron spectrum

dW0ν

dε1
= N0ν

dG
(0)
0ν

dε1
= N0ν

[
2f

(0)
11 (ε1)w0ν(ε1)

]
, (55)

where N0ν = g4
A|〈mν〉/me|2|M0ν |2, and (iii) the angular cor-

relation between the two electrons,

α(ε1) = f
(1)
11 (ε1)

f
(0)
11 (ε1)

= dG
(1)
0ν /dε1

dG
(0)
0ν /dε1

. (56)

The factor (4R2) has been introduced in Eq. (53) to conform
with standard notation [22], in which the nuclear matrix
elements M0ν are given in dimensionless units, that is, they
are multiplied by R. The factor of 4, which is missing in
Tomoda’s definition but is necessary to make the calculation
consistent with Boehm and Vogel, has been the cause of
considerable confusion in the literature, as has the value of r0

used in R = r0A
1/3. Some authors use r0 = 1.1 fm instead of

r0 = 1.2 fm.
We have done a calculation of G

(0)
0ν and G

(1)
0ν in the list of

nuclei shown in Table III. The obtained G
(0)
0ν values are also

presented in Fig. 10, where they are compared with previous
calculations [22].

We also have available upon request the single-electron
spectra and angular correlation for all nuclei in Table III. An
example for 76Ge decay is shown in Fig. 11.

2. 0+ → 0+
2 0νββ decay

The decay to 0+
2 can also be calculated as in the previous

Sec. III A2. The results are shown in Table IV.

FIG. 11. Single-electron spectra (left panel) and angular correlations between the two outgoing electrons (right panel) for the 76Ge →76Se
0νββ decay. The scale of the left panel should be multiplied by N0ν for a realistic estimate.
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TABLE IV. Same as Table III but for the decay to the first excited 0+ state, 0+
2 .

Nucleus G
(0)
0ν (10−15 yr−1) G

(1)
0ν (10−15 yr−1) E(0+

2 ) (MeV) Qββ (0+
2 ) (MeV)

48Ca 0.2989 −0.2080 2.99722(16) 1.27504(253)
76Ge 0.1776 −0.09855 1.122283(7) 0.916757(167)
96Zr 4.566 −3.760 1.14813(7) 2.20224(296)
100Mo 3.162 −2.493 1.13032(10) 1.90408(27)
110Pd 0.08844 −0.02958 1.47312(12) 0.54773(76)
116Cd 0.7163 −0.4075 1.756864(24) 1.056636(154)
124Sn 0.1709 −0.06237 1.657283(22) 0.629687(1552)
130Te 0.3086 −0.1271 1.79352(11) 0.73345(34)
136Xe 0.6127 −0.2924 1.578990(23) 0.878840(393)
148Nd 0.2010 −0.05354 1.42446(4) 0.50429(196)
150Nd 27.27 −23.26 0.740382(22) 2.630998(222)
154Sm 0.2806 −0.07744 0.6806673(18) 0.5343627(12518)
160Gd 0.2063 −0.04650 1.279941(23) 0.449749(1283)
232Th 0.2622 −0.0.1065 0.69142(9) 0.15073(255)
238U 0.7534 −0.03918 0.94146(8) 0.20352(133)

IV. EVALUATION OF THE ERROR

The input parameters in the calculation of the phase-space
factors (PSFs) are the Q value, Qββ , and the nuclear radius,
R. We take the Q value from experiments whenever possible
and thus the error introduced in G is directly related to the
experimental error. For example, recently the Q value for 110Pd
decay has been measured with high accuracy [30]. Table V
shows the improvement in the errors in G

(0)
0ν and G

(0)
2ν due to

the better accuracy obtained by measurement compared to the
Q value determined from mass values.

The nuclear radius enters in the calculation in various ways,
the most important of which is the evaluation of the quantities
g−1(ε) and f1(ε). We evaluate the error here by comparing
approximation (I) with (III) in a specific case, 110Pd, where the
transition is 1g9/2 − 1g7/2, obtaining an estimate of the error
of 3%. For 0ν decay the radius R enters also in the definition
of G0ν . This is, however, an input parameter which does not
depend on the method of calculation. We have used R = r0A

1/3

with r0 = 1.2 fm. We can estimate the error introduced by this
choice by the same method used in the phase-space factors for
single-β decay [14], that is, by adjusting r0 for each nucleus,
A, Z, using

3
5 r2

0 A2/3 = 〈r2〉exp, (57)

where 〈r2〉exp is obtained from electron scattering and/or
muonic x rays. The largest difference between Rth and Rexp is
found to be ∼4%. This leads to an error estimate of 0.5% for
2ν. For 0ν we obtain an estimate of error of 7%.

TABLE V. The uncertainty on the PSF due to the uncertainty of
the Q value.

Qββ (keV) G2ν
(0)
SSD (yr−1) G

(0)
0ν (yr−1)

2004.00(1133)a 1.386(67) × 10−19 4.707(86) × 10−15

2017.85(64)b 1.469(05) × 10−19 4.815(06) × 10−15

aReference [39].
bReference [30].

In addition, we have an error coming from screening and
most importantly from the value of 〈EN 〉. We estimate the
screening error to be 10% of the Thomas-Fermi contribution,
which is known to overestimate the electron density at the
nucleus. This gives an error in G

(0)
0ν and G

(0)
2ν of 0.1%. The

estimate of the error introduced by the choice of 〈EN 〉 is
model dependent. If we vary Ã from the value 1.12A1/2 MeV
to the SSD value (∼2 MeV) we obtain for 110Pd decay an
error of 7%, as shown in Fig. 4(b). If, however, we stay within
a specific model, closure or SSD, the error estimate is much
smaller. In particular, for the SSD model the error is only
arising from the value of QEC and Qββ shown in Fig. 4(a).
The estimate therefore depends on the nucleus considered.
For 110Pd, the SSD model appears to be a good approximation
and using it we obtain an estimate of the error of 0.05%. For
the closure approximation the dependence of G

(i)
2ν on Ã is very

mild (<1%), except very close to the threshold, 〈EN 〉 = 0, as
shown in Fig. 4(b). The situation is summarized in Table VI.

V. USE OF PHASE-SPACE FACTORS

The main use of PSFs is in connection with a calculation of
the nuclear matrix elements to predict lifetimes for the decay.
Here an important point is that the nuclear matrix elements are
defined in a way consistent with the phase-space factors. For
example, we have defined the phase-space factors for 0νββ

TABLE VI. Estimate of uncertainties introduced to phase-space
factors G

(0)
2ν and G

(0)
0ν due to different input parameters.

2ν Q value 10 × δQ/Q

Radius 0.5%
Screening 0.10%

〈EN 〉 model dependent

0ν Q value 3 × δQ/Q

Radius 7%
Screening 0.10%

〈EN 〉 –
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FIG. 12. (Color online) Effective nuclear matrix elements |Meff
2ν |

extracted from the experimental 2νββ half-lives as a function of mass
number.

with a factor of 4 in Eq. (53). This factor is not included
in Tomoda’s definition [13] but it is in the book of Boehm
and Vogel [22]. The nuclear matrix elements consistent with
this factor are, for GT, those of

∑
n,n′ τnτn′ �σn · �σn′ , not those

of (1/2)
∑

n,n′ τnτn′ �σn · �σn′ . We will present results of our
predictions where phase-space factors are combined with the
IBM-2 nuclear matrix elements in a forthcoming publication
[40]. Here we use the calculation of PSFs to extract the 2ν

matrix elements from experiments where the lifetime of 2νββ

decay has been measured. The quantity we extract is the
dimensionless quantity g4

A|(mec
2)M2ν |2 = |Meff

2ν |2 (also called
N2ν in Sec. III A1). The extraction of |Meff

2ν | is possible in
two cases: (i) the closure approximation (CA) and (ii) the
SSD hypothesis. If neither of these two approximations is
valid, then the quantities G2ν and M2ν cannot be separated,
as discussed after Eq. (43). The results obtained with the
assumption of CA and under the assumption of SSD for

96Zr, 100Mo, 116Cd, and 128Te are shown in Table VII and
in Fig. 12. We note that all effective matrix elements in
Table VII vary between a minimum of ∼0.02 (136Xe) and a
maximum of ∼0.2 (100Mo and 238U), with the majority being
∼0.05.

The effective matrix elements |Meff
2ν |exp can, in principle, be

obtained from measurements of GT± strengths (and Fermi F±
strengths), through the formula

MGT
2ν =

∑
N

〈0+
F ||τ+�σ ||1+

N 〉〈1+
N ||τ+�σ ||0+

I 〉
1
2 (Qββ + 2mec2) + EN − EI

, (58)

|Meff
2ν |exp = g2

A|(mec
2)MGT

2ν |, and similar formulas for the
Fermi matrix elements. However, in experiments, only the
magnitude of the individual GT matrix elements can be
measured, not its sign. Furthermore, it must be decided to what
N to stop the evaluation of the sum, and what value to use for
gA. Therefore, theoretical models must be used to obtain |Meff

2ν |
for GT± strengths. A recent example is 150Nd decay [43],
where MGT

2ν has been extracted under the assumption that (i)
only the 1+ state at Ex(150Pm) = 0.11 MeV contributes to the
decay and (ii) all states up to Ex(150Pm) < 3.0 MeV contribute.
[One should note that in this paper the denominator in the
definition of the 2ν Gamow-Teller nuclear matrix element is
different from Eq. (58) by 2mec

2 due to the use of atomic
masses in the calculation of Qββ and EN − EI ]. The result is
(i) MGT

2ν (MeV−1) = 0.028 ± 0.006 and (ii) MGT
2ν (MeV−1) =

0.13 ± 0.02. Multiplying by (mec
2) = 0.511 MeV and g2

A =
1.2732 [44], one obtains (i) |Meff

2ν |exp
SSD = 0.023 ± 0.005 and

(ii) |Meff
2ν |exp = 0.108 ± 0.017. These two estimates bracket

our extracted value 0.058 ± 0.004. This “experimental” way
of extraction also assumes that the factorization of τ 2ν

1/2 to G2ν

and M2ν is valid.
Our calculation of G

(0)
2ν SSD allows one to test the

SSD assumption for 100Mo, 116Cd, and 128Te, where the

TABLE VII. Experimental 2νββ half-lives and the corresponding effective nuclear matrix elements |Meff
2ν |. For the case 128Te, two

experimental half-lives are listed, the upper one from the evaluation of Barabash [41] and the lower one from the comment of Pritychenko [42].
The value for 136Xe is from a new measurement and is taken from [35].

Nucleus G
(0)
2ν (10−21yr−1) G

(0)
2ν SSD (10−21 yr−1) τ 2ν

1/2 (1018 yr) expa
∣∣∣Meff

2ν

∣∣∣ ∣∣∣Meff
2ν

∣∣∣
SSD

48Ca 15550 44+6
−5 0.038 ± 0.003

76Ge 48.17 1500 ± 100 0.118 ± 0.005
82Se 1596 92 ± 7 0.083 ± 0.004
96Zr 6816 7825 23 ± 2 0.080 ± 0.004 0.075 ± 0.004
100Mo 3308 4134 7.1 ± 0.4 0.206 ± 0.007 0.185 ± 0.006
100Mo-100Ru(0+

2 ) 60.55 65.18 590+80
−60 0.167 ± 0.011 0.161 ± 0.010

116Cd 2764 3176 28 ± 2 0.114 ± 0.005 0.106 ± 0.004
128Te 0.2688 0.2727 1900000 ± 400000 0.044 ± 0.006 0.044 ± 0.006
128Te 0.2688 0.2727 3500000 ± 2000000b 0.033 ± 0.017 0.032 ± 0.017
130Te 1529 680+120

−110 0.031 ± 0.004
136Xe 1433 2110 ± 250 0.0182 ± 0.0017
150Nd 36430 8.2 ± 0.9 0.058 ± 0.004
150Nd-150Sm(0+

2 ) 4329 133+45
−26 0.042 ± 0.006

238U 14.57 2000 ± 600 0.19 ± 0.04

aReference [40].
bReference [41].
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TABLE VIII. Effective nuclear matrix elements |Meff
2ν | and

|Meff
2ν |SSD obtained from experimental 2νββ half-lives compared

with |Meff
2ν |exp

SSD, the effective nuclear matrix elements obtained from
single-β-decay experiments (100Mo, 116Cd, and 128Te), or from GT±

strength measurements (150Nd). For the case 128Te the two values
listed are explained in the caption of Table VII.

Nucleus
∣∣∣Meff

2ν

∣∣∣ ∣∣∣Meff
2ν

∣∣∣
SSD

∣∣∣Meff
2ν

∣∣∣exp

SSD

100Mo 0.206 ± 0.007 0.185 ± 0.006 0.174 ± 0.075
100Mo-100Ru(0+

2 ) 0.167 ± 0.011 0.161 ± 0.010 0.104 ± 0.045
116Cd 0.114 ± 0.005 0.106 ± 0.004 0.148 ± 0.023
128Te 0.044 ± 0.006 0.044 ± 0.006 0.0152 ± 0.0003
128Te 0.033 ± 0.017 0.032 ± 0.017 0.0152 ± 0.0003
150Nd 0.058 ± 0.004 0.023 ± 0.005

matrix elements (even-even → odd-odd) 0+ → 1+
1 and

(odd-odd → even-even) 1+
1 → 0+ are known from single-β-

decay experiments. The extracted values of |Meff
2ν |exp using the

single-β-decay (or EC) matrix elements and gA = 1.273 are
|Meff

2ν |exp = 0.174 ± 0.075, 0.148 ± 0.023, 0.0152 ± 0.0003
for 100Mo, 116Cd, and 128Te, respectively. These values, as
well as that of 150Nd discussed above, are given in Table VIII
and compared with the ones obtained from experimental
double-β-decay half-lives. The SSD model appears to give
a rather good agreement for 100Mo and 116Cd, but is off by
a factor of 2 in defect in 128Te and 150Nd. The situation has
been also analyzed in detail from a different point of view in
Ref. [45].

VI. CONCLUSIONS

In this paper, we have reported a complete and improved
calculation of phase-space factors for 2νβ−β− and 0νβ−β−
decay, including half-lives, single-electron spectra, summed
electron spectra, and electron angular correlations, to be used
in connection with the calculation of nuclear matrix elements.
Apart from their completeness and consistency of notation,
we have improved the calculation by using exact Dirac wave
function with finite nuclear size and electron screening. The
program for calculation of phase-space factors has been set up
in such a way that additional improvements may be included
if needed (e.g., P -wave contribution, finite extent of nuclear
surface, etc.) and that it can be used in connection with the
closure approximation, the single-state dominance hypothesis,
and the calculation with sum over individual states. In a
subsequent publication we are planning to present complete
and improved calculations for 2νβ+β+ and 0νβ+β+ decay, as
well as of the competing processes 2νβ+EC, 2νECEC, and
0νβ+EC, 0νECEC.
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