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The use of different mass parameters for the rotation and two vibrations in the Bohr Hamiltonian is important
for describing properties of nuclei, especially interband E2 transition probabilities. For odd nuclei, the Coriolis
interaction of the angular momentum of an odd nucleon with that of a nucleus can affect results noticeably.
Excited-state energies and E2 transition probabilities have been calculated for the 163Dy and 173Yb nuclei,
by using three different mass parameters and taking into account the Coriolis interaction, once shell-model
calculations have been performed to determine the single-particle ground-state properties of 163Dy and 173Yb.
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I. INTRODUCTION

The Bohr Hamiltonian [1] has been used for many decades
to glean an understanding of the collective properties in nuclei
[1–7]. In these studies, rotational and vibrational modes are
assumed to have one common mass parameter. The topic is
still interesting, and a number of different methods for using
this Hamiltonian have been explored lately [8–20].

Recent works show that multiple mass parameters should
be used in order to well describe the properties of nuclei. In
Ref. [19] it was shown that, by analyzing experimental data
and comparing them with theoretical calculations, the use of
different mass parameters for vibrational and rotational modes
is very important for a correct description of the properties
of even-even nuclei. In Ref. [11], analytical expressions for
spectra and wave functions are derived for a Bohr Hamiltonian
when describing the collective motion of deformed nuclei, and
in these, the mass parameter is allowed to depend on the nuclear
deformation. Solutions are obtained for separable potentials
that contain a Davidson potential for the β variable, for cases of
γ -unstable nuclei, axially symmetric prolate deformed nuclei,
and triaxial nuclei, implementing the usual approximations in
each case. The matrix elements of the deformation-dependent
components of the mass tensor have been studied in Ref. [20],
using experimental data for the energies and the E2 transitions
of low-lying collective states.

An investigation similar to that of Ref. [19] has been carried
out in Ref. [21] for odd-mass, deformed nuclei. One common
mass parameter was used for the rotation and vibrations in this
study and a calculation of the interband-reduced E2 transitions
was not performed.
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In Ref. [22], results for the even-mass nuclei considered
in Ref. [19] were recreated, using multiple mass parameters
as suggested. Projection of the angular momentum of the
total spin of the nucleus to the third principal axis K was
considered to be a good quantum number, such that it was
possible to compare results with those of Ref. [19]. After this,
the odd 173Yb nucleus was considered. It was assumed that the
projection of the angular momentum of nucleus K and that
of external nucleon � are good quantum numbers, in order
that the work of Ref. [22] was consistent throughout. The
Hamiltonian used in Ref. [21] is simplified for use in this case.
Because of these simplifications, the Coriolis interaction had
not been included in the Hamiltonian.

However, the Coriolis interaction significantly affects the
structure of nuclear excited states and many works are devoted
to its study. It is discussed in detail in Ref. [23]. The change
in the effective Coriolis matrix elements has been used to
explain experimental regularities within the pseudo-L scheme
in strongly deformed Bose-Fermi systems in Ref. [24], along
with the relationship of this change to the Nilsson model.
In recent works [25,26], quadrupole-octupole oscillations and
rotations with a Coriolis coupling between an even-even core
and an unpaired nucleon are used to model odd nuclei. E2
transition probabilities in a wide range of odd-mass nuclei
have been reproduced successfully therein.

Thus, it is desirable to extend the previous work of Ref. [22]
to study the effect of the Coriolis interaction when several
different mass parameters are included in the model. We do
this in this paper, where we study the excited states of the
odd nuclei 163Dy and 173Yb. Because the quantum numbers
K and � are not conserved in our present considerations, the
value of angular momentum j of the external nucleon directly
contributes to excited-state energies and wave functions. This
is because the interaction of the total spin of the nucleus
and that of the external nucleon exists in the expression of
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the rotational part of the eigenvalues, and this interaction
changes from one state to another as L, K , and � change.
The arrangement of the excited-state levels is not fixed now, as
in Ref. [22], but will strongly depend on mass parameters and
on the parameter which connects single-particle and collective
states. Therefore, the new arrangement of the levels due to the
nonconservation of K and � will be important in the present
considerations.

The paper is organized in the following way: In Sec. II
we obtain expressions for level energies, wave functions,
and reduced E2 transition probabilities, considering K and
� as nonconserved quantities and using three different mass
parameters for rotation and vibrations.

Large-scale shell-model calculations have been performed
in order to determine the main contribution from spherical shell
orbitals to the ground states of both 163Dy (Z = 66) and 173Yb
(Z = 70), using the ANTOINE [27] code. These calculations
are important for ensuring that the correct value of the angular
momentum of the external nucleon is used. Results are shown
in Sec. III.

Having thus determined the appropriate value of j , cal-
culated excited-state energies and reduced E2 transition
probabilities are presented, discussed, and compared with
available experimental data in Sec. IV. Finally, in Sec. V,
we draw conclusions regarding the effect of the Coriolis
interaction in this paper.

II. LEVEL ENERGIES, WAVE FUNCTIONS,
AND E2 TRANSITION PROBABILITIES

In this paper the Bohr Hamiltonian is written such that it
includes three different mass parameters Bγ , Brot, and Bβ ,
and it also includes a Coriolis interaction in the rotational
component 2(L1j1 + L2j2). The vibrational component for
this case of an odd-mass nucleus is

Hv = −h̄2
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the operator of rotational energy is

Hrot = h̄2

6Brotβ2

[
L2 + j 2 − L2

3 − j 2
3 − 2(L1j1 + L2j2)

]
, (2)

and the interaction operator is

Hint = −β〈T 〉(3j 2
3 − j 2

)
, (3)

where L is the total angular momentum of the nucleus, L1,
L2, and L3 are its projections on the principal axes of the
nucleus, and j , j1, j2, and j3 are the operators of a single
nucleon external to a core, and its projections. In Refs. [6]
and [7], T (r) is a function of the distance between the single
nucleon and the center of the core nucleus. It appears in the
Hamiltonian of Eq. (2.2) in Ref. [6] and Eq. (2) of Ref. [7].
〈T 〉, which is introduced in those papers and is used here, is the

average of the T (r) in the states of the extra nucleon, assuming
zero nuclear surface oscillation.

If the same potential of Eq. (6) in Ref. [22] is used,
eigenvalues are determined by the following expression:

Enβnγ L|m|τ = [
2nβ + qτ

nγ
(L, |m|) + 3/2

]√
2gβ, (4)

where

qτ
nγ
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and
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3

)
+ ε|m|Lτ − ε0Lg.s1, (6)

where � is the eigenvalue of the γ -vibrational part of the
Hamiltonian plus the third term of the rotational energy, �0

is that of the ground state, Lg.s is the ground-state spin of the

nucleus, gβ = BβV0β
2
0

h̄2 , g = 1
β2

0

h̄2√
Bγ Cγ

, τ distinguishes different

states of the same L, and nβ and nγ are the quantum numbers of
β and γ vibrations, respectively. The values of m are connected
with K and � through the condition K − � = 2m [6], where
m should be an integer.

Now, the following determinant should be calculated in
order to determine the eigenvalues and eigenfunctions of the
rotational part of the Hamiltonian:

||〈LjKm|X̂|LjK ′m′〉 − ε|m|Lτ δKK ′δmm′ || = 0, (7)

where

X̂ = 1

3

Bβ

Brot
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3 − j 2
3

−2(L1j1 + L2j2)
] − 1

3ξ

[
3j 2

3 − j (j + 1)
]
, (8)

and ξ = h̄2

6Bββ3
0 〈T 〉 . Since K and � are not good quantum

numbers, not only do the diagonal elements of the Hamiltonian
but also nondiagonal elements contribute to the energies and
E2 transition probabilities. The diagonal elements are as
follows:

〈LjKm|X̂|LjKm〉 = 1

3

Bβ

Brot
[L(L + 1) + j (j + 1)

−K2 − (K − 2m)2 − (−1)L−j

× (L + 1/2)(j + 1/2)δK1/2δm0]

− 1

3ξ
[3(K − 2m)2 − j (j + 1)]. (9)

The nondiagonal elements are

〈LjKm|X̂|LjK ± 1m〉
= 1

3

Bβ

Brot

√
(L ∓ K)(L ± K + 1)

×
√

(j ∓ K ± 2m)(j ± K ∓ 2m + 1). (10)

Indeed, only when K = 1/2 does the Coriolis interaction affect
the diagonal elements. This is an effect of nonconserved K that
is not present in our previous paper [22], where K was fixed
as 5/2.
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We denote E00L0τ − E00Lg.s.01 = E(L) as ground-state band
energies, E10L01 − E00Lg.s.01 = E(Lβ) as β-band energies, and
E00L11 − E00Lg.s.01 = E(Lγ ) as γ -band energies. The corre-
sponding wave function is expanded as

� = β
−1− Bβ

Bγ F (β)
∑
mK

Amτ
LKχK|m|(γ )|LMjKm〉, (11)

where
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i = 1, 2, or 3,
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and
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(
β2

b2

)
. (14)

Here Nβ and Nγ are normalization coefficients for β and

γ wave functions, respectively, 1F 1(−nγ , |m| + 1,
γ 2

g ) is a

confluent hypergeometric function, b = β0
4
√

2gβ

, L
qτ

nγ
(L,|m|)+1/2

nβ

are Laguerre polynomials, D(θi) is Wigner function, ϕ(xi) is
the wave function of the single-particle states, and Amτ

LK are the
coefficients of the expansion of the wave functions.

Then, if we denote deformability with respect to the β

vibration as
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the following expressions are obtained:
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III. SHELL-MODEL PREDICTIONS OF
GROUND-STATE PROPERTIES

Our Bohr Hamiltonian studies are guided by shell-model
results, which we report here. In these calculations, we have
taken the model space to be that of an inert 132Sn core, with the
remaining neutrons (ν) and protons (π ) in the 82–126 and 50–
82 valence shells, respectively. Nucleons in this valence space
are allowed to interact via the realistic CWG Hamiltonian,
which is based on the CD-Bonn force [28]. The single-neutron
energies of the 1h9/2, 2f7/2, 2f5/2, 3p3/2, 3p1/2, and 1i13/2

orbits are −0.894, −2.455, −0.450, −1.601, −0.799, and
0.250 MeV, and the single-proton energies of the 1g7/2, 2d5/2,
3s1/2, 2d3/2, and 1h11/2 orbits are −9.663, −9.000, −7.323,
−7.223, and −6.870 MeV, respectively.

In 163Dy, we allowed protons to fill in the g7/2, d5/2,
and s1/2 orbitals and neutrons in the f7/2, p3/2, h9/2, p1/2,
and f5/2 orbitals. Under these conditions, the ground state
has a dominant configuration (∼29%) of π (g8

7/2d
6
5/2s

2
1/2) ⊗

ν(f 5
7/2p

4
3/2h

2
9/2p

2
1/2f

2
5/2). The occupancy of the f7/2 orbital is

4.88 and that of f5/2 is 2.07. Thus, the contribution of the
neutron f7/2 orbital is dominant in comparison to that of other
orbitals.
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TABLE I. The values of the parameters used in calculations.

Nucleus ξ g gβ Bβ/Brot Bβ/Bγ

163Dy 0.0347 0.0166 306 5.67 1.12
173Yb 0.0347 0.0166 1187 11.1 1.54

For 173Yb, we allowed protons to fill in the g7/2, d5/2, s1/2,
and d3/2 orbitals, and neutrons in the f7/2, p3/2, h9/2, p1/2,
and f5/2 orbitals. In this model space, the ground state has
a dominant configuration (∼59%) of π (g8

7/2d
6
5/2s

2
1/2d

4
3/2) ⊗

ν(f 8
7/2p

4
3/2h

2
9/2p

2
1/2f

5
5/2). The occupancy of the f7/2 orbital

is highest. This reveals that the major contribution to the
ground-state structure comes from the f7/2 orbital. Thus,
shell-model calculations predict that the orbital of greatest
influence in the ground-state structure of both 163Dy and 173Yb
is the neutron f7/2 orbital.

It should be noted that we have to ignore the π (1h11/2)
and ν(1i13/2) orbitals in our calculation because a completely
unrestricted shell-model calculation is not yet feasible for these
two nuclei. However, in the pioneering work of Federman and
Pittel [29], it was shown that the strong correlation between
π (1h11/2) and ν(1i13/2) orbitals plays an important role in the
development of nuclear deformation in the rare-earth region. In
163Dy, even with this restriction, our results show that the main
contributions to the ground state are mainly from 2f7/2. This is
in agreement with the ground-state Nilsson orbits contained in
Table I in the recent experimental work by Cakirli et al. [30].
However, in 173Yb, the same reasoning leads to the Nilsson
orbital 5/2[512], which belongs to the 1h9/2 orbital. This is
probably due to the severe truncation which we have had to
perform in order to make a shell-model calculation feasible. In
both cases a 5/2 ground state with negative parity is obtained,
as seen experimentally.

IV. RESULTS AND DISCUSSIONS

In our earlier paper [21], we considered the Bohr Hamil-
tonian for odd-mass nuclei in the case when the projection
of the nuclear total angular momentum onto the third axis K

and that of external nucleon � are not conserved, and when
the angular momentum of the external nucleon j is conserved.
One common mass parameter was used there. Recently [22],
we studied the properties of the odd-mass, deformed 173Yb
nucleus, using different mass parameters for rotation and
vibration modes. K and � were considered to be conserved
quantities, and thus the excited-state energies did not depend
on j .

Here, where K and � are not conserved, the value of j

affects the spectrum and to wave functions, as explained in
Sec. I. As discussed in Sec. III, j = 7/2 is the appropriate
value for the 163Dy and 173Yb nuclei.

As is discussed in Sec. II, both the excited-state energies in
units of E(7/2−

g.s.) and reduced E2 transition probabilities in
units of B(E2; 9/2− → 5/2−) depend on the mass parameter
ratios Bβ/Brot and Bβ/Bγ , and on the parameters ξ , g, and gβ .
The values of these parameters used for the calculations are
given in Table I.

For 173Yb, the value of the mass parameter ratios, deter-
mined by analyzing experimental data for 172Yb in Ref. [19],
had been used in Ref. [22], and we shall use the same values
here. The value of parameters ξ and g have changed here
significantly as compared to those of Ref. [22]. The reason for
this is that ξ connects single-particle states and β vibration
states, while g connects β and γ vibration states. In Ref. [22],
the values determined in Ref. [21] were used, where the
difference in mass parameters for rotation and vibrations had
not been taken into account. It was impossible to evaluate
these parameters there, because in that case energy levels had a
rigid arrangement, and the last term of Eq. (8) influenced only
the values of energies, not their arrangement, due to fixing
K and �. The arrangement of the new levels which appear
because of the present approach should be taken into account.
The influence of mass difference on the connection between
single-particle and collective states is clearly seen in Eqs. (9)
and (10) if one compares these formulas, inserting Bβ = Brot.
This causes changes to g accordingly. In the case of 163Dy, the
values of the mass parameter ratios obtained in Ref. [18] for
162Dy are used, and gβ is thus changed accordingly.

In all that follows, two sets of calculations are presented:
one with a Coriolis interaction, and one without it. Both
sets use the same parameters for a given nucleus, but for
those without the Coriolis interaction we omit the term
(−1)L−j (L + 1/2)(j + 1/2)δK1/2δm0 from the diagonal ma-
trix elements of Eq. (9), and sets all off-diagonal elements to
0. This is equivalent to removing the 2(L1j1 + L2j2) term
from Eq. (2). In this way, we can examine the contribu-
tion of the Coriolis interaction. A future study will be to
employ, for a particular nucleus, different parameters for
a Coriolis-including calculation and a Coriolis-neglecting
calculation, optimized to give a best match to data in each
case.

A. Analysis of spectra

In order to to see the arrangement of bands and levels
with respect to the available experimental data, we present all
levels appearing in the calculation with and without a Coriolis
interaction up to 26 units of E(7/2−

g.s.) for 163Dy in Fig. 1
and for 173Yb in Fig. 2. The values of the levels which exist
both in calculation and theory are listed in Tables II–IV. The
calculation with a Coriolis interaction is denoted as Calc.a and
that without a Coriolis interaction is denoted as Calc.b in the
figures and tables.

From the figures it is seen that all the levels in the
ground-state band in the sequence 5/2−, 7/2−, . . . , 27/2−
exist in both calculations and in experiment for both nuclei.
The sequence is not altered for any combination of parameters.
The Dependence of the values of the energy levels on gβ is
much stronger than ξ . This means that the collective effects
are more important for these levels. Another set of levels
including 1/2−, 3/2−, etc., hereafter denoted as the 1/2−
band, appear above 11/2− for both nuclei, whose arrangement
strongly depends on the mass parameters and the parameter
ξ , which connects single-particle and collective states. These
levels have a single-particle character. The parameter g affects
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FIG. 1. Comparison of calculated values of energy levels in units of E(7/2−
g.s.) for 163Dy with (Calc.a) and without a Coriolis interaction

(Calc.b) with experimental data from Ref. [31].

only the γ -band energies. For these nuclei, the whole spectrum
is collective single particle. In principle, the spectrum can be
divided into single-particle and collective parts for very large
and small values of ξ , and at given values of mass ratios. Of

course, in the latter case our assumption of the conservation
of j is not justified. It is deduced from Eqs. (4)–(7) that using
the different mass parameters changes the connection between
single-particle and collective states. Therefore, the value of ξ is
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FIG. 2. Comparison of calculated values of energy levels in units of E(7/2−
g.s.) for 173Yb with (Calc.a) and without a Coriolis interaction

(Calc.b) with experimental data from Ref. [31].
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TABLE II. The calculated and experimental values of the
E(Lg.s.)/E(7/2−

g.s.) in 163Dy and 173Yb. The experimental values are
taken from Ref. [31].

Lg.s.
163Dy Lg.s.

173Yb

Calc.a Calc.b Expt. Calc.a Calc.b Expt.

9/2− 2.27 2.26 2.28 9/2− 2.38 2.27 2.28
11/2− 3.77 3.75 3.84 11/2− 3.82 3.80 3.84
13/2− 5.55 5.46 5.66 13/2− 6.04 5.58 5.67
15/2− 7.43 7.36 7.75 15/2− 7.68 7.59 7.77
17/2− 9.71 9.44 10.13 17/2− 10.99 9.82 10.13
19/2− 11.84 11.68 12.68 19/2− 12.62 12.26 12.75
21/2− 14.63 14.06 15.49 21/2− 17.18 14.88 15.61
23/2− 16.87 16.56 18.56 23/2− 18.69 17.69 18.72
25/2− 20.18 19.17 21.82 25/2− 24.49 20.66 22.09
27/2− 22.42 21.88 25.36 27/2− 25.83 23.79 25.67

1/2− 15.43 15.17 15.78 1/2− 11.39 7.02 13.14
3/2− 14.41 15.49 16.29 3/2− 10.23 5.42 13.66
5/2− 17.92 16.03 17.14 5/2− 15.24 6.08 14.26

7/2− 13.23 9.00 15.51
9/2− 20.46 10.17 16.62

smaller than in Refs. [6,7,21], where the same mass parameter
for rotation and vibrations is used.

The calculated values of the excited-state energies in the
ground-state band, which exist in both calculation and in
experiment, are given in Table II in units of E(7/2−

g.s.). We
omit the first and second excited-state energies, since they are
always 0 and 1, respectively, in the units used. Separate bands
built on 1/2− with the energies 15.78 and 13.14 in units of
E(7/2−

g.s.) exist in the experiment [31] for 163Dy and 173Yb,
respectively. These states appear as part of the ground-state
band in the calculation. Therefore, we have presented them
in the figures as a part of the ground-state band both in
the calculation and experiment. We have presented them
separately in the table, under a horizontal rule, in order to
compare numerical values with data. The experimental values
shown are taken from Ref. [31].

TABLE III. The calculated and experimental values of the
E(Lβ )/E(7/2−

g.s.) in 163Dy and 173Yb. The experimental values are
taken from Ref. [31].

Lβ
163Dy Lβ

173Yb

Calc.a Calc.b Expt. Calc.a Calc.b Expt.

5/2− 9.70 8.02 9.70 5/2− 11.78 8.03 11.78
7/2− 10.70 9.02 10.91 7/2− 12.78 9.03
9/2− 11.98 10.27 12.47 9/2− 14.16 10.30 13.46
11/2− 13.47 11.76 11/2− 15.60 11.83 14.75
13/2− 15.25 13.47 13/2− 17.83 13.60 16.38
15/2− 17.13 15.38 15/2− 19.46 15.61 19.48
17/2− 19.42 17.46 17/2− 22.78 17.84 20.73
19/2− 21.55 19.70 19/2− 24.40 20.28 23.27
21/2− 24.33 22.07 21/2− 28.96 22.91 27.99
23/2− 26.58 24.58 23/2− 30.47 25.72 30.63
25/2− 29.89 27.19 25/2− 36.27 28.69 33.15

TABLE IV. The calculated and experimental values of the
E(Lγ )/E(7/2−

g.s.) in 163Dy and 173Yb. The experimental values are
taken from Ref. [31].

Lγ
163Dy Lγ

173Yb

Calc.a Calc.b Calc.a Calc.b Expt.

9/2− 20.46 16.62 9/2− 18.40 12.32 18.59
11/2− 22.07 17.94 11/2− 20.56 13.79 20.61
13/2− 23.94 19.49 13/2− 23.09 15.52 22.22
15/2− 26.08 21.26 15/2− 25.98 17.49 23.40
17/2− 28.46 23.23 17/2− 29.23 19.70 25.85
19/2− 31.08 25.39 19/2− 32.82 22.14 28.56
21/2− 33.92 27.73 21/2− 36.73 24.81 30.44
23/2− 36.96 30.23 23/2− 40.96 27.69 32.31

The comparison of the calculated values with and without
a Coriolis interaction in the first band shows that for 163Dy
there are minor increases in all levels when the Coriolis
interaction is applied. This brings the results slightly closer
to the experimental values. For 173Yb, a greater increase is
observed. For both nuclei, the increases in energy becomes
larger as the spin increases.

When the Coriolis interaction is neglected, the arrangement
of the levels corresponds to the experiment in the 1/2− band
for both nuclei. However, when the Coriolis interaction is
included, the following changes occur: In 163Dy, levels of
spin parity 3/2− and 5/2 are interchanged, and for 173Yb
two pairs of levels, 3/2− and 5/2−, and 7/2− and 9/2−, are
interchanged.

The results of the calculations for β and γ bands are given
in Tables III and IV, respectively, in units of E(7/2−

g.s.), for
both 163Dy and 173Yb. For both nuclei the experimental data
are available for excited-state energies in the ground-state band
in Ref. [31]. For 163Dy, only three states in the β band have
been measured, but no measurements have been made in the
γ band.

For both nuclei, the Coriolis interaction pushes the energies
upward in all bands, though this effect is stronger in the β and
γ bands than in the ground-state band. As a consequence,
the positions of the β and γ bands change relative to the

TABLE V. The calculated and experimental values of the
B(E2; Lg.s. + 2 → Lg.s.) in units of B(E2; 9/2−

g.s. → 5/2−
g.s.) for

163Dy. The experimental values Expt.a and Expt.b are taken from
Refs. [31] and [32], respectively.

B(E2;Lg.s.+2→Lg.s.)

B(E2;9/2−
g.s.→5/2−

g.s.)
163Dy

Calc.a Calc.b Expt.a Expt.b

11/2− → 7/2− 1.54 1.54 − 1.63(11)
13/2− → 9/2− 1.85 1.86 1.89(35) 2.04(44)
15/2− → 11/2− 2.04 2.06 2.61(48) 2.80(31)
17/2− → 13/2− 2.18 2.20 2.25(41) 2.44(18)
19/2− → 15/2− 2.28 2.31 2.34(43) 2.6(4)
21/2− → 17/2− 2.38 2.41 2.25(41) 2.44(24)
23/2− → 19/2− 2.45 2.50 2.07(38) 2.28(35)
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TABLE VI. The calculated and experimental values of the
B(E2; Lg.s. + 2 → Lg.s.) in units of B(E2; 9/2−

g.s. → 5/2−
g.s.) for

173Yb. The experimental values Expt.a and Expt.b are taken from
Refs. [31] and [33], respectively.

B(E2;Lg.s.+2→Lg.s.)

B(E2;9/2−
g.s.→5/2−

g.s.)
173Yb

Calc.a Calc.b Expt.a Expt.b

11/2− → 7/2− 1.52 1.53 2.03(33) 1.75(12)
13/2− → 9/2− 1.83 1.84 2.06(33) 1.79(12)
15/2− → 11/2− 2.00 2.01 2.31(36) 2.00(13)
17/2− → 13/2− 2.11 2.14 2.93(50) 2.52(15)
19/2− → 15/2− 2.21 2.23 3.21(50) 2.82(19)
21/2− → 17/2− 2.25 2.30 3.26(54) 2.77(16)
23/2− → 19/2− 2.33 2.36 3.37(70) 2.72(6)
25/2− → 21/2− 2.35 2.42 2.77(7)

ground-state band, which is seen in Figs. 1 and 2 and Tables III
and IV.

B. E2 transition probability analysis

In Tables V–VIII, the calculated values of reduced E2
transition probabilities are given for the intraband ground-state
band transitions, interband transitions from the β to the
ground-state band, and interband transitions from the γ to the
ground-state band, respectively, all in units of B(E2; 9/2−

g.s. →
5/2−

g.s.). Two sources of experimental data are available only
for the intraband transition probabilities in Refs. [31] and [32].
Thus, in Tables VII and VIII we tabulated only the calculated
values, with and without a Coriolis interaction.

Table V shows that for 163Dy, similarly to the case of energy
levels, the inclusion of the Coriolis interaction has only a
small impact on the E2 transition probabilities, decreasing
them. However, this behavior becomes more pronounced as
spins increase. The data from Ref. [31] (Expt.a) is in better
agreement with the calculated results than that of Ref. [32]
(Expt.b).

In the same manner Table VI shows that the inclusion of the
Coriolis interaction decreases the E2 transition probabilities of
173Yb as well. Again, this behavior becomes more pronounced

TABLE VII. The calculated values of the B(E2; Lβ → Lg.s.) and
B(E2; Lγ → Lg.s.) in units of B(E2; 9/2−

g.s. → 5/2−
g.s.) for 163Dy.

163Dy
B(E2;Lβ→Lg.s.)

B(E2;9/2−
g.s.→5/2−

g.s.)

B(E2;Lγ →Lg.s.)

B(E2;9/2−
g.s.→5/2−

g.s.)

×103 ×103

Calc.a Calc.b Calc.a Calc.b

9/2− → 5/2− 2.36 1.49 9/2− → 5/2− 0.79 0.72
13/2− → 9/2− 1.16 0.25 9/2− → 9/2− 30.35 30.49
23/2− → 19/2− 0.96 4.12 9/2− → 13/2− 11.87 12.91
9/2− → 9/2− 9.64 9.63 11/2− → 9/2− 12.55 12.29
13/2− → 13/2− 17.49 17.46 11/2− → 13/2− 32.12 34.02
17/2− → 17/2− 20.07 20.05 13/2− → 9/2− 2.03 1.93
9/2− → 13/2− 29.45 34.37 13/2− → 17/2− 10.37 11.64
13/2− → 17/2− 68.17 79.92 15/2− → 13/2− 16.59 15.88

TABLE VIII. The calculated values of the B(E2; Lβ → Lg.s.) and
B(E2; Lγ → Lg.s.) in units of B(E2; 9/2−

g.s. → 5/2−
g.s.) for 173Yb.

173Yb
B(E2;Lβ→Lg.s.)

B(E2;9/2−
g.s.→5/2−

g.s.)

B(E2;Lγ →Lg.s.)

B(E2;9/2−
g.s.→5/2−

g.s.)

×103 ×103

Calc.a Calc.b Calc.a Calc.b

9/2− → 5/2− 1.61 0.80 9/2− → 5/2− 1.00 0.77
13/2− → 9/2− 0.98 0.48 9/2− → 9/2− 31.09 31.77
17/2− → 13/2− 0.07 0.28 9/2− → 13/2− 10.46 12.90
9/2− → 9/2− 5.01 5.01 11/2− → 9/2− 14.30 12.95
13/2− → 13/2− 9.08 9.08 11/2− → 13/2− 29.86 34.31
17/2− → 17/2− 10.37 10.41 13/2− → 9/2− 2.67 2.06
9/2− → 13/2− 14.02 18.01 13/2− → 17/2− 8.86 11.32
13/2− → 17/2− 33.56 42.75 15/2− → 13/2− 17.77 16.43

as spin parities increase. In contrast to the case of 163Dy, here
the data of Ref. [33] better fits the calculated results than that
of Ref. [31].

From Tables VII and VIII it is seen that the Coriolis
contributions are essential for all the transitions, except for
the transitions from a state of a particular spin to a state of the
same spin, where the difference between both calculations is
approximately zero.

V. SUMMARY

We have studied the effect of the Coriolis contribution
toward the excited states of deformed nuclei, using the
Hamiltonian with different mass parameters for the rotation
and vibrations. Analytical expressions have been obtained for
the excited-state energies and E2 transition probabilities. Also
large-scale shell-model calculations have been carried out in
order to determine ground-state properties of the considered
nuclei.

The spectra and E2 transition probabilities are discussed
with and without a Coriolis interaction. We have found good
agreement with experimental data if we include a Coriolis
interaction, while for all bands without a Coriolis interaction
the energy levels are more compressed. Further, without a
Coriolis interaction the β and γ vibrational bands are shifted
down in comparison to the experimental data.

For reduced E2 transition probabilities of odd-mass de-
formed nuclei the Coriolis interaction contributes significantly.
However, the effect of the Coriolis interaction on the intraband
E2 transition probabilities between bands of the same spin is
insignificant.
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