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Non-yrast nuclear spectra in a model of coherent quadrupole-octupole motion
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A model assuming coherent quadrupole-octupole vibrations and rotations is applied to describe non-yrast
energy sequences with alternating parity in several even-even nuclei from different regions, namely, 152,154Sm,
154,156,158Gd, 236U, and 100Mo. Within the model scheme, the yrast alternating-parity band is composed by the
members of the ground-state band and the lowest negative-parity levels with odd angular momenta. The non-yrast
alternating-parity sequences unite levels of β bands with higher negative-parity levels. The model description
reproduces the structure of the considered alternating-parity spectra together with the observed B(E1), B(E2),
and B(E3) transition probabilities within and between the different level sequences. B(E1) and B(E3) reduced
probabilities for transitions connecting states with opposite parity in the non-yrast alternating-parity bands are
predicted. The implemented study outlines the limits of the considered band-coupling scheme and provides
estimations about the collective energy potential, which governs the quadrupole-octupole properties of the
considered nuclei.
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I. INTRODUCTION

A typical manifestation of the reflection-asymmetric
quadrupole-octupole deformation in the energy spectra of
even-even atomic nuclei is the formation of level sequences
with alternating parities [1]. Usually, the levels with opposite
parity are related through enhanced electric E1 and/or E3
transitions. The negative-parity sequence is shifted up with
respect to the positive-parity sequence due to a tunneling of
the system between the two opposite orientations along the
principal symmetry axis. The magnitude of the energy shift
corresponds to the softness of the shape with respect to the
octupole deformation. The typical alternating-parity band is
formed by the members of the ground-state (g) band and the
levels of the lowest negative-parity sequence with odd angular
momenta. In the relatively narrow region of the light actinide
nuclei Rn, Ra, and Th, these two sequences merge into a single
rotation band also called “octupole band” [2–4]. The octupole
band develops in the higher angular momenta and indicates
the appearance of a quite stiff octupole deformation. Away
from the light actinide region, both sequences diverge and do
not form a single rotation band in the conventional meaning.
Nevertheless, in some heavier actinides, such as U and Pu, and
some rare-earth isotopes, such as Nd, Sm, Gd and Dy, they
still remain related by E1 and E3 transitions, which indicate
the presence of a soft octupole mode in the collective motion.
In this case, the term “alternating-parity band (or spectrum)”
does not have the same strict meaning as in the light actinide
nuclei but simply refers to sequences of levels with opposite
parities, which could be connected (coupled) through electric
transitions.

Various theoretical models have been developed over the
years to explain and describe the formation of alternating-
parity (or octupole) bands in the stiff and soft octupole regimes
of coupling between the g band and the lowest negative-parity

sequences in different nuclear regions [5–20]. Particularly,
a collective model assuming coherent quadrupole-octupole
vibrations and rotations [18] was applied to the nuclei 150Nd,
152Sm, 154Gd, and 156Dy with the presence of a soft octupole
collectivity. Although the g band and the lowest negative-
parity bands in these nuclei were successfully described as
members of a yrast alternating-parity band together with the
attendant B(E1) and B(E2) transition probabilities, a question
arises about the validity of such a consideration with respect
to the higher-energy (non-yrast) part of the spectrum.

The purpose of this work is to clarify the above question
within the model of coherent quadrupole-octupole motion
(CQOM) [18] by examining the possible formation of non-
yrast alternating-parity structures in addition to the yrast band.
For this reason, the model scheme is extended by assuming that
the excited β bands can be connected to higher negative-parity
sequences with odd angular momenta. Therefore, it is sup-
posed that the quadrupole-octupole structure of the spectrum
develops along the non-yrast regions of the energy spectrum.
Such a study provides not only a test of the model in the higher
energy parts of the spectra, but also gives an interpretation
of a larger number of data that may guide the experimental
search for similar level structures in other nuclear regions. In
principle, the systematic analysis of the non-yrast levels with
alternating parity may favor different band-coupling schemes
in the different nuclear regions, allowing one to compare the
capabilities of various theoretical models. For example, an
extended study of non-yrast energy sequences with different
parities has been implemented within the extended coherent
states model [16] by considering a coupling of the β and γ

bands with respective bands possessing the same spins but
opposite parities, as well as a coupling between Kπ = 1+ and
1− energy sequences. In the model scheme of this work, the
positive-parity β band appears connected to a negative-parity
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non-yrast sequence with odd angular momenta in the same
way as in the yrast alternating-parity configuration. This is a
consequence of the assumed mechanism of coupling between
the quadrupole and octupole vibration modes. Therefore,
this work suggests a different band-coupling scheme and
supposes a persistent role of the quadrupole-octupole motion
in the forming of the higher-energy (non-yrast) part of the
spectrum. Of course, by developing such an approach, one
should keep in mind the nonconventional meaning of the term
“alternating-parity band” mentioned above. Also, presently the
CQOM model is limited to excitations associated with the axial
quadrupole and octupole degrees of freedom. Therefore, the
study is focused on the related part of the collective spectrum,
while other kinds of excitation modes such as the γ vibrations
remain beyond the present consideration.

The paper is organized as follows. In Sec. II, the CQOM
model is presented and the model mechanism for the appear-
ance of non-yrast alternating-parity bands is shown. Model
expressions for reduced B(E1), B(E2), and B(E3) transitions
in the non-yrast spectra are given in Sec. III. In Sec. IV,
numerical results and discussion on the application of the
model to the nuclei of different regions are given. Section
V contains concluding remarks.

II. MODEL OF COHERENT QUADRUPOLE-OCTUPOLE
MOTION

The CQOM model [18] is a particular realization of the
more general geometric concept of collective nuclear motion
characterized by the quadrupole-octupole shape deformations
[1]. The expansion of the surface radius R(θ, ϕ), in polar coor-
dinates, with respect to spherical harmonics up to multipolarity
λ = 3, is given by

R(θ, ϕ) = R0

⎡
⎣1 +

3∑
λ=2

λ∑
μ=−λ

αλμY ∗
λμ(θ, ϕ)

⎤
⎦ , (1)

where R0 is the spherical radius and αλμ are the 12 quadrupole
and octupole collective coordinates in the laboratory frame.
The collective coordinates are transformed into a body-fixed
frame

aλν =
∑

μ

αλμDλ
μν(θ̂) (2)

determined by the “canonical” quadrupole coordinates a0 =
a20 and a2 = a22 = a2−2 and the three Euler angles θ̂ =
(θ1, θ2, θ3). The remaining seven octupole coordinates a3μ

(μ = −3, . . . , 3) together with a0 and a2 determine the
quadrupole-octupole shape of the nucleus. In the particular
case of axial symmetry, the quadrupole-octupole deformation
represents a pearlike shape determined by the only nonzero
coordinates β2 ≡ a0 and β3 ≡ a30. The respective physical
states of the nucleus in the intrinsic (body-fixed) frame are
characterized by the symmetrization group D∞, which consists
of arbitrary (infinite number) rotations about the intrinsic z

axis and rotations about the axes perpendicular to z through
the angle π . In principle, the symmetrization group of the
nucleus in the intrinsic frame is determined by the rotations g

satisfying a set of equations in the form Dλ
μν(g) = 0, which in

the case of axial symmetry is Dλ
μ0(g) = 0 for all μ �= 0 [21].

In the CQOM model [18], the geometric concept is imple-
mented in the limits of the axial symmetry. It is considered
that the even-even nucleus can oscillate with respect to the
quadrupole β2 and octupole β3 axial deformation variables,
which are mixed through a centrifugal (rotation-vibration)
interaction. The collective Hamiltonian of the nucleus is then
taken in the form

Hqo = − h̄2

2B2

∂2

∂β2
2

− h̄2

2B3

∂2

∂β2
3

+ U (β2, β3, I ), (3)

where

U (β2, β3, I ) = 1

2
C2β2

2 + 1

2
C3β3

2 + X(I )

d2β
2
2 + d3β

2
3

, (4)

with X(I ) = [d0 + I (I + 1)]/2. B2 and B3 are effective
quadrupole and octupole mass parameters and C2 and C3

are stiffness parameters for the respective oscillation modes.
The quantity J (quad+oct) = (d2β

2
2 + d3β

2
3 ) can be associated to

the moment of inertia of an axially symmetric quadrupole-
octupole deformed shape [23] with d2 and d3 being iner-
tia parameters. The energy potential (4) represents a two-
dimensional surface determined by the variables β2 and β3

with an angular-momentum-dependent repulsive core at zero
deformation (see Fig. 1 in Ref. [18]). The parameter d0 in
the centrifugal factor X(I ) characterizes the repulsive core at
I = 0 and determines the overall energy scale for the rotation
part of the energy.

The model Hamiltonian (3) represents a D∞ invariant.
Also, it is important to remark that (3) corresponds to a
class of axial-symmetric Hamiltonians [9,10,13], the kinetic
vibration parts of which are derived by ignoring the nonaxial
degrees of freedom (e.g., γ vibrations) in a way similar to the
approach of Davidov and Chaban [22]. The scalar product in
the space of the wave functions [e.g., see Eqs. (2) and (4) in
Ref. [13]] corresponding to the particular form of the β2 and β3

derivatives in Eq. (3) is characterized by a unit weight factor,
i.e., 〈�2|�1〉 = ∫ ∫

dβ2dβ3�
∗
2(β2, β3)�1(β2, β3).

If a condition for the simultaneous presence of nonzero
coordinates (βmin

2 , βmin
3 ) of the potential minimum is imposed,

the stiffness and inertial parameters are correlated as d2/C2 =
d3/C3 [see Eqs. (3)–(6) in Ref. [18]]. In this case, the potential
bottom represents an ellipse in the space of β2 and β3, which
surrounds the infinite zero-deformation core (see Fig. 3 in
Ref. [18]). If prolate quadrupole deformations β2 > 0 are
considered, the system is characterized by oscillations between
positive and negative β3 values along the ellipse surrounding
the potential core. By introducing polar type of curvilinear or,
more precise, ellipsoidal variables

η =
[

2
(
d2β

2
2 + d3β

2
3

)
d2 + d3

] 1
2

and φ = arctan

(
β3

β2

√
d3

d2

)
,

such that

β2 = pη cos φ, β3 = qη sin φ, (5)
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FIG. 1. (Color online) Theoretical and experimental alternating-parity bands in 152Sm. Data from [34]. The oscillation quantum numbers
n, k(+)

n , and k(−)
n are given above the theoretical bands.

with

p =
√

d

d2
, q =

√
d

d3
and d = 1

2
(d2 + d3), (6)

the potential (4) appears in the form

UI (η) = 1

2
Cη2 + X(I )

dη2
, (7)

where C = (d/d2)C2 = (d/d3)C3.
Further, it is assumed that the quadrupole and octupole

modes are represented in the collective motion with the same
oscillation frequencies ω2 = ω3 = ω, with

ω =
√

C2

B2
=

√
C3

B3
≡

√
C

B
. (8)

The condition (8) imposes certain correlations between the
mass, stiffness, and inertia parameters of the model Hamil-
tonian (3), corresponding to a coherent quadrupole-octupole
motion of the system. Note that here the term “coherent” is
used in the context of the mixing between the quadrupole
and octupole degrees of freedom, which is different from the
meaning of the same term used in Ref. [16]. In this case, the
Hamiltonian is obtained in a simple form

Hqo = − h̄2

2B

[
∂2

∂η2
+ 1

η

∂

∂η
+ 1

η2

∂2

∂φ2

]
+ UI (η). (9)

It allows an exact separation of variables in the wave function
�(η, φ) = ψ(η)ϕ(φ) with the subsequent equations for ψ(η)
and ϕ(φ):

∂2

∂η2
ψ(η) + 1

η

∂

∂η
ψ(η)

+ 2B

h̄2

[
E − h̄2

2B

k2

η2
− UI (η)

]
ψ(η) = 0, (10)

∂2

∂φ2
ϕ(φ) + k2ϕ(φ) = 0, (11)

where k is the separation quantum number. Equation (10) with
the potential (7) is similar to the equation for the Davidson
potential [24] and has the following analytic solution for the
energy spectrum [18]:

En,k(I ) = h̄ω[2n + 1 +
√

k2 + bX(I )], (12)

where ω is defined in Eq. (8), n = 0, 1, 2, . . ., and b =
2B/(h̄2d). The quantum numbers n and k have the mean-
ing of “radial” and “angular” oscillation quantum numbers,
respectively. The normalized “radial” eigenfunctions ψ(η) are
obtained in terms of the generalized Laguerre polynomials

ψI
n,k(η) =

√
2c�(n + 1)

�(n + 2s + 1)
e−cη2/2(cη2)sL2s

n (cη2), (13)

with c = √
BC/h̄ and s = (1/2)

√
k2 + bX(I ). Equation (11)

in the “angular” variable φ is solved under the boundary
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FIG. 2. (Color online) The same as in Fig. 1, but for 154Sm.

condition ϕ(−π/2) = ϕ(π/2) = 0. This is equivalent to the
consideration of an infinite potential wall at β2 = 0 (or ϕ =
±π/2). Then, one has two identical solutions for β2 > 0 and
β2 < 0. As mentioned above, the physical space of the model
is taken in the prolate β2 > 0 half of the (β2, β3) plane (see
Figs. 4 and 5 in Ref. [18] and the related text in that reference).
Within this half-plane, Eq. (11) has two different solutions
with positive and negative parities, π = (+) and π = (−),
respectively:

ϕ+
k (φ) =

√
2/π cos(kφ) , k = 1, 3, 5, . . . (14)

ϕ−
k (φ) =

√
2/π sin(kφ) , k = 2, 4, 6, . . . . (15)

Note that the square-root term in the wave function ψI
n,k(η)

[Eq. (13)] differs from the respective term used in Eq. (24)
of Ref. [18] by the factor c, which is newly included in the
numerator. (In [18], the quantity c is denoted by “a,” which in
the case of odd nuclei leads to confusion with the notation for
the decoupling factor.) One can easily check that this factor
is necessary to normalize ψI

n,k(η) to unity. The results for the
transition probabilities obtained in [18] are not affected by the
missing factor c due to the use of overall scaling factors in
Eqs. (46) and (47) of [18].

Since the consideration is restricted to axial deformations
only, the projection K of the collective angular momentum
on the principal symmetry axis is taken zero. Then, the total
wave function of the coherent quadrupole-octuple vibration

and collective rotation of an even-even nucleus has the form

�π
nkIM0(η, φ) =

√
2I + 1

8π2
DI

M 0(θ )�π
nkI (η, φ), (16)

where DI
M 0(θ ) is the Wigner function defined according to the

phase convention in [25]. Note that due to a different phase
convention in some other works, e.g., in Refs. [26] and [27],
the complex-conjugated D function appears in the rotation
part. The relations between the different definitions of the D

function are given in Table 4.2 in Ref. [28]. The quadrupole-
octupole vibration part of (16) is

�π
nkI (η, φ) = ψI

nk(η)ϕπ
k (φ). (17)

The quantum numbers of the quadrupole-octupole vibration
function (17) are determined by the requirement for a con-
servation of the RP symmetry of the total wave function
(16). (P is the parity operator and R represents a rotation
by an angle π about an axis perpendicular to the intrinsic z

axis.) The R symmetry of the rotation function DI
M 0(θ ) is

characterized by the factor (−1)I , while the action of P on
�π

nkI (η, φ) gives the factor π = ±. Then, the conservation of
the RP symmetry is equivalent to the conservation of the
so-called simplex quantum number simplex = π (−1)I = 1.
This condition imposes a positive parity for the states with even
angular momentum and negative parity for the odd angular
momentum states, i.e., one has

�+
nkI (η, φ) = ψI

nk(η)ϕ+
k (φ) for I = even,

�−
nkI (η, φ) = ψI

nk(η)ϕ−
k (φ) for I = odd.
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FIG. 3. (Color online) The same as in Fig. 1, but for 154Gd.

It should be noted that the above conditions are in conjunction
with the transformation properties of the variables η and φ in
(17) under the rotation R (η is invariant, while φ changes in
sign) so that together with the simplex conservation condition,
the total wave function (16) appears to be a D∞ invariant as it
should be due to the axial symmetry.

The structure of the energy spectrum is determined by the
oscillator quantum numbers n (“radial”) and k (“angular”) in
Eq. (12). Since, according to Eqs. (14) and (15), k obtains
different values for the states with opposite parity, the energy
sequences with even and odd angular momenta corresponding
to a given n appear shifted to each other, i.e., a parity shift effect
is observed. In Ref. [18], it was supposed that the g band and
the lowest negative-parity band belong to a n = 0 set with
k = k(+) = 1 for g and k = k(−) = 2 for the negative-parity
band. In this work, the model scheme is extended through the
following three suppositions.

(i) The energy spectrum determined by the coherent axial
quadrupole-octupole vibrations and rotations consists
of couples of level sequences with opposite parity. The
sequences in each couple are characterized by the same
value of the quantum number n = 0, 1, 2, . . . and by
different values of k, k = k(+)

n = 1 or 3 or 5 or . . . for
the even-I sequence, and k = k(−)

n = 2 or 4 or 6 or . . .

for the odd-I sequence.
(ii) The lowest values of the “radial” quantum number n

correspond to the lowest alternating-parity bands, with
n = 0 being the yrast band, n = 1 corresponding to

the next non-yrast alternating-parity structure, and so
on. The values of the “angular” quantum number k

are not restricted and should only satisfy the parity
condition in (i). The particular values of k(+)

n and k(−)
n

can be determined so as to reproduce the experimentally
observed parity shift in the set of levels with a given n.

(iii) Due to the coherent interplay between the β2 and β3

variables in the oscillation motion, the excited β bands
in even-even nuclei can be interpreted as the positive-
parity counterparts of higher negative-parity sequences,
or as the members of non-yrast alternating-parity bands.

Based on the above assumptions, the extended alternating-
parity spectrum of an even-even nucleus can be considered in
the following form.

Yrast alternating-parity set (n = 0): unites the g band (k =
k

(+)
0 ) Iπ

ν = 0+
1 , 2+

1 , 4+
1 , 6+

1 , . . . with the first negative-parity
band denoted here as n1 (k = k

(−)
0 )Iπ

ν = 1−
1 , 3−

1 , 5−
1 , . . . .

First non-yrast set (n = 1): unites the first β band de-
noted by b1 (k = k

(+)
1 ) Iπ

ν = 0+
2 , 2+

2 , 4+
2 , . . . with the sec-

ond negative-parity band denoted by n2 (k = k
(−)
1 )Iπ

ν =
1−

2 , 3−
2 , 5−

2 , . . . .
Second non-yrast set (n = 2): unites the second β band

b2(k = k
(+)
2 ) Iπ

ν = 0+
3 , 2+

3 , 4+
3 , . . . with the third negative-

parity band n3 (k = k
(−)
2 )Iπ

ν = 1−
3 , 3−

3 , 5−
3 , . . ., and so on,

higher non-yrast sequences, where ν = 1, 2, 3, . . . is the
consequent number of the appearance of a state with a given
angular momentum. Also, it is convenient to use the band
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FIG. 4. (Color online) The same as in Fig. 1, but for 156Gd.

labels introduced above to denote the different excited states
as, for example, 2+

g , 1−
n1, 0+

b1, 1−
n2, etc.

Obviously, the above model scheme makes no claim to
exhaust the entire collective spectrum but rather provides a
tool to identify the extent to which the considered quadrupole-
octupole motion can influence the excited band structures
in even-even nuclei. In the end of this section, it should be
remarked that the extension of the model to higher energy
levels, together with assumption (ii), which releases k from
the fixed values k(+) = 1 and k(−) = 2 (originally imposed in
Ref. [18] for the yrast case), now requires a new readjustment
of the model parameters.

III. TRANSITION PROBABILITIES IN THE NON-YRAST
QUADRUPOLE-OCTUPOLE STATES

As the B(E1) and B(E3) reduced transition probabilities
are known to provide a sensitive test for the structure of the
alternating-parity sequences, it is of special importance to
examine their behavior in the non-yrast part of the spectrum.
The basic CQOM concept for the electromagnetic transitions
has been given in Ref. [18]. Here, the formalism is modified
so as to describe B(E1), B(E2), and B(E3) reduced transition
probabilities in the higher-lying alternating-parity bands along
with the extended treatment of the model energy quantum
numbers. A more essential modification is related to a
generalization of the angular part of the electric transition
operators dictated by the complicated quadrupole-octupole

shape density distribution inherent for the coherent motion
mode (see below). In addition, the E1-E3 charge factors are
treated explicitly and the model parameters p and q [Eq. (6)]
providing information about the potential shape are considered
without including them into scaling constants.

The reduced transition probability for an electric transition
with a given multipolarity λ between model states (16) with
n = ni , k = ki , I = Ii and n = nf , k = kf , I = If is

B(Eλ; nikiIi → nf kf If )

= 1

2Ii + 1

∑
MiMf μ

∣∣〈�πf

nf kf If Mf 0(η, φ)|Mμ(Eλ)|

×�
πi

niki IiMi0
(η, φ)

〉∣∣2
. (18)

The operators for electric E1, E2, and E3 transitions have the
following general form:

Mμ(Eλ) =
√

2λ + 1

4π (4 − 3δλ,1)
Q̂λ0D

λ
0μ,

λ = 1, 2, 3, μ = 0,±1, . . . ,±λ. (19)

The vibration parts of these operators are given up to the first
order of β2 and β3, for E2 and E3, and in second order, for
E1, as

Q̂10 = M1β2β3, (20)

Q̂λ0 = Mλβλ, λ = 2, 3. (21)
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The electric charge factors Mλ (λ = 2, 3) are taken as [29]

Mλ = 3√
(2λ + 1)π

ZeRλ
0 , λ = 2, 3 (22)

where R0 = r0A
1/3, r0 ≈ 1.2 fm, Z is the proton number, and

e is the electric charge of the proton. The charge factor M1 is
taken according to the droplet model concept [30–32] in the
form [10]

M1 = 9AZe3

56
√

35π

(
1

J
+ 15

8QA
1
3

)
, (23)

where the quantities J and Q are related to the volume and
surface symmetry energy, respectively, and their values are
assumed in the limits 25 � J � 44 MeV and 17 � Q � 70
MeV [33] [see also the values below Eq.(79) in Ref. [10]]. In
this work, fixed average values of these quantities J = 35 MeV
and Q = 45 MeV are used for all considered nuclei. One
should remark that so far there is no unique approach to
estimate the factor M1. Therefore, here in Eq. (23) the proton
charge e is replaced by an effective charge e1

eff , which is
considered as an adjustable parameter and can be different
from one. Note that to obtain the B(E1) transition probabilities
in the units e2 fm2, and subsequently in Weisskopf units,
one has to take into account that e2 = 1.439 976 4 MeV fm
[or e6/MeV2 = (1.439 976 4)2e2 fm2], which leads to an ad-
ditional multiplication factor 1.439 976 4 in Eq. (23) when
numerical values are produced.

In the space of the ellipsoidal coordinates (5) and (6), one
has

Q̂10 = M1pqη2 cos φ sin φ, (24)

Q̂20 = M2pη cos φ, (25)

Q̂30 = M3qη sin φ. (26)

The definitions of the operators (20), (21), and (24)–(26)
originally correspond to a situation in which the nuclear shape
is characterized by fixed values of the deformation parameters
β2 and β3. In this case, the density distribution of the collective
state is characterized by a single maximum in the space of β2

and β3. In the case of the model potential (4) taken with an
elliptic bottom, the density distribution can be characterized
by more than one maximum. Indeed, the density of the model
state (17) is characterized by a different number of maxima
depending on the quantum number k. This feature is a result
of the assumed soft quadrupole-octupole mode. It is illustrated
graphically in Appendix A, where the density distribution
of the state (17) in the space of the quadrupole-octupole
deformations is plotted for different k values at n = 0 after
transforming the wave function �π

nkI in the (β2,β3) variables.
It is seen that for β2 > 0 the number of maxima is equal to
k and by analogy with the acoustics may be interpreted as
the number of “overtones” which characterize the coherent
collective oscillations of the system. Thus, it appears that
the transition operators should connect states with different
numbers of maxima (or overtones). In the space of ellipsoidal
variables, the positions of the maxima are determined by the
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angular variable φ. On the other hand, the original operators
(24)–(26) do not take into account the presence of multiple
maxima in the shape density distributions of the different
states. One particular effect due to this circumstance is that
the integrals over the angular part of (26), sin φ, vanish when
the difference between the k numbers of the initial and final
states is larger than a unit and the respective B(E3) transition
probabilities vanish too. This limitation is removed if the
operators are generalized appropriately. The most general
forms of the angular parts of the operators corresponding to
the first orders of β2 and β3 according to (25) and (26) can
be sought in terms of a Fourier expansion with respect to φ

through the replacements

cos φ → A20(φ) ≡
∞∑

k=1

a
(k)
20 cos(kφ),

(27)

sin φ → A30(φ) ≡
∞∑

k=1

a
(k)
30 sin(kφ),

where the expansion coefficients should be chosen so as to
provide an appropriate convergence. A choice made here for
both types of coefficients is a(k) = 1/k for which the above
expansions can be obtained in analytic form

A20(φ) =
∞∑

k=1

cos(kφ)

k
= −1

2
[ln 2 + ln(1 − cos φ)], (28)

A30(φ) =
∞∑

k=1

sin(kφ)

k
= π − φ

2
+ πFloor

(
φ

2π

)
, (29)

where the Floor function maps a real number to the largest
previous integer. Then the angular part of the second order
operator (24) can be generalized in an obvious way:

cos φ sin φ → A10(φ) ≡ A20(φ)A30(φ)

=
∞∑

m=1

∞∑
n=1

cos(mφ)

m

sin(nφ)

n
. (30)

Note that the first terms of the above expansions represent the
original angular parts in Eqs. (24)–(26). So, the new angular
operators (28)–(30), which are extensions of the old ones,
provide a connection between states, the “dynamical” defor-
mations (i.e., the probability distribution in the deformation
space) of which are characterized by the coexistence of a large
number of maxima. These specific shape properties of the
system are due to the assumed coupling between quadrupole
and octupole degrees of freedom. Now, the operators (24)–(26)
are redefined as

Q̂10(η, φ) = M1pqη2A10(φ), (31)

Q̂20(η, φ) = M2pηA20(φ), (32)

Q̂30(η, φ) = M3qηA30(φ). (33)

After carrying out the integration over the rotation part in
Eq. (18), one obtains

B(Eλ; nikiIi → nf kf If )

= 2λ + 1

4π (4 − 3δλ,1)
〈Ii0λ0|If 0〉2R2

λ(nikiIi → nf kf If ), (34)

which involves the squares of the Clebsch-Gordan coefficient
and the matrix element of the electric multipole operators
(31)–(33) between the quadrupole-octupole vibration wave
functions (17):

Rλ(nikiIi →nf kf If ) = 〈
�

πf

nf kf If
(η, φ)

∣∣Q̂λ0

∣∣�πi

niki Ii
(η, φ)

〉
.

(35)

By further separating the integrations over the “radial” variable
η and the “angular” variable φ in Eq. (35) according to (17),
one obtains

R1(nikiIi→nf kf If ) = M1pqS2(ni, Ii ; nf , If )I
πi ,πf

1 (ki, kf ),

(36)

R2(nikiIi→nf kf If ) = M2pS1(ni, Ii ; nf , If )I
πi ,πf

2 (ki, kf ),

(37)

R3(nikiIi→nf kf If ) = M3qS1(ni, Ii ; nf , If )I
πi ,πf

3 (ki, kf ),

(38)

where

S1(ni, Ii ; nf , If ) =
∫ ∞

0
dη ψ

If

nf
(η)η2ψIi

ni
(η), (39)

S2(ni, Ii ; nf , If ) =
∫ ∞

0
dη ψ

If

nf
(η)η3ψIi

ni
(η), (40)

and

I
πi ,πf

λ (ki, kf ) = 2

π

∫ π
2

− π
2

Aλ0(φ)ϕ
πf

kf
(φ)ϕπi

ki
(φ)dφ,

λ = 1, 2, 3. (41)

The integrals over η [Eqs. (39) and (40)] involve the “radial”
wave functions (13). Analytic expressions for these integrals
are given in Appendix B. The integrals over φ [Eq. (41)]
involve the “angular” wave functions (14) and/or (15). The
explicit forms of these integrals with the relevant parities πi

and πf are given in Appendix C.
From the generalized definitions (31)–(33) of the operators

Q̂λ0, it is seen that the inertial factors p, q and their product
pq defined through Eq. (6) are not included in any scaling
factors, as done in Ref. [18], and can be considered as model
parameters. Actually, p and q are not independent. From (6)
it can be easily seen that 1/p2 + 1/q2 = 2. Then, q can be
expressed by p as

q = p√
2p2 − 1

with p >
1√
2

≈ 0.7071. (42)

The inequality in Eq. (42) corresponds to the condition d2 <

2d. Analogically, one can express p by q with the condition
d3 < 2d. (Note that for p = 1, one has q = 1 and pq = 1.)
Here, the adjustable parameter is chosen to be p. It should
be noted that with the involvement of the new parameter p,
the scaling factors in Eqs. (46) and (47) of Ref. [18] are not
considered anymore and the charge factors M2 and M3 are
directly calculated in Eq. (22). Also, the charge factor M1 is
directly calculated in Eq. (23), but with the effective charge
e1

eff being adjusted to determine the correct scale of the B(E1)
transition probabilities with respect to B(E2). From another
side, the parameter p determines the relative scale between
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B(E2) and B(E3). It is interesting to remark that p does not
play any role if the model energy levels are fitted without taking
into account transition probabilities. However, in this case,
there is an ambiguity in the choice of the inertial parameters
d2 and d3. This is seen by the following relations between the
parameters of the potential (4) and the fitting parameters ω and
b, imposed by the coherent condition (8):

C2 = ω2b

2
d2, C3 = ω2b

2
d3, (43)

B2 = b

2
d2, B3 = b

2
d3, (44)

in which d2 and d3 are not determined. (The parameter
d0 does not enter these relations.) This means that for a
given set of parameters ω, b, and d0, the energy spectrum
corresponds to an infinite number of potential shapes with
different eccentricities of the ellipsoidal bottom. Now, after
determining the parameters p and c with respect to transition
data, one gets

d2 = d

p2
, d3 = (2p2 − 1)

d

p2
, with d = 2c

ωb
. (45)

Thus, for given values of the parameters ω, b, c, and p, the
original parameters B2, B3, C2, C3, d2, and d3 of potential (4)
are fixed, and given additionally d0, its form is unambiguously
determined.

IV. NUMERICAL RESULTS AND DISCUSSION

The extended CQOM formalism was applied to several
nuclei, namely, 152,154Sm, 154,156,158Gd, 236U, and 100Mo, in
which one or two non-yrast alternating-parity bands can be
constructed by the experimentally observed β and higher-lying
negative-parity levels. In these nuclei, a number of data on E1
and/or E3 transitions are available providing the possibility
to test the complete model scheme. In all selected nuclei, the
experimental data [34] provide well-determined yrast and first
non-yrast alternating-parity bands except for 100Mo where the
structure of the non-yrast band is proposed here on the basis of
the model analysis (see below). In three of the nuclei, 154Sm,
154Gd, and 158Gd, second excited (non-yrast) alternating-parity
bands are additionally considered. The structure of these
bands is not clearly determined in the experimental data.
Therefore, the model description and prediction provide a
possible interpretation of the respective experimental levels.
In this meaning, the present description not only provides
a test for the CQOM model scheme, but also suggests a
possible classification of some highly non-yrast excited states,
the interpretation in the experimental databases of which is not
unambiguous.

The model description is obtained by taking the theoretical
energy levels Ẽn,k(I ) = En,k(I ) − E0,k

(+)
0

(0) from Eq. (12).

The parameters ω, b, d0, c, p and the effective charge e1
eff

have been adjusted by simultaneously taking into account
experimental data on the energy bands and the available
B(E1)-B(E3) transition probabilities. The parameter values
obtained in the considered nuclei are given in Table I. The
resulting values of the original Hamiltonian parameters in

TABLE I. Parameters of the model fits.

Nucl ω (MeV/h̄) b (h̄−2) d0 (h̄2) c p e1
eff (e)

152Sm 0.295 2.450 78.8 113.2 0.854 1.01
154Sm 0.205 4.625 108.5 132.6 0.808 1.017
154Gd 0.306 2.948 114.7 113.4 0.777 1.048
156Gd 0.439 1.642 197.6 141.5 0.849 0.723
158Gd 0.168 3.626 42.6 39.7 0.864 0.435
236U 0.402 1.404 539.3 343.4 0.949 0.134
100Mo 0.318 2.674 1.366 54.6 0.715 0.282

Eqs. (3) and (4) are given in Table II. For each nucleus,
the calculations are performed in a net over the values of
the “angular” quantum numbers k with appropriate parity
in the limits 1 � k � 20. In all nuclei sets of values for
the k-quantum numbers providing the best model description
of both energies and reduced transition probabilities are
obtained. These values are given in Figs. 1–7, where the
theoretical and experimental energy levels of the considered
nuclei are compared. The theoretical and experimental values
of the B(E1), B(E2), and B(E3) transition probabilities are
compared in Table III. Model predictions for some not yet
observed transitions are also given there.

The results in Figs. 1–7 show that the model scheme
correctly reproduces the structure of the alternating-parity
spectra in the considered nuclei with a reasonably good
agreement between the theoretical and experimental energy
levels. The correct reproduction of the mutual displacement of
the different positive- and negative-parity sequence is related
to the involvement of k-quantum number values larger than 1
and 2. On the other hand, the determination of the k values
is strongly dictated by the interband transitions between the
positive- and negative-parity levels as well as by the transitions
between the different alternating-parity sequences. The above
remarks explain why for the nuclei 152Sm and 154Gd new sets of
k-quantum numbers appear together with renormalized values
of the fitting parameters compared to the previous descriptions
limited to the yrast bands [18] (see below). One should remark
that, at the same time, the main (radial) oscillator quantum
number n is uniquely determined, n = 0 for the yrast sequence,
n = 1 for the first excited alternating-parity band, and so on,
as explained in the end of Sec. II.

TABLE II. Resulting mass parameters B2 and B3 (in h̄2/MeV)
[Eq. (3)] and parameters of the model potential C2 and C3 (in MeV),
d2 and d3 (in h̄2/MeV) [Eq. (4)]. The semiaxes (sa) of the ellipsoidal
potential bottom βsa

2 and βsa
3 [Eq. (46)] at angular momentum I = 0

are given in columns 8 and 9.

Nucl B2 B3 C2 C3 d2 d3 βsa
2 βsa

3

152Sm 525 241 45.8 21.0 429 197 0.252 0.371
154Sm 987 303 41.7 12.8 427 131 0.279 0.504
154Gd 613 127 57.6 11.9 416 86 0.263 0.578
156Gd 447 197 86.2 38.0 545 240 0.255 0.384
158Gd 317 156 8.9 4.4 175 86 0.407 0.579
236U 948 760 153 123 1351 1083 0.226 0.252
100Mo 337 7 34.0 0.7 252 6 0.112 0.759
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FIG. 6. (Color online) The same as in Fig. 1, but for 236U.

In 152Sm, the yrast band is described together with the
first excited band (see Fig. 1). The calculations provide two
identical couples of k values (k(+) = 1, k(−) = 8) for each
band. Thus, it is seen that k(−) obtains a value larger than
the lowest even value 2 considered in Eq. [18]. From Table
III, one can see that with this configuration of k numbers
the model fairly good reproduces the data [35] on the B(E2)
intraband transition probabilities in the ground-state band (g)
and on the B(E1) probabilities for transitions between the g

and the first negative-parity band (n1). Some interband E2
transitions between the g and the first β band (b1), such as
2+

b1 → 2+
g and 4+

b1 → 4+
g are also well described, while others

such as 4+
b1 → 6+

g are overestimated. The calculated intraband
transitions in the b1 band are in rough agreement with the
experimental data, while the E1 intraband transition 1−

n1 →
2+

b1 is overestimated by an order. The E3 transition probability
B(E3; 3−

n1 → 0+
g ) = 14 W.u. [36] is exactly reproduced due to

the adjustable parameter p, which determines the factor q in
Eq. (38) according to Eq. (42). This allows one to predict other
E3 transitions such as 1n1 → 4g and other similar transitions
between the b1 band and the second negative-parity band (n2)
as shown in Table III. Although not all theoretical transition
probabilities are in strict agreement with the experimental data,
it is seen that the model scheme correctly takes into account
the different scales of the various kinds of probabilities. A
similar behavior of transition probabilities is observed in the
other considered nuclei.

In 154Sm, totally three alternating-parity bands are con-
sidered as seen from Fig. 2. The positive-parity states of the
second excited band are interpreted in Ref. [34] as members
of a second Kπ = 0+ band, or of a second β band (b2).
The respective negative-parity levels are selected in this work
among levels for which there is no interpretation given in
Ref. [34]. Here, they form a third negative-parity band (n3).
From Table III, it is seen that the intraband B(E2) transition
probabilities in the g band of this nucleus are reasonably
well described up to I = 10, while the B(E2; 12+

g → 10+
g )

value is considerably overestimated. The B(E1) probabilities
between the n1 and g bands are also well described. The
theoretical interband transition value B(E2; 0+

b1 → 2+
g ) is by

an order smaller than the experimental one. For the other
similar E2 transitions such as 2+

b1 → 0+
g , the theoretical values

are obtained below the upper limits given for the respective
experimental data [35].

In 154Gd, again, three alternating-parity bands are con-
sidered. The model description is given in Fig. 3. Here, the
second non-yrast band is constructed by the second excited
Kπ = 0+ band and a 3− state with energy 1796.96 keV [34].
Although the latter is interpreted in Ref. [34] as a member
of a Kπ = 2− octupole band, it reasonably fits the present
scheme as a member of an n3 sequence. In this nucleus,
the B(E1)-B(E3) transition probabilities are also reasonably
described with the largest discrepancies between the theory
and experiment, about a factor of 2, being observed for the E2
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FIG. 7. (Color online) The same as in Fig. 1, but for 100Mo.

transitions 2+
b1 → 0+

b1 and 0+
b1 → 2+

g (see Table III). Note that
here the theoretical B(E1) value for the interband transition
B(E1; 1−

n1 → 2+
b1) = 0.0064 W.u. is obtained close to the

experimental one, 0.0099 W.u.
In 156Gd, two alternating-parity bands, the yrast and first

excited, are considered (see Fig. 4). The B(E2) and B(E1)
transition probabilities between the members of the g, b1,
and n1 bands are well described with a few exceptions as in
the transitions 4+

b1 → 2+
b1 and 4+

b1 → 2+
g for which the B(E2)

values are underestimated with respect to the experiment by a
factor of about 2 and an order, respectively (see Table III). On
the other hand, the model predictions for the B(E1) transition
probabilities between the second negative-parity band n2 and
the g band suggest two to three orders of magnitude in
suppression compared to experimental data.

In 158Gd, three alternating-parity bands are considered (see
Fig. 5). Similarly to 154Gd, the 1− and 3− states included
in the second excited band enter the present model scheme
as n3 members, while in Ref. [34] they are interpreted as
members of a Kπ = 1− octupole band. For this nucleus,
quite a large number of data on B(E1) and B(E2) transition
probabilities are available [35]. One should remark that
compared to the other considered rare-earth nuclei, 158Gd is
closer situated to the region of pronounced rotation collectivity.
From Table III, it is seen that the theoretical intraband B(E2)
probabilities in the g band of 158Gd faster increase with the
angular momentum compared to the experimental data. On the
other hand, six experimental B(E1) values for the transitions
between the g and the n1 bands are described quite well.

It is remarkable that an experimental estimation for a E1
transition between the n2 and b1 bands is available with
B(E1; 3−

n2 → 2+
b1) > 0.000 35 W.u. This circumstance is in a

conjunction with the model assumption about the quadrupole-
octupole coupling of both bands. The model description
predicts for this probability a smaller value of 0.000 11 W.u.,
which is of the same order as the B(E1) values connecting
the g and n1 bands. Further, model prediction values for
similar B(E1) transition probabilities as B(E1; 1−

n2 → 0+
b1) =

8 × 10−5 W.u. and B(E1; 1−
n2 → 2+

b1) = 0.0002 W.u. are given
in Table III. Also, there one can find available experimen-
tal estimations for intraband transition probabilities such
as B(E2; 5−

n1 → 3−
n1) = 369 W.u. and B(E2; 3−

n2 → 1−
n2) >

1600 W.u., which are underestimated by the theory. In addition,
a number of B(E1) transition probabilities from b1 to n1,
from n2 to g, and from b2 to n1 and n2 bands are generally
underestimated by one or two orders of magnitude.

In 236U, two alternating-parity bands, the yrast and first
excited, are considered (see Fig. 6). This nucleus was selected
because of the possibility to examine two observed reduced
probabilities for E3 transitions, namely, B(E3; 1−

n1 → 4g) =
62 W.u. [35] and B(E3; 3n1 → 0g) = 22.9 W.u. [36]. From
Table III, it is seen that the first one is exactly reproduced. The
second one is underestimated by the theoretical value, 15 W.u.,
which is still reasonably close to the experiment. For the B(E2)
transition probabilities within the g band, the description is
good as overall up to a quite high angular momentum I = 26.
The experimental B(E1) value for the transition 1−

n1 → 0+
g is

exactly reproduced because of the use of the effective charge.
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TABLE III. Theoretical and experimental values of B(E1), B(E2), and B(E3) transition probabilities in Weisskopf units (W.u.) for
alternating-parity spectra of several even-even nuclei. Notations: g (ground-state band), b1 (first β band), b2 (second β band), n1 (first
negative-parity band), n2 (second negative-parity band), n3 (third negative-parity band). The data are taken from [35] except for those for
B(E3; 3−

n1 → 0+
g ) transitions, which are taken from [36]. The parity signs (+) for the even and (−) for the odd angular momenta, respectively

are omitted in the labels of the states to avoid overloading of notations. The uncertainties (in parentheses) refer to the last significant digits in
the experimental data.

Mult. Transition Theor. (W.u.) Expt. (W.u.) Mult. Transition Theor. (W.u.) Expt. (W.u.)

152Sm
E2 2g → 0g 141 144 (3) E2 3n2 → 1n2 52
E2 4g → 2g 210 209 (3) E2 5n2 → 3n2 63
E2 6g → 4g 248 245 (5) E3 3n1 → 0g 14 14 (2)
E2 8g → 6g 284 285 (14) E3 3n2 → 0b1 10
E2 10g → 8g 322 320 (3) E3 1n1 → 4g 69
E2 12g → 10g 363 E3 1n2 → 4b1 70
E1 1n1 → 0g 0.0041 0.0042 (4) E2 2b1 → 0g 1.26 0.92 (8)
E1 1n1 → 2g 0.0088 0.0077 (7) E2 4b1 → 2g 0.2 0.7 (2)
E1 3n1 → 2g 0.0056 0.0081 (16) E2 2b1 → 2g 4.6 5.5 (5)
E1 3n1 → 4g 0.0087 0.0082 (16) E2 4b1 → 4g 4.2 5.4 (13)
E1 1n2 → 0b1 0.0041 E2 2b1 → 4g 27.4 19.2 (18)
E1 1n2 → 2b1 0.0095 E2 4b1 → 6g 35 4 (2)
E2 2b1 → 0b1 160 107 (27) E2 0b1 → 2g 30
E2 4b1 → 2b1 232 204 (38) E1 1n1 → 2b1 0.00402 0.00013 (4)
E2 3n1 → 1n1 47 E1 1n1 → 0b1 0.0023
E2 5n1 → 3n1 58 E1 1n2 → 0g 0.00006

154Sm
E2 2g → 0g 168 176 (1) E2 5n2 → 3n2 82
E2 4g → 2g 247 245 (6) E2 3n3 → 1n3 72
E2 6g → 4g 287 289 (8) E3 3n1 → 0g 10 10 (2)
E2 8g → 6g 322 319 (17) E3 1n1 → 4g 50
E2 10g → 8g 358 314 (16) E3 3n2 → 0b1 77
E2 12g → 10g 398 282 (19) E3 1n2 → 4b1 381
E1 1n1 → 0g 0.0051 0.0058 (4) E3 3n3 → 0b2 6
E1 1n1 → 2g 0.0110 0.0113 (7) E3 1n3 → 4b2 62
E1 3n1 → 2g 0.0069 0.0080 (11) E2 0b1 → 2g 1 12 (3)
E1 3n1 → 4g 0.0106 0.0092 (13) E2 2b1 → 0g 0.36 <0.58
E1 1n2 → 0b1 0.0109 E2 2b1 → 2g 0.39 <1.3
E1 1n2 → 2b1 0.0231 E2 2b1 → 4g 0.27 <2.4
E1 1n3 → 0b2 0.0044 E2 0b2 → 2g 5 × 10−6

E1 1n3 → 2b2 0.0109 E2 0b2 → 2b1 16
E2 2b1 → 0b1 65 E1 0b1 → 1n1 0.0005
E2 4b1 → 2b1 93 E1 1n2 → 0g 0.0005
E2 2b2 → 0b2 68 E1 1n2 → 0b2 0.0058
E2 4b2 → 2b2 97 E1 1n3 → 0b1 3 × 10−7

E2 3n1 → 1n1 60 E1 1n3 → 0g 8 × 10−5

E2 5n1 → 3n1 72 E3 3n2 → 0g 1.7
E2 3n2 → 1n2 69 E3 3n3 → 0g 0.4

154Gd
E2 2g → 0g 160 157 (1) E2 5n2 → 3n2 64
E2 4g → 2g 235 245 (9) E2 3n3 → 1n3 51
E2 6g → 4g 273 285 (15) E3 3n1 → 0g 21 21 (5)
E2 8g → 6g 306 312 (17) E3 3n2 → 0b1 32
E2 10g → 8g 340 360 (4) E3 3n3 → 0b2 144
E2 12g → 10g 377 E3 1n1 → 4g 102
E1 1n1 → 0g 0.0102 0.0436 E3 1n2 → 4b1 179
E1 1n1 → 2g 0.0216 0.0485 E3 1n3 → 4b2 708
E1 3n1 → 2g 0.0137 E2 0b1 → 2g 25 52 (8)
E1 3n1 → 4g 0.0207 E2 2b1 → 0g 1.23 0.86 (7)
E1 1n2 → 0b1 0.0152 E2 2b1 → 4g 22.6 19.6 (16)
E1 1n2 → 2b1 0.0333 E2 0b2 → 2g 0.0553
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TABLE III. (Continued.)

Mult. Transition Theor. (W.u.) Expt. (W.u.) Mult. Transition Theor. (W.u.) Expt. (W.u.)

E1 1n3 → 0b2 0.0333 E2 0b2 → 2b1 14
E1 1n3 → 2b2 0.0706 E1 1n1 → 0b1 0.0054 0.0057
E2 2b1 → 0b1 177 97 (10) E1 1n1 → 2b1 0.0099 0.0064
E2 4b1 → 2b1 256 E1 1n2 → 0g 2 × 10−5

E2 2b2 → 0b2 85 E1 1n2 → 0b2 0.0094
E2 4b2 → 2b2 122 E1 1n3 → 0b1 0.00023
E2 3n1 → 1n1 55 E1 1n3 → 0g 2 × 10−6

E2 5n1 → 3n1 67 E3 3n2 → 0g 1.8
E2 3n2 → 1n2 54 E3 3n3 → 0g 0.05

156Gd
E2 2g → 0g 150 187 (5) E2 3n2 → 1n2 44
E2 4g → 2g 219 263 (5) E2 5n2 → 3n2 53
E2 6g → 4g 249 295 (8) E3 3n1 → 0g 16.9 16.9 (7)
E2 8g → 6g 273 320 (14) E3 3n2 → 0b1 64
E2 10g → 8g 296 314 (14) E3 1n1 → 4g 73
E2 12g → 10g 321 300 (3) E3 1n2 → 4b1 282
E1 1n1 → 0g 0.0006 0.0019 (14) E2 0b1 → 2g 5 8 (4)
E1 1n1 → 2g 0.0013 0.0025 (18) E2 2b1 → 0g 0.32 0.63 (6)
E1 3n1 → 2g 0.00083 0.00098 (21) E2 4b1 → 2g 0.1 1.3 (7)
E1 3n1 → 4g 0.0012 0.00077 (16) E2 4b1 → 6g 5.6 2.1 (11)
E1 1n2 → 0b1 0.0013 E2 2b1 → 4g 4.3 4.1 (4)
E1 1n2 → 2b1 0.0026 0.0005 (3) E1 1n1 → 0b1 0.0002 0.0004 (3)
E1 3n2 → 2b1 0.0016 E1 1n2 → 0g 6 × 10−6 0.0019 (7)
E2 2b1 → 0b1 74 52 (23) E1 1n2 → 2g 2 × 10−5 0.0043 (15)
E2 4b1 → 2b1 107 280 (15) E1 3n2 → 2g 5 × 10−6 0.0019 (14)
E2 6b1 → 4b1 120 E1 3n2 → 4g 2 × 10−5 0.0031 (4)
E2 3n1 → 1n1 46 E3 3n2 → 0g 0.21
E2 5n1 → 3n1 56

158Gd
E2 2g → 0g 181 198 (6) E2 0b1 → 2g 8.7619 1.1652
E2 4g → 2g 274 289 (5) E2 2b1 → 0g 2.36 0.31 (4)
E2 6g → 4g 332 E2 2b1 → 2g 2.913 0.079 (14)
E2 8g → 6g 393 330 (3) E2 4b1 → 4g 2.40 0.37
E2 10g → 8g 460 340 (3) E2 2b1 → 4g 2.96 1.39 (15)
E2 12g → 10g 532 310 (3) E2 0b2 → 2g 1.86 2.09
E1 1n1 → 0g 0.0001 9.8443 × 10−5(4) E2 2b2 → 0g 0.68 0.37 (4)
E1 1n1 → 2g 2.5 × 10−4 9.6515 × 10−5(6) E2 2b2 → 4g 0.43 0.38 (6)
E1 3n1 → 2g 0.00015 0.00033 (10) E2 4b1 → 2g 3.75 1.32
E1 3n1 → 4g 0.00028 0.00029 (8) E2 4b1 → 6g 1.30 3.16
E1 5n1 → 4g 2.02 × 10−4 7.4324 × 10−4(13) E2 0b2 → 2b1 57
E1 5n1 → 6g 3.62 × 10−4 5.8691 × 10−4(8) E1 0b1 → 1n1 2.7 × 10−5 3.314 × 10−6

E1 3n2 → 2b1 0.00011 >0.00035 E1 2b1 → 1n1 8.3 × 10−6 6.4 × 10−5(8)
E1 1n2 → 0b1 8.02 × 10−5 E1 2b1 → 3n1 2 × 10−5 1.89 × 10−4(24)
E1 1n2 → 2b1 0.0002 E1 1n2 → 2g 4 × 10−5 0.0064
E1 1n3 → 0b2 0.0004 E1 1n2 → 0g 2 × 10−5 0.0035 (12)
E1 1n3 → 2b2 0.0009 E1 3n2 → 2g 3 × 10−5 >0.0011
E1 3n3 → 2b2 0.0005 E1 3n2 → 4g 3 × 10−5 >0.0015
E2 2b1 → 0b1 200 E1 0b2 → 1n1 2 × 10−7 5.7831 × 10−5

E2 4b1 → 2b1 288 455 E1 2b2 → 1n1 2 × 10−8 2.7 × 10−6(19)
E2 2b2 → 0b2 217 E1 2b2 → 3n1 2 × 10−7 3.7 × 10−5(5)
E2 4b2 → 2b2 308 E1 0b2 → 1n2 6 × 10−5 6.02 × 10−4

E2 3n1 → 1n1 185 E1 2b2 → 1n2 1.8 × 10−5 1.50 × 10−4(21)
E2 5n1 → 3n1 227 369 (6) E1 2b2 → 3n2 4.2 × 10−5 2.40 × 10−4(5)
E2 3n2 → 1n2 200 > 1600 E1 4b1 → 3n1 7.7 × 10−6 4.63 × 10−4

E2 5n2 → 3n2 240 E1 4b1 → 5n1 2.1 × 10−5 6.12 × 10−4

E2 3n3 → 1n3 241 E1 1n2 → 0b2 2 × 10−5

E3 3n1 → 0g 11.9 11.9 (7) E1 1n3 → 0b1 3 × 10−6
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TABLE III. (Continued.)

Mult. Transition Theor. (W.u.) Expt. (W.u.) Mult. Transition Theor. (W.u.) Expt. (W.u.)

E3 1n1 → 4g 81 E1 1n3 → 0g 0.00001
E3 3n2 → 0b1 519 E3 3n2 → 0g 5
E3 3n3 → 0b2 102 E3 3n3 → 0g 2

236U
E2 2g → 0g 237 250 (10) E2 2b1 → 0b1 112
E2 4g → 2g 342 357 (23) E2 4b1 → 2b1 160
E2 6g → 4g 382 385 (22) E2 3n1 → 1n1 68
E2 8g → 6g 408 390 (4) E2 5n1 → 3n1 80
E2 10g → 8g 429 360 (4) E2 7n1 → 5n1 87
E2 12g → 10g 450 410 (7) E2 3n2 → 1n2 54
E2 14g → 12g 471 450 (5) E2 5n2 → 3n2 64
E2 16g → 14g 493 380 (4) E3 1n1 → 4g 62 62 (9)
E2 18g → 16g 516 490 (5) E3 3n1 → 0g 15 23 (3)
E2 20g → 18g 539 510 (8) E3 1n2 → 4b1 695
E2 22g → 20g 564 520 (12) E3 3n2 → 0b1 172
E2 24g → 22g 590 670 (13) E2 0b1 → 2g 6
E2 26g → 24g 617 670 (19) E2 2b1 → 0g 0.66
E2 28g → 26g 645 1100 (5) E2 4b1 → 2g 0.59
E1 1n1 → 0g 2.7 × 10−8 2.7 × 10−8(4) E2 2b1 → 4g 4
E1 1n1 → 2g 5.5 × 10−8 E1 0b1 → 1n1 1.2 × 10−8

E1 3n1 → 2g 3.5 × 10−8 E1 2b1 → 1n1 4.6 × 10−9

E1 3n1 → 4g 4.8 × 10−8 E1 1n2 → 0g 1.6 × 10−9

E1 1n2 → 0b1 2.0 × 10−8 E3 3b2 → 0g 0.14
E1 1n2 → 2b1 4.0 × 10−8

100Mo
E2 2g → 0g 22.7 37.0 (7) E2 3n1 → 1n1 16
E2 4g → 2g 50 69 (4) E2 5n1 → 3n1 21
E2 6g → 4g 84 94 (14) E2 7n1 → 5n1 26
E2 8g → 6g 120 123 (18) E2 3n2 → 1n2 18
E2 10g → 8g 156 E2 5n2 → 3n2 22
E1 1n1 → 0g 2 × 10−6 E3 3n1 → 0g 34 34 (3)
E1 1n1 → 2g 1 × 10−5 E3 3n2 → 0b1 5
E1 3n1 → 2g 7 × 10−6 2.7 × 10−6(9) E3 1n1 → 4g 899
E1 3n1 → 4g 2 × 10−5 E2 0b1 → 2g 72 92 (4)
E1 1n2 → 0b1 2 × 10−7 E2 2b1 → 0g 0.5 0.62 (5)
E1 1n2 → 2b1 1 × 10−5 E2 4b1 → 2g 3
E1 3n2 → 2b1 3 × 10−6 E1 1n1 → 0b1 8 × 10−6

E1 3n2 → 4b1 3 × 10−5 E1 1n1 → 2b1 2 × 10−5

E2 2b1 → 0b1 25.4 5.5 (8) E1 3n1 → 2b1 1.4 × 10−5 2.5 × 10−5(8)
E2 4b1 → 2b1 45 E1 1n2 → 0g 5 × 10−7

E2 6b1 → 4b1 75 E3 3n2 → 0g 22

This allows one to predict other B(E1) transition probabilities
in the described spectrum, which are given in Table III.

In 100Mo, the experimentally observed 2+
3 state with energy

1463.9 keV is considered in Ref. [34] as a possible member of
a β band. However, the present scheme suggests that the 2+
state belonging to this band should lie essentially lower. The
calculations show that the experimental 2+

2 state with energy
1063.78 keV considered in Ref. [34] as a possible member
of a γ band is more appropriate as a β-band member. The
result in Fig. 7 shows that if this state is included in the b1
band (in the present notations), a non-yrast alternating-parity
sequence can be constructed and reasonably well described by
taking three additional states, namely, 1− at 2156 keV, 3− at

2369.6 keV, and 4+ at 1771.4 keV from the set of available
but not interpreted data for 100Mo [34]. The observed B(E1)-
B(E3) transition probabilities are reasonably described as seen
from Table III. The main discrepancy between the theory and
the experiment, a factor of 5, is obtained for the E2 intraband
transition 2+

b1 → 0+
b1.

The following comments on the model results can be
made here. The parameters of the fits shown in Table I
reflect the common collective structure of the various energy
sequences (g, b1, b2, n1, n2, n3) in a given nucleus, while
the sets of k values given in Figs. 1–7 reflect their mutual
dispositions. Note that the parameters for 152Sm and 154Gd
are essentially renormalized compared to the fits of the
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FIG. 8. (Color online) Density distribution ρnkI (β2, β3) = |�π
nkI (β2, β3)|2 for (a) k = 1, I = 2 and (b) k = 2, I = 1 at n = 0 with schematic

parameters (see the text). The model space corresponds to the β2 > 0 half-plane.

yrast band only [18]. As seen from Table I, the parameters
ω and b, which are responsible for the rotation-vibration
behavior of the different sequences, vary relatively smoothly
between the different nuclei. The parameter d0, which is
responsible for the shape of the potential at zero angular
momentum, shows more pronounced differences in its values,
especially for the nuclei from different regions as 236U and
100Mo. Also, the parameter c, which determines the overall
scale for the transition probabilities in the “radial” integrals,
considerably varies, while the parameter p, which is related to
the quadrupole and octupole contributions to the moment of
inertia, changes quite smoothly. It is remarkable that in three
nuclei, 152Sm, 154Sm, and 154Gd, the effective charge for the
E1 transitions is practically unit, which means that there is
no need for this parameter to describe them. In 156Gd, it is
still close to 1, while in the other three nuclei, its need for the
model description is already essential.

By using the relations (44) and (45) between the model
parameters in ellipsoidal coordinates and the parameters of
the original Hamiltonian (3) with (4), one can obtain the latter
from the values given in Table I. Subsequently, one can obtain
the semiaxes (sa) βsa

2 and βsa
3 of the ellipsoidal potential bottom

in the space of the quadrupole-octupole variables given by

βsa
λ (I ) = [2X(I )/dλCλ]1/4, λ = 2, 3. (46)

[For more details, see the text after Eqs. (3) and (4) of [18].] The
resulting values of the parameters B2, B3, C2, C3, d2, d3 and the
semiaxes are given in Table II. Note that in this work they are
not directly adjusted, but obtained as a result of the adjustment
of the parameters ω, b, d0, c, p, and e1

eff . As such, they
only give a rough estimation about the order of the potential
parameters and its shape. One can see that for 152,154Sm and
154,156Gd, these parameters vary relatively smoothly, while
for the remaining three nuclei they show some essential
fluctuations. The values of the βsa

2 semiaxis are obtained close
to the known values of the static quadrupole deformations
in these nuclei, while the values of the octupole semiaxis
βsa

3 appear considerably larger. This result is correlated with
the larger values of the quadrupole stiffness parameters C2

compared to the values of C3. Hence, the present parameters
correspond to a vibration motion with a larger softness of

the system with respect to the octupole mode compared to the
quadrupole one. A closer look on the formalism shows that the
ratio between both semiaxes is related to the matrix elements
of the quadrupole and octupole electric multipole operators
(32) and (33). By using (42), (43), and (45) in Eq. (46), one
finds that

βsa
3

βsa
2

= q

p
= 1√

2p2 − 1
. (47)

It is seen that the ratio βsa
3 /βsa

2 depends on the inertia factors
p and q [Eq. (6)], which determine the strength of the E2 and
E3 transitions, respectively. This ratio is less than 1 for p > 1
(q < 1). It can be easily checked that to obtain βsa

3 /βsa
2 < 1,

one has to introduce an additional scaling constant c3 having
the meaning of an effective charge for the octupole mode.
Then, the octupole charge factor is renormalized as M ′

3 =
c3M3. The numerical analysis shows that if c3 is chosen in
the limits 2 � c3 � 4, the parameter p is renormalized so
that q → q/3 and the same theoretical levels and transition
probabilities are obtained with βsa

3 < βsa
2 in correspondence

to the usually observed values of the deformation parameters
β2 and β3. For example, if c3 = 4, one obtains the following
set of renormalized parameters for 154Gd, c′ = 269.6, p′ =
1.197, e1

eff
′ = 1.512, while the parameters ω, b, and d0 remain

unchanged compared to the values given in Table I. Compared
to the values in Table II, the renormalized parameters for 154Gd
are B3

′ = 1146h̄2/MeV, C3
′ = 108 MeV, d3

′ = 777 h̄2/MeV,
and βsa

3
′ = 0.192, while the other parameters referring to the

quadrupole deformation remain unchanged. It is seen that
now the length of the potential bottom semiaxis in the β3

direction corresponds to a more realistic octupole deformation.
This result is equivalent to the involvement of a renormalized
octupole operator Q̂′

30(η, φ) = c3Q̂30(η, φ). Since the use of
such an effective charge does not change the model description
but only leads to the renormalization of the parameters, it is
not considered in this work.

Further, it is important to comment the obtained configu-
rations of quantum numbers k(+)

n and k(−)
n , which characterize

the energy shifts in the described alternating-parity spectra.
From Figs. 1–7, it is seen that the relevant energy shift in
the excited level sequences is obtained through a jump of
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FIG. 9. (Color online) Contour plots of the density distribution ρnkI (β2, β3) for (a) k = 1, I = 2, (b) k = 2, I = 1, (c) k = 3, I = 2, and
(d) k = 4, I = 1 at n = 0 with the schematic parameters (see the text). The ellipsoidal curves outline the potential bottom. The model space
corresponds to the β2 > 0 half-plane.

k over several lower values. In this way, certain low-lying
states available in the scheme do not enter the considered
spectrum, while others lying at higher energy are used to
obtain the model description. This result is a consequence
of the fact that the same oscillation frequency ω is imposed
to all alternating-parity bands. Actually, the non-yrast band
heads and the energy shifts could be reproduced through
the lowest possible k configurations [k(+)

n = 1, k(−)
n = 2] if

separate vibration frequencies are considered in the different
bands. Speaking about k as a number of angular oscillation
quanta (phonons), it appears that the restricted freedom of the
frequency imposed by the coherent condition is compensated
in the model description by the presence of a larger number
of quanta on which the rotation bands are built. Since the
eventual consideration of different oscillation frequencies
would correspond to the introduction of parameters external
for the model, the larger numbers of quanta are retained in

this work. The obtained pairs of values k(+)
n and k(−)

n for the
quantum number k provide a detailed systematic information
about the mutual disposition of the positive- and negative-
parity bands in the different nuclei and, subsequently, about
the evolution of the quadrupole-octupole spectra in a given
nuclear region. It should be noted that the involvement of the
extended transition operators (31)–(33) in the present CQOM
development is related to the appearance of larger k values
and the subsequent large k differences taken into account
in the electric transition probabilities. These features of the
model can change if it is applied beyond the coherent-mode
assumption. In this case, the unrestricted Hamiltonian (3) can
be diagonalized by using the present analytic solution as a
basis. Then, the parameters in Eq. (3) can be directly adjusted
to describe the spectrum without restriction of the quadrupole
and octupole oscillator frequencies. This could allow one
to construct the spectrum by always choosing the lowest
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possible eigenvalues, while the structure of the spectrum
obtained in the present analytic solution could only guide the
construction of non-yrast bands. Work in this direction is in
progress.

Finally, it should be noted that the present model descrip-
tions are obtained within some natural limits of the applied
formalism with respect to experimental data. It is well known
that rotation terms such as the one entering the model potential
can only describe smooth changes of the rotation spectra with
increasing angular momentum, as for example the so-called
“centrifugal stretching.” The treatment of angular momentum
regions, where sharper changes in the rotation spectrum due to
changes in the intrinsic structure such as backbending effects
occur, needs a special development, which is not the subject
of this work. That is why in some of the considered nuclei
descriptions and/or predictions of rotation levels with very high
angular momenta are avoided, especially in the cases where the
negative-parity levels are not observed. An exception is done
for 236U (Fig. 6), where higher-spin negative-parity levels were
predicted in accordance to the last observed state with even
angular momentum. This prediction should be meaningful
since in the actinide region the rotation spectra exhibit more
regular rotation motion in the high-spin regions. On the other
hand, the prediction of missing low-spin states, such as the
1−

n3 level in 154Gd and the 6+
b1 and 5−

n2 levels in 100Mo, as well
as a number of not observed transition probabilities shown in
Table III, should be also reasonable in the present framework.
In this meaning, the applied CQOM model scheme rather
describes the “horizontal” evolution of the alternating-parity
spectra beyond the yrast line than the high-spin properties of
individual rotation bands.

V. CONCLUDING REMARKS

This work provides a model description and respective
classification of the yrast and non-yrast alternating-parity
spectra and the attendant B(E1), B(E2), and B(E3) transition
probabilities in several rare-earth nuclei, one U and one Mo
nucleus within the collective model of coherent quadrupole
and octupole motion (CQOM). The theoretical formalism
and the obtained model descriptions outline a possible way
for the development of nuclear alternating-parity spectra
toward the highly non-yrast region of collective excitations.
In the considered scheme, the different negative parity level-
sequences appear in couples together with the ground-state
band and the excited β bands. On this basis, the model
predicts possible E(1) and E(3) transitions between states
with opposite parity within various alternating-parity bands.
The presence of experimentally observed E(1) transitions
between such states in the non-yrast part of the spectrum
is noticed. Further experimental measurements of electric
transition probabilities would be very useful to check the
possible coupling of non-yrast energy sequences with opposite
parities. It was demonstrated that the considered scheme can be
used for the interpretation of data on excitation energies whose
place in the structure of the collective spectrum has not yet
been determined. The approach was applied to selected nuclei
for which a relatively large number of data on B(E1)-B(E3)

transitional probabilities are available, but it can be easily
extended to wider ranges of nuclei, especially in the rare-
earth and actinide regions. Further, the formalism takes into
account the complex-shape effects in the motion of the system
and in addition provides estimations about the shape of the
quadrupole-octupole potential, which governs the collective
properties of the considered nuclei. More refined model
descriptions and realistic estimations about the potential shape
can be obtained beyond the limits of the present coherent-mode
assumption. Work in this direction is in progress.
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APPENDIX A: CQOM SHAPE-DENSITY DISTRIBUTIONS

The density distribution of the CQOM vibration state in the
space of the quadrupole-octupole shapes is given by the square
of the wave function (17), ρnkI (β2, β3) = |�π

nkI (β2, β3)|2,
after a transformation from the ellipsoidal coordinates (η, φ)
to the deformation coordinates (β2, β3). In Fig. 8, three-
dimensional plots of ρnkI are given for the lowest k = 1 and
2 states for n = 0 and for the schematic parameter values
ω = 0.3 MeV/h̄, b = 3 h̄−2, d0 = 100 h̄2, d2 = 300 h̄2/MeV,
d3 = 500 h̄2/MeV. Note that according to the discussion in
the end of Sec. III, the shape of the potential is determined
unambiguously when the values of the inertia parameters d2

and d3 are given. In Fig. 9, two-dimensional plots showing the
maxima of ρnkI for k = 1–4 are given together with contours
showing the ellipsoidal potential bottom for the above set of
schematic parameters.

APPENDIX B: EXPLICIT FORM OF THE INTEGRALS
OVER η

The integrals over η [(39) and (40)] can be written in the
following common form after taking into account the explicit
expression for the radial wave functions (13):

Sl(ni, Ii ; nf , If ) =
∫ ∞

0
dη ψ

If

nf
(η)ηl+1ψIi

ni
(η)

= N

∫ ∞

0
e−cη2

csf η2sf L
2sf

nf
(cη2)ηl+1csi η2si

×L2si

ni
(cη2)dη, (B1)

where l = 1, 2, si = (1/2)
√

k2
i + bX(Ii), sf = (1/2)√

k2
f + bX(If ), and

N = Nni,nf
(c, si, sf )

= 2c

[
�(nf + 1)�(ni + 1)

�(nf + 2sf + 1)�(ni + 2si + 1)

] 1
2

. (B2)
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To derive an explicit expression for the integral (B1), one can apply the substitution cη2 = x with dx = 2cη dη, such
that

ηl+1dη = 1

2c1+l/2
xl/2dx. (B3)

Then, Eq. (B1) reads as

Sl(ni, Ii ; nf , If ) = Nni,nf
(c, si, sf )

2c1+l/2

∫ ∞

0
e−xxsi+sf + l

2 L
2sf

nf
(x)L2si

ni
(x)dx.

(B4)

By using known formulas for integration of two generalized Laguerre polynomials with different real ranks [37,38], one obtains
(B4) in the following explicit form:

Sl(ni, Ii ; nf , If ) = Nni,nf
(c, si, sf )

2c1+l/2

�(nf + 2sf + 1)

�(1 + 2sf )

�
(
ni + si − sf − l

2

)
�
(
si − sf − 1

) �
(
si + sf + l

2 + 1
)

ni!nf !

× 3F2

(
−nf , si + sf + l

2
+ 1, sf − si + l

2
+ 1; 2sf + 1, sf − si + l

2
+ 1 − ni ; 1

)
, (B5)

where 3F2 denotes a generalized hypergeometric function [39]. The generalized hypergeometric function 3F2 is calculated
numerically through a summation of its series representation for which a Fortran code is available [40]. It can be easily checked
that if the first argument of 3F2 in (B5) is zero, nf = 0, one has 3F2 = 1. In this case, Eq. (B5) reduces to the simpler expression

Sl(ni, Ii ; 0, If ) = 1

c l/2

�
(
si + sf + l

2 + 1
)
�
(
ni + si − sf − l

2

)
√

ni!�(2sf + 1)�(ni + 2si + 1)�
(
si − sf − l

2

) . (B6)

This corresponds to a transition from a non-yrast to a yrast state. The integrals for the yrast intraband transitions, Eqs. (50) and
(51) in Ref. [18], are directly obtained from Eq. (B6) when ni = 0. Simple explicit forms of the Sl integrals for interband and
intraband transitions in the particular cases up to n = 2, which are of practical interest, are given as

Sl(1, Ii ; 1, If ) = 1

c l/2

[
(2si + 1)(2sf + 1) −

(
si + sf − l

2

)(
si + sf + l

2
+ 1

)]
× �

(
si + sf + l

2 + 1
)

√
�(2si + 2)�(2sf + 2)

, (B7)

Sl(2, Ii ; 1, If ) =
√

2

2c l/2

{
2(si + 1)(2si + 1)(2sf + 1) −

(
si + sf + l

2
+ 1

)
×

[
2(si + 1)(2si + 4sf + 3)

−
(

si + sf + l

2
+ 2

)(
3si + sf − l

2
+ 2

)]}
× �

(
si + sf + l

2 + 1
)

√
�(2si + 3)�(2sf + 2)

, (B8)

Sl(2, Ii ; 2, If ) = 1

2c l/2

{
4(si + 1)(2si + 1)(sf + 1)(2sf + 1) −

(
si + sf + l

2
+ 1

)[
16(si + 1)(sf + 1)(si + sf + 1)

−
(

si + sf + l

2
+ 2

){
2(si + 1)(2si + 1) + 2(sf + 1)(2sf + 1) + 16(si + 1)(sf + 1)

−
(

si + sf + l

2
+ 3

)(
3si + 3sf − l

2
+ 4

)}]}
�
(
si + sf + l

2 + 1
)

√
�(2si + 3)�(2sf + 3)

. (B9)

APPENDIX C: EXPLICIT FORM OF THE INTEGRALS
OVER φ

The integrals over the angular variable φ [Eq. (41)] with the
relevant parities πi and πf can be obtained in the following
explicit forms. For λ = 2, the integral I±±

2 with k1 = k2 =
k = odd (++) or even (−−) is

I±±
2 (k) = 2

π
Cat + (−1)k+1

4k

[
1 + 4

π

2k−1∑
m=1

sin(mπ/2)

m

]
, (C1)

where Cat = ∑∞
n=0

(−1)n

(2n+1)2 ≈ 0.915 965 594 177 . . . is the
Catalan constant. In the case of k1 �= k2, both odd or even,
the integral is

I±±
2 (k1, k2) = 1

2|k2 − k1|

[
1 + 4

π

|k2−k1|−1∑
m=1

sin(mπ/2)

m

]

+ (−1)k1+1

2(k2 + k1)

[
1 + 4

π

k2+k1−1∑
m=1

sin(mπ/2)

m

]
.

(C2)
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For λ = 3, one has

I+−
3 (k1, k2) = 2k2

k2
2 − k2

1

− 1

π

[
(−1)(k2−k1−1)/2

(k2 − k1)2

+ (−1)(k2+k1−1)/2

(k2 + k1)2

]
, (C3)

where k1 = 1, 3, 5, . . . , k2 = 2, 4, 6, . . . . For λ = 1, the
integral is obtained in the form of an infinite, but reasonably

converging series

I+−
1 = 1

2π

±∞∑
m=±1

±∞∑
n=±1

∑
ν=±1

sign(−n)

|mn|

×
[

(1 − δk2+νk1,−m−n)
sin

[
(k2 + νk1 + m + n)π

2

]
(k2 + νk1 + m + n)

+ π

2
δk2+νk1,−m−n

]
, (C4)

where k1 = 1, 3, 5, . . . , k2 = 2, 4, 6, . . . .
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