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Isoscalar monopole excitations in 16O: α-cluster states at low energy and mean-field-type
states at higher energy
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Labratoire de Physique et Modélisation des Milieux Condensés, CNRS et Université Joseph Fourier, 25 Avenue des Martyrs, BP 166,
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Isoscalar monopole strength function in 16O up to Ex � 40 MeV is discussed. We found that the fine structures
at the low-energy region up to Ex � 16 MeV in the experimental monopole strength function obtained by the
16O(α, α′) reaction can be rather satisfactorily reproduced within the framework of the 4α cluster model, while
the gross three bump structures observed at the higher energy region (16 � Ex � 40 MeV) look likely to be
approximately reconciled by the mean-field calculations such as random-phase approximation and quasirandom-
phase approximation. In this paper, it is emphasized that two different types of monopole excitations exist in
16O; one is the monopole excitation to cluster states which is dominant in the lower-energy part (Ex � 16 MeV),
and the other is the monopole excitation of the mean-field type such as one-particle, one-hole (1p1h), which is
attributed mainly to the higher-energy part (16 � Ex � 40 MeV). It is found that this character of the monopole
excitations originates from the fact that the ground state of 16O with the dominant doubly closed shell structure
has a duality of the mean-field type as well as α-clustering character. This dual nature of the ground state seems
to be a common feature in light nuclei.
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I. INTRODUCTION

Isoscalar monopole excitation in nuclei provides important
information on its underlying structure. In the collective
liquid drop model, the isoscalar giant monopole resonance
(ISGMR), which has been established in medium and heavy
nuclei [1], corresponds to a breathing mode of the nucleus
arising owing to in-phase oscillations of the proton and
neutron fluids. In heavy nuclei, the ISGMR is observed as
a single peak in the α inelastic scattering cross sections at
small angles, and its excitation energy follows an empirical
formula Ex � 80A−1/3 MeV, which is directly related to the
compressibility of nuclear matter. A lot of work has been
done to extract experimentally the nuclear compressibility
by comparing it with microscopic calculations, for example,
using the random-phase approximation (RPA). Recently the
isoscalar monopole distributions in 90Zr, 116Sn, 144Sm, and
208Pb were measured with greater precision than previously
[2]. The results indicated that the compressibility of nuclear
matter is Knm = 231 ± 5 MeV.

It is interesting to study what happens for the ISGMR in
lighter nuclei. When the nuclear masses decrease from medium
nuclei to light nuclei, the surface-energy correction becomes
more important and the excitation energy of ISGMR should
become lower compared with the empirical formula, indicating
a lower nuclear compressibility [3–5]. A lot of theoretical

work has been so far devoted to the study of ISGMR in light
nuclei, for example, within the RPA framework [4,6–10] and
others [11].

The RPA calculations with the nonrelativistic framework
were performed in 16O, 40Ca, 90Zr, and 208Pb [4,6–9].
According to the results with the Gogny force and Skyrme
forces, etc. [4], it was found that (1) the isoscalar monopole
strength in 16O spreads out over some energy region of
20 � Ex � 40 MeV, with its centroid energy being Ex = 22 ∼
29 MeV, the value of which depends on the NN interactions
employed; (2) the monopole strength becomes more and more
concentrated in a single peak as the nucleus becomes heavier;
(3) the percentage of energy-weighted sum rule carried by the
resonances increases with the mass number of the nucleus; and
(4) the nuclear compressibility becomes smaller as the nucleus
becomes lighter. However, Ma et al. investigated the isoscalar
monopole modes in 16O, 40Ca, 90Zr, and 208Pb using the
relativistic RPA (RRPA) method [10]. They found that when
going from heavy to lighter nuclei, the single-peak structure of
ISGMR in 208Pb changes to a peak with several small humps in
40Ca and eventually the monopole strength spreads out widely
to form a couple of peaks in 16O. Hence, it was pointed out
that it becomes difficult, in a nucleus such as 40Ca, to define
theoretically the energy and width of the ISGMR.

The experimental isoscalar monopole strengths with a great
precision were recently provided in 12C, 16O, and 24Mg up
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FIG. 1. Experimental isoscalar monopole strength function of 16O [12] is shown by the histogram. The experimental data below Ex ≈
10 MeV are absent because of an energy cut in the experimental condition. The real line is the calculated result by the relativistic RPA
calculation [10] multiplied by 0.25 and shifted down in energy by 4.2 MeV. This figure is taken from Ref. [12].

to Ex � 50 MeV, using inelastic scattering of α particles,
by the Texas group [12]. They found that the isoscalar
monopole strength in light nuclei does not concentrate on
a single peak and the monopole strength spreads out in
several regions of energies. The histogram in Fig. 1 shows the
experimental isoscalar monopole strength function in 16O [12].
It is compared with the RRPA calculation by Ma et al. [10].
It was found that the centroid in the RRPA response function
is at 25.3 MeV, which is higher than the experimental data
(Ex = 21.13 ± 0.49 MeV). To match their calculation to the
experimental centroid, the calculated strength function was
shifted down in energy by 4.2 MeV and furthermore they
normalized it to approximately 30% of the isoscalar energy
weighted sum rule (EWSR) by multiplying the RRPA curve
by a factor of 0.25 [12]. Then, the normalized and shifted curve
and the experimental result are in moderately good agreement
with each other with respect to the shape of the gross three-peak
structure. However, their calculation failed to reproduce the 0+
states found in the low-energy region (5 � Ex � 16 MeV),
in particular, at Ex = 6.05, 12.05, and 14.1 MeV observed
in inelastic α scattering and electron scattering, etc. [12,13].
According to the 16O(e, e′) experiments [13], the three states
are excited rather strongly by the (e, e′) reaction, and their
monopole matrix elements are 3.55 ± 0.21, 4.03 ± 0.09, and
3.3 ± 0.7 fm2, respectively, comparable to the single-particle
monopole strength [14]. The total percentage of the energy
weighted strength to the isoscalar monopole EWSR for these
three 0+ states amounts to be as large as over 15% [13,14].

In the nonrelativistic calculation for 16O [4] a significant
discrepancy is also revealed as compared with the experimental

data, in particular, in the low-energy region (5 � Ex �
16 MeV), although the gross structures at the higher-energy
region (Ex � 20 MeV) in the RPA calculations are in rather
good agreement with the experimental data. This discrepancy
in the low-energy region can also be seen in Fig. 2 obtained
by the recent second random-phase approximation (SRPA)
calculations with a Skyrme force for 16O [15], in which the
coupling between 1p1h and 2p2h as well as between 2p2h
configurations among themselves are fully taken into account.
In particular, their calculation fails to reproduce the monopole
transition strength to the 0+

2 state at Ex = 6.05 MeV observed
by the 16O(e, e′) experiment. Thus, the monopole strengths in
the lower-energy region (5 � Ex � 16 MeV) are likely to be
out of scope in the mean-field theory. These results mean that
the monopole strength function of 16O is not fully understood
in the mean-field theory at the present stage, and other degrees
of freedom beyond the mean field should be taken into
account.

The 0+
2 and 0+

3 levels of 16O including its ground state,
together with their monopole strengths, have in the past
nicely been reproduced with a semimicroscopic cluster model,
that is, the α + 12C orthogonality condition model (OCM)
[16]. The OCM is an approximation of the resonating group
method (RGM) [17]. Many successful applications of OCM
are reported in Ref. [18]. The α + 12C OCM calculation as
well as the α + 12C generator-coordinate-method one [19]
demonstrates that the 0+

2 state at Ex = 6.05 MeV and the
0+

3 state at Ex = 12.05 MeV have α + 12C structures, where
the α particle orbits around the 12C(0+) core in an S wave
and around the 12C(2+) core in a D wave, respectively.
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FIG. 2. (Color online) RPA [dashed (black) lines] and SRPA
[solid (red) lines] for the isoscalar monopole strength distributions of
16O. This figure is taken from Ref. [15].

The 14.1-MeV 0+ state, however, could not be explained by
the α + 12C model calculations [16,19].

Recently, the structure study of 16O has made a great
advance up to Ex � 16 MeV around the 4α disintegration
threshold. The six lowest 0+ states of 16O, up to Ex � 16 MeV,
including the ground state, have for first time been reproduced
very well with the 4α OCM [20,21]. The 4α OCM shares
68%of the EWSR value of the isoscalar monopole transition
of 16O, while the α + 12C OCM shares 31%, as is discussed
below. Thus, it is interesting to investigate whether the 4α

OCM can reproduce the experimental isoscalar monopole
strength function in the low-energy region up to Ex � 16 MeV
in 16O, a region that is difficult to be treated in the mean-field
theory. As is discussed below, the five excited 0+ states of 16O
up to Ex � 16 MeV have α-cluster structures [16,18–21].

The purpose of the present paper is twofold: The first
is to show that the isoscalar monopole strength function
calculated with the 4α OCM is in good correspondence to the
experimental one in the low-energy region up to Ex � 16 MeV
shown in Fig. 1, and the second is to emphasize two features
in the isoscalar monopole excitation of 16O, that is, that the
monopole excitation to cluster states is dominant in the lower-
energy part (Ex � 16 MeV) of the monopole strength function,
whereas the monopole excitation of the 1p1h type contributes
to the higher-energy region (16 � Ex � 40 MeV). The two
features have been implied in a mixed model calculation
of the α + 12C cluster and symplectic basis functions [22],
although the model space of the simplectic group [23,24] and
the effective NN force used in its calculation are significantly
different from those in the RPA calculations [4,6–9,15]. This
mixed calculation confirmed that the strength carried by the
α + 12C cluster model keeps its basic property. We show that
the two features arise from the fact that the ground state of 16O
originally possesses a dual nature, allowing α-type excitations
as well as 1p1h-type ones, as is discussed below. In this paper,
a shell-model calculation with the model space of 0s-, 0p-,
0d1s-, and 0f 1p-shells for 16O is also performed to investigate
the extent to which the shell model works for describing the
low-lying 0+ states.

In Sec. II, the monopole excitation function with the 4α

OCM is formulated after a brief explanation of the 4α OCM
framework together with the shell-model framework for 16O.
Results and discussions are given in Sec. III, together with
the EWSR of the isoscalar monopole transition. Finally, we
present a summary in Sec. IV.

II. FORMULATION

First we formulate the isoscalar monopole strength function
within the framework of the 4α OCM. Then, the formulation
of the shell-model analysis is presented for 16O within the
model space of 0s, 0p, 0d1s, and 0f 1p shells.

A. Monopole strength function

The strength function S(E) of the monopole excitation from
the 16O ground state 0+

1 is defined with use of the isoscalar
monopole operator O = ∑16

i=1(r i − Rc.m.)2 as follows:

S(E) =
∑

n

δ(E − En)|〈0+
n |

16∑
i=1

(r i − Rc.m.)
2|0+

1 〉|2, (1)

where r i (i = 1 ∼ 16) are the coordinates of nucleons, Rc.m. =
1

16

∑16
i=1 r i is the center-of-mass (c.m.) coordinate of 16O,

and En denotes the excitation energy of the 0+
n state of 16O.

However, the response function for the transition operator O
is defined as

R(E) = 〈0+
1 | O†O

E − H + iε
|0+

1 〉, (2)

with ε representing an infinitesimal positive number. Then,
R(E) is related to S(E) through

S(E) = − 1

π
Im[R(E)] =

∑
n

δ(E − En)|〈0+
n |O|0+

1 〉|2. (3)

When the state |0+
n 〉 is a resonance state with the complex

energy En − i�n/2, the strength function is expressed as

S(E) = − 1

π
Im[R(E)]

= 1

π

∑
n

�n/2

(E − En)2 + (�n/2)2
|M(0+

n − 0+
1 )|2, (4)

M(0+
n − 0+

1 ) = 〈0+
n |

16∑
i=1

(r i − Rc.m.)
2|0+

1 〉, (5)

where �n represents the width of the 0+
n state. The isoscalar

monopole transition matrix element, M(0+
n − 0+

1 ), has a rela-
tion with the E0 transition matrix element M(E0, 0+

n − 0+
1 )

for the 0+
1 and 0+

n states with the total isospin T = 0 as follows:

M(E0, 0+
n − 0+

1 ) ≡ 〈0+
n |

16∑
i=1

1 + τ3i

2
(r i − Rc.m.)

2|0+
1 〉

= 1

2
M(0+

n − 0+
1 ). (6)

The EWSR of the isoscalar monopole transition [14] reads∑
n

(En − E1)|M(0+
n − 0+

1 )|2 = 2h̄2

m
× 16 × R2, (7)

R2 = 1

16
〈0+

1 |
16∑
i=1

(r i − Rc.m.)
2|0+

1 〉, (8)

where R and m represent the rms radius of the ground state
and nucleon mass, respectively. Here, we assume that the
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NN interaction has no velocity dependence. Employing the
experimental charge radius of 16O (Rc = 2.70 fm [13]),
the value of R in Eq. (8) is estimated to be 2.58 fm, in
which the effects of the charge radius of proton (〈r2〉proton =
0.87912 fm2) and that of neutron (〈r2〉neutron = −0.1149 fm2)
[13] are subtracted from the charge radius of 16O (Rc):
R =

√
Rc

2 − 〈r2〉proton − 〈r2〉neutron = 2.58 fm. Then, the total
EWSR value, 2h̄2

m
× 16 × R2, is 8.83 × 103 fm4 MeV.

It is instructive to see a characteristic feature of the isoscalar
monopole operator in Eq. (5), which can be decomposed into
two parts, internal parts and relative parts, with respect to 4α

clusters in 16O (as well as α and 12C clusters in 16O). Because
the operator in Eq. (5) has a quadratic form with respect to the
coordinates of nucleons, the following interesting identities
are realized [14,16,22]:

16∑
i=1

(r i − Rc.m.)
2

=
4∑

k=1

4∑
i=1

(
r i+4(k−1) − Rαk

)2 +
4∑

k=1

4
(

Rαk
− Rc.m.

)2
, (9)

=
4∑

i=1

(r i − Rα)2 +
16∑
i=5

(r i − RC)2 + 3ξ 3
2, (10)

where Rαk
= (1/4)

∑4
i=1 r i+4(k−1) is the c.m. coordinate of

the kth α cluster, and ξ j (j = 1–3) are Jacobi coordinates
with respect to the c.m. coordinates of 4α clusters (Rαk

,
k = 1–4): ξ 1 = R2 − R1, ξ 2 = R3 − (R1 + R2)/2, and ξ 3 =
R4 − (R1 + R2 + R3)/3. In Eq. (10), Rα = (1/4)

∑4
i=1 r i

and RC = (1/12)
∑16

i=5 r i stand for the c.m. coordinates of α

and 12C clusters, respectively. Here we should recall the useful
identity of

∑4
k=1 4(Rαk

− Rc.m.)2 = ∑3
j=1 μkξ j

2 in Eq. (9),
where μj (μ1 = 2, μ2 = 8/3, and μ3 = 3) correspond to the
reduced masses with respect to the Jacobi coordinates ξ j . The
fact that the isoscalar monopole operator consists of the two
parts, the internal part and the relative part, plays an important
role in the monopole excitation of 16O (see Sec. III).

B. 4α OCM

The total wave function �̃(Jπ ) of the 4α system with total
angular momentum Jπ in the OCM framework is expressed
by the product of the internal wave functions of α clusters φ(α)
and the relative wave function �(Jπ ) among the 4α clusters,

�̃(Jπ ) = �(Jπ )φ(α1)φ(α2)φ(α3)φ(α4). (11)

The relative wave function �(Jπ ) is expanded in terms of
Gaussian basis functions as follows:

�(Jπ ) =
∑
c,ν

Ac(ν)�c(ν), (12)

�c(ν) = Ŝ[[ϕl1 (ξ 1, ν1)ϕl2 (ξ 2, ν2)]l12ϕl3 (ξ 3, ν3)]J , (13)

〈uF |�(Jπ )〉 = 0, (14)

where ξ 1, ξ 2, and ξ 3 are the Jacobi coordinates describ-
ing internal motions of the 4α system. Ŝ stands for the
symmetrization operator acting on all α particles obeying

Bose statistics. ν denotes the set of size parameters ν1,
ν2, and ν3 of the normalized Gaussian function, ϕl(ξ , νi) =
Nl,νi

ξ l exp (−νiξ
2)Ylm(ξ̂ ), and c the set of relative orbital

angular momentum channels [[l1, l2]l12 , l3]J depending on
either of the coordinate type of K or H [20,25], where l1,
l2, and l3 are the orbital angular momenta with respect to the
corresponding Jacobi coordinates. Equation (14) represents
the orthogonality condition that the total wave function (12)
should be orthogonal to the Pauli-forbidden states of the 4α

system, uF ’s, which are constructed from Pauli forbidden
states between two α particles in 0S, 0D, and 1S states
[26]. The ground state with the dominant shell-model-like
configuration (0s)4(0p)12 can be described properly in the
present 4α OCM framework, as discussed below.

The 4α Hamiltonian for �(Jπ ) is given as follows:

H =
4∑
i

Ti − Tc.m. +
4∑

i<j

[
V

(N)
2α (i, j ) + V

(C)
2α (i, j )

]
+

4∑
i<j<k

V3α(i, j, k) + V4α(1, 2, 3, 4), (15)

where Ti , V
(N)

2α (i, j ), V (C)
2α (i, j ), V3α(i, j, k), and V4α(1, 2, 3, 4)

stand for the operators of kinetic energy for the ith α

particle, two-body, Coulomb, three-body, and four-body forces
between α particles, respectively. The c.m. kinetic energy
Tc.m. is subtracted from the Hamiltonian. The effective α-α
interaction V

(N)
2α is constructed by the folding procedure from

an effective two-nucleon force. Here we take the modified
Hasegawa-Nagata (MHN) force [27] as the effective NN

force, which is constructed based on the G-matrix theory.
It is noted that the folded α-α potential reproduces the α-α
scattering phase shifts and energies of the 8Be ground state and
of the Hoyle state. The three-body force is phenomenologically
introduced so as to fit the ground-state energy of the 12C with
the framework of the 3α OCM. The same force parameter set
as used in Ref. [28] is adopted in the present calculation. For
the later discussion (see Sec. III A) the energy spectra of 12C

FIG. 3. (Color online) Energy spectra of 12C with the 3α OCM
[28] together with the experimental one [13]. The experimental energy
level of the 2+

2 state is cited from Ref. [29].
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with the 3α OCM calculation is shown in Fig. 3 together
with the experimental one. It is known that the 3α OCM
reasonably describes the structure of the 0+

1,2, 2+
1,2, 4+

1 , 3−
1 ,

and 1−
1 states in 12C [28]. In addition, the phenomenological

four-body force [30] is adjusted to the ground-state energy of
16O. The three-body and four-body forces are short range,
and, hence, they only act in compact configurations. The
coefficients Ac(ν) in Eq. (12) are determined according to
the Rayleigh-Ritz variational principle.

The isoscalar monopole matrix element is evaluated as
follows:

MOCM(0+
n − 0+

1 )

= 〈�̃(0+
n )|

16∑
i=1

(r i − Rc.m.)
2|�̃(0+

1 )〉, (16)

= 〈�(0+
n )|

4∑
k=1

4
(
Rαk

− Rc.m.

)2|�(0+
1 )〉 + 16 × R(α)2δn1,

(17)

= 〈�(0+
n )|2ξ 1

2 + 8

3
ξ 2

2 + 3ξ 3
2|�(0+

1 )〉 + 16 × R(α)2δn1,

(18)

where � is the 4α OCM wave function in Eq. (12). In
Eqs. (16)–(18) we used the relation

〈φ(α1)φ(α2)φ(α3)φ(α4)|
4∑

k=1

4∑
i=1

(
r i+4(k−1) − Rαk

)2

× |φ(α1)φ(α2)φ(α3)φ(α4)〉 = 16 × R(α)2, (19)

where R(α) is the rms radius of α particle, R(α) =√
1
4 〈∑4

i=1(r i − Rα)2〉α [20,28]. It is important to study the
EWSR of the isoscalar monopole transition within the frame-
work of the 4α OCM. We call it the OCM-EWSR, and its
definition reads∑

n

(En − E1)|MOCM(0+
n − 0+

1 )|2

= 1

2
〈�(0+

1 )|[OOCM, [H,OOCM]]|�(0+
1 )〉, (20)

= 2h̄2

m
〈�(0+

1 )|
4∑

k=1

4
(

Rαk
− Rc.m.

)2|�(0+
1 )〉, (21)

= 2h̄2

m
× 16 × (R2 − R(α)2), (22)

where H is given in Eq. (15) and OOCM =∑4
k=1 4(Rαk

− Rc.m.)2 [see Eq. (17)], and R denotes the
rms radius of the 16O ground state given in Eq. (8). It is noted
that the 4α OCM can describe the shell-model-like structure
of the 16O ground state, as shown later. Then, the ratio of the
OCM-EWSR to the total EWSR in Eq. (7) is

OCM-EWSR

total EWSR
= 1 −

(
R(α)

R

)2

= 1 −
(

1.47

2.58

)2

= 0.68.

(23)

Here we use R(α) = 1.47 fm and R = 2.58 fm, which
are estimated from the experimental charge radii (1.68 and
2.70 fm, respectively [13]), subtracting the effects of the charge
radius of proton and that of neutron from them, the method
of which is the same as that shown in previous section. This
result means that the 4α OCM framework shares about 70%
of the total EWSR value (the OCM-EWSR is also discussed in
the Appendix). This is one of the important reasons that the 4α

OCM works rather well in reproducing the isoscalar monopole
transitions in the low-energy region of 16O, as shown later.

In the present paper, the energies En and isoscalar monopole
matrix elements M in Eq. (4) are obtained by the 4α OCM
calculation. As for the widths �n, we estimate the α-decay
widths with the R-matrix theory [31],

�L = 2PL(a)γ 2
L(a), (24)

PL(a) = ka

F 2
L(ka) + G2

L(ka)
, (25)

γ 2
L(a) = θ2

L(a)γ 2
W(a), (26)

γ 2
W(a) = 3h̄2

2μa2
, (27)

where k, a, and μ are the wave number of the α-12C
relative motion, the channel radius, and the reduced mass,
respectively, and FL, GL, and PL(a) are the regular and
irregular Coulomb wave functions and the corresponding
penetration factor, respectively. The reduced width of θ2

L(a)
is related to the reduced width amplitude or overlap amplitude
YL as θ2

L(a) = a3

3 Y2
L(a), and the definition of YL is presented

as

YL(r) =
√

4!

3!1!

〈[
δ(r ′ − r)

r ′2 YL(r̂ ′)�L(12C)

]
0

∣∣∣∣�(0+
n )

〉
. (28)

Here, �L(12C) is the wave function of 12C, given by the 3α

OCM calculation [28], and r is the relative distance between
the c.m. of 12C and the α particle. The spectroscopic factor of
the α + 12C(L) channel S2

L in the 0+
n state of 16O, defined as

S2
L =

∫ ∞

0
dr [rYL(r)]2 , (29)

is useful to analyze the obtained wave functions.
In the present study, we perform more careful analyses

than the previous ones [20], in particular, for identifying the
0+ states around the 4α threshold. The calculation of the
resonant state in the bound-state approximation is usually
done by diagonalizing the Hamiltonian with the use of a
finite number of square-integrable basis wave functions. The
positive-energy eigenstates obtained by the diagonalization are
divided into resonant states and continuum states, and many
methods for carrying out the division are proposed [32]. In the
present study, a pseudopotential method is adopted to divide
the resonant states and continuum states, as shown below.

Let us us first consider a repulsive pseudopotential V that
is added to the original Hamiltonian H , yielding

H ′(δ) = H + δ × V , (30)

where δ is a constant used to vary the strength of the pseu-
dopotential. As increasing into negative values the constant δ
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from the physical value, δ = 0, the eigenenergy of this new
Hamiltonian H ′(δ) decreases for any resonance state, which
is eventually transformed into a bound state. On the contrary,
continuum states show almost no change in their eigenvalues
as δ increases into the negative region. In the present 4α OCM
framework, it is important to study the eigenenergies with
changing the constant δ but with no change in the threshold
energies of the α + 12C and 4α decay channels, even though we
introduce the pseudopotential V . Here, we take the four-body
potential V4α in Eq. (15) as the pseudopotential V , because
the choice is convenient for practical reasons in the present
numerical calculation. This pseudopotential method is simple
but helpful to identify the resonant states under the bound-state
approximation. As a result, we obtained almost the same
results as the previous ones [20], as is shown below.

C. Shell-model calculation

The shell-model Hamiltonian of 16O adopted here is
presented as follows:

H =
16∑
i=1

ti − Tc.m. +
16∑

i<j=1

[v(C)(i, j ) + v(LS)(i, j )], (31)

where ti denotes the kinetic energy of the ith nucleon and v(C)

(v(LS)) represents the central (LS) force of the effective NN

interaction. The c.m. kinetic energy Tc.m. is subtracted from
the total kinetic energy. The model space adopted here covers
all configurations of 1p1h and 2p2h within the 0s, 0p, 0d1s,
and 0f 1p shells. The spurious states of the c.m. motion are
eliminated with the Lawson’s method [33].

In the present study, we take the Volkov No. 2 force [34] and
G3RS force [35] for v(C) and v(LS), respectively. The Majorana
parameter (M) in the Volkov No. 2 force, the multiplying
factor (ζ LS

0 ) of the G3RS, and the nucleon size parameter (b)
are chosen so as to reproduce as well as possible the total
binding energies of the ground states of 16O and 15O, the LS

splitting between 3/2−
1 and 1/2−

1 in 15O, and the rms radius of
the ground state of 16O. The following two parameter sets are
adopted: case A for (M, ζ LS

0 , b) = (0.665, 1.7, 1.70 fm) and
case B for (0.620, 2.6, 2.0 fm). The present shell-model code
is based on the code in Refs. [36,37].

III. RESULTS AND DISCUSSION

A. 4α OCM calculation

The energy levels of 0+ states in 16O obtained by the present
4α OCM calculation are shown in Fig. 4 and Table I. One
can make the one-to-one correspondence of the six lowest
0+ states observed up to Ex � 16 MeV in the 4α OCM
calculation. The reader is reminded that the α + 12C OCM
cluster model [16] can reproduce only the lowest three 0+
states. We obtained almost the same results as the previous 4α

OCM calculation [20]. The six 0+ states have the following
characteristic structures [20]: (1) the ground state (0+

1 ) has
dominantly a doubly closed-shell structure; (2) the 0+

2 state
at Ex = 6.05 MeV and the 0+

3 state at Ex = 12.05 MeV
have mainly α + 12C structures [39], where the α particle

FIG. 4. (Color online) Comparison of energy spectra among
experiment, the 4α OCM calculation [20], and the α + 12C model
calculation [16], where the α + 12C and 4α thresholds are shown.
Experimental data are taken from Ref. [13] and from Ref. [38] for
the 0+

4 state.

orbits around the 12C(0+
1 ) core in an S wave and around the

12C(2+
1 ) core in a D wave, respectively, the results of which are

consistent with the previous studies with α + 12C OCM [16]
and the α + 12C generator coordinate method (GCM) [19];
(3) the 0+

4 (Ex = 13.6 MeV) and 0+
5 (Ex = 14.1 MeV) states

mainly have α + 12C(0+
1 ) structure with higher nodal behavior

and α + 12C(1−) structure, respectively, where in the latter the
α particle moves around the 12C(1−) core (corresponding to
the first 1− state at Ex = 10.84 MeV having an intermediate
structure between the shell-model-like structure and cluster
structure [18]) in P orbit; and (4) the 0+

6 state at 15.1 MeV
is a strong candidate of the 4α condensate, (0S)4

α , with the
probability of 61%.

These characteristic features of the structures of the six 0+
states can be verified from the analysis of the spectoscopic
factors S2

L defined in Eq. (29). The results are shown in
Fig. 5. Because the ground state has a closed shell structure
with the dominant component of SU(3)(λ,μ) = (0, 0) [40],
the values of the spectroscopic factors S2

L for 0+
1 in Fig. 5

can be explained by the SU(3) nature of the state. This
SU(3) character was confirmed by the recent no-core shell
model [41]. As mentioned above, the structures of the 0+

2 and
0+

3 states are well established as having the α + 12C(0+
1 ) and

α + 12C(2+
1 ) cluster structures, respectively. These structures

of the 0+
2 and 0+

3 states are confirmed by the 4α OCM
calculation. In fact, one sees in Fig. 5 that the S2 factors
for the α + 12C(0+

1 ) and α + 12C(2+
1 ) channels are dominant

in the 0+
2 and 0+

3 states, respectively. In the 0+
3 state, however,

the S2 factors of the α + 12C(4+
1 ) channel in the 4α OCM

calculation are rather large as compared with the result of the
α + 12C OCM one [16]. This is attributable to the following
facts. (1) The calculated excitation energy of the 12C(4+

1 )
state in the present 4α OCM calculation is underestimated
by Ex ∼ 6 MeV (see Fig. 3), while it is set to the experimental
value (Ex = 14.1 MeV) in the α + 12C OCM calculation;
and (2) thus, in the 4α OCM calculation a coupled-channel
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TABLE I. Excitation energies (Ex), charge rms radii (Rc), E0 transition matrix elements [M(E0)], and particle decay widths (�) of the
0+ states in 16O obtained by the 4α OCM calculation and α + 12C OCM model calculation [16], together with the experimental data [13,38].
They are given in the unit of MeV, fm, fm2, and MeV, respectively. The experimental monopole matrix elements are obtained by the 16O(e, e′)
reaction [13]. P e.w. represents the percentage of the energy weight strength to the isoscalar monopole EWSR [see Eq. (7)]. The finite size
effects of α particle and 12C are taken into account in estimating Rc with the 4α OCM and α + 12C OCM (see Ref. [28] for details).

4α OCM α + 12C OCM Experiment

Ex Rc M(E0) � Ex Rc M(E0) Ex Rc M(E0) P e.w. (%) �

0+
1 0.00 2.7 0.00 2.5 0.00 2.70

0+
2 6.37 3.0 3.9 6.57 2.9 3.88 6.05 3.55 ± 0.21 3.5

0+
3 9.96 3.1 2.4 10.77 2.8 3.50 12.05 4.03 ± 0.09 8.9

0+
4 12.56 4.0 2.4 0.60 – – – 13.60 No data 0.6

0+
5 14.12 3.1 2.6 0.20 – – – 14.01 3.3 ± 0.7 6.9 0.185

0+
6 16.45 5.6 1.0 0.14 – – – 15.10 No data 0.166

effect of the α + 12C(4+
1 ) channel with the α + 12C(0+

1 , 2+
1 )

channel is reinforced and, consequently, the S2 factor of the
α + 12C(4+

1 ) channel becomes larger. We expect that the S2

factor of the α + 12C(4+
1 ) channel will be smaller when the

excitation energy of 12C(4+
1 ) is properly reproduced in the 4α

OCM calculation.
Table I lists the E0 transition matrix elements M(E0). The

M(E0) value of the 0+
2 state is reproduced well, while that of

the 0+
3 state underestimates the experimental result, and this

trend is similar to the result of the α + 12C OCM model [16].
However, the 0+

4 and 0+
5 states mainly have the α + 12C(0+

1 )
structure with higher nodal behavior and an α + 12C(1−)
structure, respectively. The E0 transition matrix element of
the 0+

5 state is reproduced nicely within the experimental

FIG. 5. (Color online) Spectroscopic factors S2
L of the α +

12C(Lπ
n ) channels (Lπ

n = 0+
1 , 1−

1 , 2+
1 , 3−

1 , 4+
1 , 0+

2 ) in the six 0+ sates
of 16O: (a) 0+

1 , (b) 0+
2 , (c) 0+

3 , (d) 0+
4 , (e) 0+

5 , and (f) 0+
6 .

error (see Table I). In Table I, the largest rms radius is about
5 fm for the 0+

6 state, the wave function of which has a
large overlap amplitude with the α + 12C(0+

2 ) channel (see
Fig. 3 in Ref. [20]). Hence, the S2 factor of the α + 12C(0+

2 )
channel is dominant in the 0+

6 state (see Fig. 5), whereas those
in the other channels are much suppressed. This dominance
of the S2 factor of the α + 12C(0+

2 ) channel is one of the
evidences for the 0+

6 state being the 4α-condensate state, (0S)4
α ,

because the Hoyle state has the main configuration, (0S)3
α

[28,42,43], and the overlap amplitude of 〈(0S)3
α|(0S)4

α〉 be-
comes large.

As for the decay widths of the 0+
4 and 0+

5 states, the
results are shown in Table I. The calculated width of the
0+

4 state is ∼600 keV, which is quite a bit larger than that
found for the 0+

5 state ∼200 keV. Both are quantitatively
consistent with the corresponding experimental data, 600 and
185 keV, respectively. However, the decay width of the 0+

6
state is very small, 140 keV, in reasonable agreement with
the corresponding experimental value of 166 keV, indicating
that this state is unusually long lived. We should note that our
calculation consistently reproduces the ratio of the widths of
the 0+

4 , 0+
5 , and 0+

6 states, that is, about 6 : 3 : 2, respectively
(see Table I).

Comparing the energy levels of the six 0+ states with
the experimental monopole response function of 16O shown
in Fig. 1, one notices that the energy positions of the fine
structures in the low-energy region (10 � Ex � 16 MeV)
of the experimental response function seem to be in good
correspondence with the energy levels of 0+

3 , 0+
4 , 0+

5 , and
0+

6 in Fig. 4 and Table I. It should be noted that the peak
corresponding to the 0+

2 state at Ex = 6.05 MeV is not visible
in Fig. 1, because of an energy cut in the experimental
condition [12]. Thus, it is important to study the isoscalar
monopole strength function within the framework of the 4α

OCM calculation.

B. Isoscalar monopole excitation function
with the 4α OCM calculation

Figure 6 shows the calculated isoscalar monopole strength
function of 16O defined in Eq. (4), where we use the calculated
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FIG. 6. (Color online) Calculated isoscalar monopole strength
functions of 16O (bold line) and experimental data (thin line; see
Fig. 1 [12]). Here we use the calculated monopole matrix elements and
the calculated decay widths for the six 0+ states up to Ex � 16 MeV
obtained by the 4α OCM calculation (see Table I), although the
experimental excitation energies for the six 0+ states are employed
(see text).

monopole matrix elements and the calculated decay widths
for the six 0+ states up to Ex � 16 MeV obtained by the 4α

OCM calculation (see Table I); also the experimental excitation
energies for the six 0+ states are employed. We take into
account the experimental energy resolution of 50 keV [12] for
the width �n in Eq. (4) through �n =

√
�n(OCM)2 + 0.0502,

where �n(OCM) denotes the calculated decay width of the
nth 0+ state of 16O given in Table I. The calculated strength
function is normalized so as to match the calculated strength
of the 12.1-MeV peak to the experimental one. We can see a
rather good correspondence with the experimental data. The
fine structures in the calculated strength function, that is, one
peak at Ex = 12.1 MeV (corresponding to the 0+

3 state), one
shoulderlike peak at Ex = 13.8 MeV (0+

4 ), and two peaks at
Ex = 14.1 MeV (0+

5 ) and 15.1 MeV (0+
6 ), are well reproduced.

As mentioned above, the fine structures in the energy region of
10 � Ex � 15 MeV as well as the sharp peak at Ex � 6 MeV
(corresponding to the 0+

2 state) are difficult to reproduce by
any mean-field calculations [4,6–10,15], as far as the present
authors know. The calculated values of S(E) at each 0+
state (0+

2 –0+
6 ) in Fig. 6 are approximately proportional to the

squared values of the respective calculated monopole matrix
elements.

It is instructive and interesting to discuss the mechanism of
why the five α cluster states (0+

2 , 0+
3 , 0+

4 , 0+
5 , and 0+

6 ) of 16O
are excited relatively strongly from the ground state with the
doubly closed-shell-like structure [14]. Their monopole matrix
elements shown in Table I are comparable to the single-particle
strength (∼5.4 fm2 [14]) and share about 20% of the total
EWSR value. Because the mechanism is closely related to
the property of the ground state of 16O as shown below, we
first demonstrate its interesting properties with the use of the
microscopic wave function and then discuss the monopole
matrix elements in the OCM calculation.

The wave function of the 16O ground state has dominantly
the doubly closed-shell-model configuration (0s)4(0p)12 with
the nucleon size parameter ν = Mω/2h̄ (M , nucleon mass),
corresponding to the SU(3) (λ,μ) = (0, 0) wave function [40].
This doubly closed-shell-model wave function is mathemat-
ically equivalent to a single-cluster-model wave function of
α + 12C as well as 4α with the total harmonic oscillator quanta
Q = 12 [14,16,22],

1√
16!

det|(0s)4(0p)12| × [φc.m.(Rc.m.)]
−1 (32)

= N0

√
12!4!

16!
A{[u40(ξ 3, 3ν)φL=0(12C)]J=0φ(α)}, (33)

= N2

√
12!4!

16!
A{[u42(ξ 3, 3ν)φL=2(12C)]J=0φ(α)}, (34)

= N̂0

√
4!4!4!4!

16!
A

{[
u40(ξ 3, 3ν)

[
u40

(
ξ 2,

8

3
ν

)
×u40(ξ 1, 2ν)

]
L=0

]
J=0

φ(α1)φ(α2)φ(α3)φ(α4)

}
, (35)

φc.m.(Rc.m.) =
(

32ν

π

)3/4

exp(−16ν Rc.m.
2), (36)

where φc.m. denotes the wave function of the c.m. motion of
16O, and N0,2 (N̂0) are the normalization constants. φ(α) and
φL(12C) represent, respectively, the internal wave function of
the α cluster with the (0s)4 configuration and that of 12C with
the angular momentum of L belonging to the SU(3) irreducible
representation (λ,μ) = (0, 4) for the (0s)4(0p)8 configuration.
The relative wave functions between the α and 12C clusters in
Eqs. (33) and (34) are described by the harmonic oscillator
wave function uQLm(ξ , β) = uQL(ξ, β)YLm(ξ̂ ) with the node
number n = (Q − L)/2 and Q = 4. One can prove Eqs. (33)
and (34) with help of the Bayman-Bohr theorem [44]. The
reader should be reminded that the dominance of the doubly
closed-shell structure in the ground state of 16O is confirmed
by the no-core shell model with realistic NN forces [41].
Equations (33) and (34) mean that the doubly closed-shell-
model wave function has an α + 12C cluster degree of freedom.
In addition, Eq. (35) demonstrates that the doubly closed-shell-
model wave function also possesses a 4α cluster degree of
freedom.

In the 4α OCM, the monopole matrix elements from the 16O
ground state to the α + 12C cluster states are evaluated with
use of Eqs. (17) and (18). The validity of using the formulas is
based on the following three facts found within the microscopic
framework [14,16,22]: (1) The ground state of 16O is of the
SU(3) (λ,μ) = (0, 0) nature with the α-clustering degree of
freedom; (2) the monopole matrix elements come dominantly
from the relative part of the monopole operator referring to
the α + 12C relative motion, 3ξ 3

2; (3) the contribution from
the other parts of the monopole operator becomes significantly
smaller for the α + 12C cluster states; and (4) the α-cluster-
type ground-state correlation significantly enhances the
monopole strength compared with the case of the 16O ground
state being the pure SU(3) (λ,μ) = (0, 0) wave function.
These are certainly the reasons why the estimation of the
monopole matrix element using Eqs. (17) and (18) in the
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4α OCM calculation gives a reasonable reproduction for the
experimental data. In fact, the ground state of 16O obtained
in the 4α OCM has the dominant SU(3) (λ,μ) = (0, 0)
component with Q = 12, and only the relative part with respect
to the α + 12C relative motion, 3ξ 3

2, in the monopole matrix
element (18) gives the major contribution to the monopole
matrix elements M(E0; 0+

1 − 0+
2,3) in the present 4α OCM

calculation.
However, the reason why the 0+

6 state with the 4α-gas-like
character has a relatively large monopole strength (∼1 fm2)
can be also understood from the property of the ground state of
16O. The doubly closed-shell-model wave function in Eq. (32)
is mathematically equivalent to the single 4α cluster wave
function with Q = 12 in Eq. (35). This equation means that
the ground state of 16O with the (0s)4(0p)12 configuration
inherently has a 4α-cluster degree of freedom. The relative
part (or second term) of the monopole operator in Eq. (9),∑4

k=1 4(Rαk
− Rc.m.)2 = ∑3

k=1 μkξ k
2, can excite the relative

motion among the 4α particles. In other words, the monopole
operator has an ability to populate democratically 4α particles
by 2h̄ω with respect to the c.m. coordinate of 16O. The resultant
state, thus, has some amount of the overlap with the 4α-gas-
like state, that is, 0+

6 , with the 4α-condensate-like structure
[20,21]. The overlap value corresponds certainly to the
monopole matrix element, M(E0). As shown in Ref. [45],
this 0+

6 state can well be described by a 4α-condensate-type
microscopic wave function, called the THSR wave function
[42]. In this THSR framework, the monopole matrix element
to the 4α-condensate-like state is estimated to be M(E0) = 1.2
fm2, similar to that in the 4α OCM, M(E0; 0+

1 − 0+
6 ) = 1.0

fm2 in Table I, which is calculated with the use of Eqs.
(17) and (18). Thus, the evaluation of the monopole matrix
elements using Eqs. (17) and (18) in the OCM framework
is useful and gives a reasonable estimate for the monopole
transition to the α-12C cluster states and 4α-gas-like states. It
is noted that the mechanism of the 4α-gas-like state being
populated by the monopole transition is similar to that of
the Hoyle state with the 3α-gas-like structure being excited
by the monopole transition, although the ground state of
12C has a shell-model-like compact structure with the main
configuration of SU(3) (λ,μ) = (0, 4). The detailed discussion
is given in Ref. [14].

As for the 0+
5 state, its main configuration is α + 12C(1−

1 )
with the P -wave orbiting of an α cluster around the 12C(1−

1 )
core, as mentioned above. According to the Bayman-Bohr the-
orem, the SU(3) (λ,μ) = (0, 0) state of 16O has no component
of the α + 12C(1−

1 ) channel. However, the monopole strength
to the 0+

5 state is as large as 3 fm2 (see Table I). This is the rea-
son that the 0+

5 state has small but important components of the
α + 12C(0+

1 ,2+
1 ) and α + 12C(0+

2 ) configurations, as one can
see from the spectroscopic factors shown in Fig. 5. It is noted
that the α + 12C(0+

2 ) configuration is likely to be an alternative
of the 4α-gas-like state with the dominant (0S)4

α configuration.
Because these three configurations, α + 12C(0+

1 ,2+
1 ) and (0S)4

α ,
can be excited from the ground state of 16O by the monopole
operator as discussed above, their respective contributions are
coherently added to provide the relatively large monopole
strength to the 0+

5 state. However, the situation of the 0+
4

state, characterized mainly by the higher nodal α + 12C(0+
1 )

state, is similar to the case of the 0+
5 state. From Fig. 5,

the 0+
4 state has also small but non-negligible components

of the α + 12C(0+
1 ,2+

1 ) and α + 12C(0+
2 ) configurations, which

contribute to the monopole strength for the 0+
4 state.

Finally, it is remarked that the calculated strength function
in Fig. 6 takes into account only the contributions from
the resonant states (0+

2 , . . . , 0+
6 ). The continuum states of

the α + 12C channel (Ex = 7.16 MeV) and 4α disintegrated
channel (Ex = 14.44 MeV) can contribute to the strength. It
is interesting to study the effect of the continuum states to the
monopole strength function up to Ex � 16 MeV, although the
contribution from the 4α continuum states may be small in
the energy region up to Ex � 16 MeV because of their small
phase space.

C. Shell-model calculation

In the shell-model calculations using the spherical basis,
formulated in Sec. II C, the total energy of the ground state
of 16O is well reproduced in cases A and B: Ecal(16O) =
−127.57 MeV and −126.79 MeV, respectively, for cases
A and B vs Eexp(16O) = −127.62 MeV. Case A gives the
rms radius of 16O, 2.50 fm, the value of which is in good
correspondence with the experimental one (2.58 fm), while
the case B does the larger radius (2.94 fm). In addition, the
energies of the 1/2−

1 and 3/2−
1 states in 15O are reasonably

reproduced in the cases A and B: Ecal(1/2−
1 ) = −109.27 MeV

and Ecal(3/2−
1 ) = −103.18 MeV (−110.05 and −103.77)

for the case A (B) vs Eexp(1/2−
1 ) = −111.96 MeV and

Eexp(3/2−
1 ) = −105.78 MeV.

We found that the excitation energy of the 0+
2 state in 16O

is as large as 30 MeV in the present shell-model calculation,
while the experimental value is as small as 6.7 MeV, the value
of which is reproduced by the cluster model (see Table I).
It is noted that the present shell-model space includes only
the 1p1h and 2p2h configurations up to the 0f 1p shell. Be-
cause the 1p1h configurations, in particular, (1s1/2)(0s1/2)−1,
(1p3/2)(0p3/2)−1, and (1p1/2)(0p1/2)−1, should give a cru-
cial contribution to the monopole transition strengths, it is
instructive to investigate how strongly the components of
the three 1p1h configurations, P (1p1h), distribute among
the various 0+ states. We found three energy regions in
which the components P (1p1h) become significantly large:
(1) Ex ∼ 32 MeV with P (1p1h) ∼ 81%, contributed by the
0+

2 state; (2) Ex ∼ 48 MeV with P (1p1h) ∼ 65%; and (3)
Ex ∼ 60 MeV with P (1p1h) ∼ 40%. This split of the 1p1h
component into the three energy regions is consistent with
the RRPA result [10,12], in which the monopole strength
concentrates mainly into three energy regions (see Fig. 1).
This is in line with the RPA and QRPA calculations (Fig. 3 in
Ref. [15]), although the excitation energies of the three energy
regions are different. The fact that the excitation energies of the
three energy regions in the present shell-model calculations are
higher than those in the RRPA, RPA, and QRPA calculations
is reasonable because our calculation employs the spherical
harmonic oscillator basis, and the model space taken in its
calculation covers only the 1p1h and 2p2h configurations
within the 0s, 0p, 0d1s, and 0f 1p shells (see Sec. II C).
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The fact that the present spherical shell-model calculation
has great difficulty in reproducing the low excitation energies
of the 0+

2 and 0+
3 states is likely to be a common feature of the

no-core shell-model calculations [41], the FMD calculations
[7–9], and the coupled-cluster calculations [46]. Exceptions
are a few conventional shell-model works, for example, by
Brown and Green [47] in 1966 and Arima et al. [48] in 1967,
as far as the present authors know. Here it is instructive to
briefly present their main results.

Brown and Green discussed the low-lying three 0+ states
of 16O with the deformed-shell model [47]. It is proposed
that the three 0+ states (0+

1 , 0+
2 , and 0+

3 ) can be described
by the mixture among the 0p0h, 2p2h, and 4p4h states. In
their calculation, the unperturbed energies of the 0p0h, 2p2h,
and 4p4h states are treated as free parameters adjusted to give
the observed spectra, although the coupling strengths among
the 0p0h, 2p2h, and 4p4h states are estimated with some
approximations based on SU(3) algebra [49]. Then they found
that the 0+

1 state has a dominant configuration of 0p0h type,
while the main configuration of the 0+

2 (0+
3 ) state is of the 4p4h

type (2p2h type). With use of the Brown-Green wave functions,
Bertsch [50] calculated the E0 transition strength between
the 0+

2 and 0+
1 states, M(E0; 0+

2 − 0+
1 ), defined in Eq. (6).

His result is M(E0) = 1.6–2.8 fm2, corresponding to the
experimental data (3.8 fm2), although the monopole transition
strength between the 0+

3 and 0+
1 states was not discussed in that

paper. The important point in the Brown-Green calculation is
that the unperturbed energy of the 4p4h configuration is taken
to be lower than that of the 2p2h one. It is found that if the
2p2h state lies lower than the 4p4h state, the calculated B(E2)
transition rates between the resulting levels for the 0+ states
and 2+ states are difficult to reconcile with the experimental
data, although they could not present the reason why the
unperturbed energy of the 4p4h configuration becomes lower
than that of the 2p2h one. This schematic model proposed by
Brown and Green was confirmed by the large-basis spherical
shell-model calculations mixing the (0 + 2 + 4)h̄ω excitations
[51,52]. Although they succeed in reproducing the low-lying
spectrum of 16O, the single-particle energies are adjusted to
fit six low-lying T = 0 states in 16O, including the 0+

2 and 0+
3

states [51]. Thus, the problem of why the excitation energy of
the 0+

2 state is as small as 6.05 MeV remains unclear in those
shell-model calculations.

After Brown-Green’s work, Arima et al. proposed a weak
coupling picture [48] and showed that one can understand
the appearance of the low-lying 0+

2 and 0+
3 states in 16O if

one assumes weak coupling between four particles (4p) in the
sd shell and four holes (4h) in the p shell. They estimated
the coupling strength with a shell model by employing the
experimental excitation energy (Ex = 0.86 MeV) of the 1/2−

1
state in 19F which is described by the 4p in sd shell and 1h in
the p shell. They eventually found that the coupling strength
between 4p and 4h in 16O becomes significantly weak. This
weakness of the 4p and 4h interactions is nothing but the basic
assumption of an α-cluster model in 16O; that is, one can
easily imagine that the 4p (4h) state corresponds to the α (12C)
cluster. The 4p in the sd shell can obtain an extraordinarily
large binding energy owing to the α-cluster correlation, and
thus the states consisting of 4p (in the sd shell) and 4h (in the

p shell) can be expected to lie at lower excitation energies,
compared with the 2p2h states.

A structure study of 16O which explicitly treats the α-cluster
degree of freedom was performed by Suzuki in 1976 with
the semi-microscopic cluster model, α + 12C OCM [16].
In this model the relative motion between the α and 12C
clusters is solved, taking into account the coupling between
the α − 12C relative motion and the internal rotational motion
of 12C(0+

1 , 2+
1 , 4+

1 ). Almost all levels of 16O up to about
Ex � 14 MeV including the ground state with the dominant
configuration of the doubly closed-shell structure and the
electromagnetic transition rates (E0, E2, and E3) among them
are reproduced well, together with the low-energy α − 12C
scattering cross sections [53] (see Table I for the monopole
strengths). It is found that a lot of states in 16O up to
Ex � 14 MeV have a weak coupling structure of α + 12C,
that is, loosely bound α + 12C cluster structure. In particular,
the 0+

2 [0+
3 ] state has a weakly coupling structure of the α and

12C(0+
1 ) clusters [α and 12C(2+

1 )], in which the α cluster moves
predominantly around the 12C cluster with S wave [D wave]
(see also Sec. III A). These successes in the α + 12C OCM
mean that (1) the weak coupling picture [48] is realized in 16O,
and the 4p (4h) state of the 4p4h configuration in shell-model
picture can be interpreted as the α (12C) cluster; and (2) the
reason why the energy of the 4p4h configurations is lower than
that of the 2p2h one is considered to be the α-cluster correlation
for the 4p state. Although the α-cluster structures for the 0+

2
and 0+

3 states are much different from what Brown and Green
thought [47], one should mention that their conjecture, the
energy of the 4p4h configurations being lower that of the 2p2h
one, is remarkable, because it has played an important role in
the progress of our understanding the structure of 16O.

D. Two features of isoscalar monopole transitions

As discussed in Sec. III A, the fine structures observed in the
experimental monopole strength function in the low-energy
region up to Ex � 16 MeV can be rather well reproduced
within the 4α OCM framework. However, these fine structures
are difficult to be reproduced by any mean-field theory.
This result means that the α clustering degree of freedom
is inevitable to reconcile the low-energy behavior of the
monopole strength function in 16O with experiment. On
the contrary, the RPA calculations look likely to reproduce
approximately the three bump structures in the experimental
monopole strength function in the higher-energy region of
16 � Ex � 40 MeV, although some normalization and energy-
shifting procedures for the calculated strength function is
needed to fit the experimental data (see Sec. I).

Here we should remind the reader that the ground state of
16O is described dominantly by a doubly closed-shell structure,
(0s)4(0p)12, in the 4α OCM calculation, as well as the RPA,
QRPA, and RRPA calculations. As discussed in Sec. III A, the
doubly closed-shell-model wave function is mathematically
equivalent to a single α-cluster wave function. This result
means that the ground-state wave function originally has an α-
clustering degree of freedom together with the single-particle
degree of freedom. In other words, the ground-state wave
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function of 16O has a duality of α-clustering character and
mean-field-type character.

From these facts, one can notice that there exist two
types of the isoscalar monopole excitation of 16O; that is,
the monopole excitations to cluster states are dominant in the
lower-energy part (Ex � 16 MeV) of the monopole strength
function, whereas the monopole excitation of the one-particle
one-hole (1p1h) type contributes to the higher-energy region
(16 � Ex � 40 MeV). This also is in line with the first 0+
excited state of the α particle which is situated at ∼20 MeV.
Thus, one can expect that the reproduction of the experimental
isoscalar monopole strength function of 16O in the full energy
region up to Ex ∼ 40 MeV will definitely fail, if one does not
take into account simultaneously the α-cluster-type four-body
correlations as well as the 1p1h- and 2p2h-type correlations
in the structure study of 16O. To tackle the issue, a structure
calculation is desirable to be performed in which one uses
a huge model space covering fully the α-type correlations
together with the 1p1h- and 2p2h-type correlations

We here report on a trial calculation using the α + 12C
cluster basis and collective basis for studying the isoscalar
monopole strength of 16O [22]. In the latter respect the
symplectic group Sp(6,R) [23,24] as the collective basis was
used. Because the generators of the Sp(6,R) group contain
the monopole and quadrupole operators with respect to the
nucleon coordinates and conjugate momenta, the group is
expected to reproduce the EWSR for the operators. Although
there are no effective NN interactions that are suited for
cluster-Sp(6,R) mixed-basis calculation, they took a phe-
nomenological treatment, because their main purpose was to
investigate the effect of the Sp(6,R) group to the cluster states
[54,55]. They obtained the following two results. First comes
that the effect of the Sp(6,R) basis to the cluster states in the
low-energy region is not very large. It is noted that the 0+

2 and
0+

3 states (see Fig. 4) are the cluster states that are reproduced
by the α + 12C model. The second result is that there are
three states in the higher-energy region (20 � Ex � 40 MeV)
that correspond to the three peaks of the monopole excitation
function and share about 70% of the EWSR, although the
excitation energies of the three states are higher by about
3 MeV. These results support our finding that the isoscalar
monopole excitations in light nuclei, as mentioned above, are
dominated by two features: α-cluster states at low energies
and shell-model states at higher energies. An analysis with a
mixed 4α cluster and symplectic group basis may be useful
for this study.

IV. SUMMARY

We have investigated the monopole strength function in the
low-energy region up to Ex � 16 MeV within the framework
of 4α OCM, which has succeeded in reproducing all the
six 0+ states observed up to Ex � 16 MeV and in giving
good agreement with all of the available data such as the
decay widths, monopole transition strengths, and rms radius
of the ground state. It was found that the fine structures at
the low-energy region up to Ex � 16 MeV in the experi-
mental monopole strength function obtained by the 16O(α, α′)
experiment is rather satisfactorily reproduced within the 4α

OCM framework. On the contrary, mean-field calculations
have encountered difficulties in reproducing the fine structures
of the monopole strength function at the low-energy region,
as well as the monopole matrix elements for the 0+

2 (Ex =
6.05 MeV), 0+

3 (Ex = 12.05 MeV), and 0+
5 (Ex = 14.01 MeV)

states obtained in the 16O(e, e′) experiment. These results mean
that the α clustering degree of freedom is inevitably necessary
to reconcile the monopole strength (amounting to about 20%
of the EWSR) in the low-energy region with experiment. How-
ever, the 4α cluster model has difficulties in reproducing the
gross three bump structures of the monopole strength function
at the higher-energy region of 16 � Ex � 40 MeV. The gross
bump structures look likely to be qualitatively reproduced by
the mean-field-theory calculations such as RRPA, RPA, and
QRPA, although the energy positions of the three bumps and
the absolute values of the strength functions quantitatively
deviate from the experimental data. In general, one can
expect the interplay between clustering degrees of freedom
and mean-field degrees of freedom. Because the interplay
affects the monopole strength function, there is a possibility
that the isoscalar monopole strength at the higher-energy
region of 16 � Ex � 40, in particular at its lower-energy part,
contains the influence by clustering degrees of freedom. The
fact that no mean-field-theory calculations have satisfactorily
reproduced the isoscalar monopole strength function even at
the higher energy region (16 � Ex � 40 MeV) demonstrates
the need to investigate the interplay between clustering and
mean-field degrees of freedom in the isoscalar monopole
strength function.

From the above results, one concludes that there exist two
features of the isoscalar monopole excitations of 16O; that
is, the monopole excitation to cluster states dominates the
low-energy region (Ex � 16 MeV), sharing about 20% of the
EWSR, while that to the 1p1h-type states looks likely to be
predominant at the higher-energy region. We indicated that
the existence of these two types of the monopole excitations
stems from the fact that the ground state of 16O with the
dominant doubly closed-shell configuration (0s)4(0p)12 that
is the dominant SU(3) (λμ) = (00) symmetry has, in fact, a
dual feature inasmuch as it can equivalently be described by a
cluster wave function of the α type, as can be shown with the
Bayman-Bohr theorem. When the monopole operator activates
α-type degrees of freedom in the ground state, α-cluster states
are excited, while in the case of the monopole operator acting
on the 1p1h-type degree of freedom in the ground state,
collective states of the 1p1h type are populated. Thus, one will
fail to reproduce the experimental isoscalar monopole strength
function of 16O up to Ex ∼ 40 MeV if the α-cluster-type
four-body correlations, as well as the 1p1h- and 2p2h-type
correlations, are not simultaneously taken into account in the
structure study of 16O.

The existence of two features of isoscalar monopole
excitation which originates from the dual nature of the ground
state seems to be general in light nuclei, and the case of 16O
discussed in the present paper is typical. This is attributable
to the nuclear SU(3) symmetry which is well verified in the
ground state of light nuclei. According to the Bayman-Bohr
theorem, an SU(3) wave function is mathematically equivalent
to a cluster-model wave function. Thus, the ground state which
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has a dominant SU(3) symmetry is considered to have the dual
nature similar to the case of 16O, which generates the two
features in the isoscalar monopole excitation. However, this
feature will be vanishing with increasing mass number, and
eventually only the 1p1h-type collective motions are strongly
excited, maybe, in the mass region beyond the fp-shell nuclei.
The reason for this is that the quality of the nuclear SU(3)
symmetry in the ground state of light nuclei is gradually
disappearing because of the stronger effect from the spin-orbit
forces in heavier nuclei. This means that the dual nature
of the ground state is also corroding with increasing mass
number. It is an intriguing subject to study theoretically and
experimentally how these two features are changing with
the mass number. Thus, it is strongly hoped that systematic
experiments of analyzing the existence of these two features
of monopole excitations will be performed in near future.
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APPENDIX: CLUSTER SUM RULE OF ISOSCALAR
MONOPOLE TRANSITION

In this Appendix, we first discuss the EWSR of the
isoscalar monopole transition for AZ nucleus. Then we discuss
the EWSR of the isoscalar monopole transition within the
framework of the OCM, called the OCM-EWSR, in the case
of the nα OCM and two-cluster OCM (A1Z1 and A2Z2 with
Z1 = A1/2 and Z2 = A2/2) for a self-conjugated nucleus
A = 4n. Finally, a general formula of the OCM-EWSR value is
presented in the case of the k-cluster OCM of ZA nucleus (k =
2, 3, . . .), composed of the k clusters (Z1A1,

Z2A2, . . . ,
ZkAk).

The EWSR of the isoscalar monopole transition [14] for AZ

nucleus [see Eq. (7) for 16O] is given as

∑
n

(En − E1)

∣∣∣∣∣〈0+
n |

A∑
i=1

(r i − Rc.m.)
2|0+

1 〉
∣∣∣∣∣
2

= 2h̄2

m
× A × R2, (A1)

R2 = 1

A
〈0+

1 |
A∑

i=1

(r i − Rc.m.)
2|0+

1 〉, (A2)

where R represents the rms radius of the ground state, and other notations are self-evident. Here, we assume that the NN

interaction has no velocity dependence. The isoscalar monopole operator in Eq. (A1) can be decomposed as

4n∑
i=1

(r i − Rc.m.)
2 =

n∑
k=1

4∑
i=1

(
r i+4(k−1) − Rαk

)2 +
n∑

k=1

4
(

Rαk
− Rc.m.

)2
, (A3)

=
∑
i∈A1

(
r i − RA1

)2 +
∑
i∈A2

(
r i − RA2

)2 + A1A2

A1 + A2
ξ 2, (A4)

where Rαk
= (1/4)

∑4
i=1 r i+4(k−1) is the c.m. coordinate of the kth α cluster, RA1 (RA2 ) stands for the c.m. coordinate of the

A1Z1 (A2Z2) cluster, and ξ = RA2 − RA1 denotes the relative coordinate between the two clusters. As discussed in Sec. II B,
the isoscalar monopole operator in the nα OCM gives nonzero contribution only for the second term of Eq. (A3), and that in the
two-cluster OCM provides with nonzero contribution only for the third term of Eq. (A4).

In the nα OCM, the total wave function of 0+ state is presented as

|0+〉 = �(OCM)(0+)
n∏

k=1

φ(αk), (A5)

where φ(αk) is the internal wave function of kth α cluster and �(OCM)(0+) stands for the relative wave function among the nα

clusters (see Sec. II B). Then the EWSR-OCM is evaluated as

∑
p

(
E(OCM)

p − E
(OCM)
1

) ∣∣∣∣∣〈0+
p |

4n∑
i=1

(r i − Rc.m.)
2|0+

1 〉
∣∣∣∣∣
2

,

=
∑

p

(E(OCM)
p − E

(OCM)
1 )

∣∣∣∣∣〈�(OCM)(0+
p )|

n∑
k=1

4
(
Rαk

− Rc.m.

)2|�(OCM)(0+
1 )〉

∣∣∣∣∣
2

,

= 2h̄2

m
〈�(OCM)(0+

1 )|
n∑

k=1

4
(

Rαk
− Rc.m.

)2|�(OCM)(0+
1 )〉,
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= 2h̄2

m
× A × (R2 − R(α)2), (A6)

where �(OCM)(0+
p ) and E(OCM)

p are the eigenwave function and
eigenvalue of the pth 0+ state obtained by solving the nα

OCM equation. Here the α-α interaction is assumed to be
velocity-independent, and R(α) stands for the rms radius of
the α cluster. The derivation of Eq. (A6) should be referred
to Sec. II B. Then the ratio of the OCM-EWSR to the total
EWSR in Eq. (A1) is

OCM-EWSR

total EWSR
= 1 −

(
R(α)

R

)2

. (A7)

This result is common to all n and hence is the same as Eq. (23)
for n = 4. As shown in Sec. II B, the ratio for the 4α OCM is
68%.

In the case of the two-cluster OCM, the total wave function
of 0+ state is presented as

|0+〉 = �(2−clus.)(0+)φ(A1Z1)φ(A2Z2), (A8)

where φ(A1Z1) [φ(A2Z2)] is the internal wave function of the
A2Z2 cluster (A2Z2) and �(2clus.)(0+) stands for the relative wave
function between the two clusters. Then the EWSR-OCM is
presented as

∑
p

(
E(2clus.)

p − E
(2clus.)
1

) ∣∣∣∣∣〈0+
p |

4n∑
i=1

(r i − Rc.m.)
2|0+

1 〉
∣∣∣∣∣
2

,

=
∑

n

(
E(2clus.)

n − E
(2clus.)
1

)
×

∣∣∣∣〈�(2clus.)(0+
n )| A1A2

A1 + A2
ξ 2|�(2clus.)(0+

1 )〉
∣∣∣∣2

,

= 2h̄2

m
〈�(2clus.)(0+

1 )| A1A2

A1 + A2
ξ 2|�(2clus.)(0+

1 )〉,

= 2h̄2

m
× A ×

[
R2 − A1

A
R(A1)2 − A2

A
R(A2)2

]
, (A9)

where �(2clus.)(0+
n ) and E(2clus.)

p are the eigenwave function
and eigenvalue of the pth 0+ state obtained by solving the
two-cluster OCM equation. Here the two-cluster potential is
assumed to be velocity independent, and R(A1) [R(A2)] stands
for the rms radius of the A1Z1 (A2Z2) cluster. It is noted that this
EWSR-OCM is realized in the case of the coupled-channel

OCM, for example, α + 12C(0+
1 , 2+

1 , 4+
1 ), where there is no

contribution of the internal monopole transitions in both the
α and 12C clusters. Then the ratio of the OCM-EWSR to the
total EWSR in Eq. (A1) is

OCM-EWSR(2-cluster)

total EWSR

= 1 − A1

A

(
R(A1)

R

)2

− A2

A

(
R(A2)

R

)2

. (A10)

This ratio for the α + 12C OCM is 31%, which is about half
of that in the 4α OCM.

Finally, let us discuss the OCM-EWSR value, in general, in
the case of the k-cluster OCM of a ZA nucleus (k = 2, 3, . . .),
composed of the k clusters (Z1A1,

Z2A2, . . . ,
ZkAk). The total

wave function of 0+ state is given as

|0+〉 = �(k-clus.)(0+)
k∏

i=1

φ(Ai Zi), (A11)

where φ(AiZi) is the internal wave function of the Ai Zi cluster
and �(k-clus.)(0+) stands for the relative wave function among
the k clusters. Then, the EWSR-OCM is presented as

∑
p

(
E(k-clus.)

p − E
(k-clus.)
1

) ∣∣∣∣∣〈0+
p |

4n∑
i=1

(r i − Rc.m.)
2|0+

1 〉
∣∣∣∣∣
2

,

= 2h̄2

m
× A ×

[
R2 −

k∑
i=1

Ai

A
R(Ai)

2

]
, (A12)

where R(Ai) denotes the rms radius of the AiZi cluster, and
we assumed no contributions from the internal monopole
transitions in the ZiAi nucleus (i = 1, 2, . . . , k). The proof
of Eq. (A12) is similar to those of Eqs. (A6) and (A9). Then,
the ratio of the OCM-EWSR to the total EWSR in Eq. (A1) is

OCM-EWSR(k-cluster)

total EWSR
= 1 −

k∑
i=1

Ai

A

(
R(Ai)

R

)2

. (A13)

The present results can be applied to the monopole transition
in neutron-rich nuclei. For example, the ratio for the α + α +
n + n OCM of 10Be amounts to 68%.
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