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Maximum mass and radius of neutron stars, and the nuclear symmetry energy
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We calculate the equation of state of neutron matter with realistic two- and three-nucleon interactions using
quantum Monte Carlo techniques and illustrate that the short-range three-neutron interaction determines the
correlation between neutron matter energy at nuclear saturation density and higher densities relevant to neutron
stars. Our model also makes an experimentally testable prediction for the correlation between the nuclear
symmetry energy and its density dependence—determined solely by the strength of the short-range terms in the
three-neutron force. The same force provides a significant constraint on the maximum mass and radius of neutron
stars.
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Since their discovery, neutron stars have remained our
sole laboratory to study matter at supra-nuclear density and
relatively low temperature. The equation of state (EoS) of
matter at these densities is largely unknown but uniquely
determines the structure of neutron stars and the relation
between their mass (M) and radius (R). Matter that can support
large pressure for a given energy density (typically called a stiff
EoS) will favor large neutron star radii for a given mass. Such
an EoS also predicts large values for the maximum mass of a
neutron star that is stable with respect to gravitational collapse
to a black hole. Conversely, a high-density phase that predicts
a smaller pressure will result in more compact neutron stars
and smaller maximum masses.

The recent accurate measurement of a large neutron
star mass M = 1.97 ± 0.04Msolar in the system J1614-2230
provides strong evidence that the high-density equation of
state is stiff [1]. Interestingly, attempts to infer neutron star
radii have favored relatively small values ranging from 9 to
12 km [2–4]. Although the radius inference depends on specific
model assumptions, these smaller radii imply a soft EoS in the
vicinity of nuclear saturation density. Taken together, they
indicate that the EoS of dense matter makes a transition
from soft to stiff at supra-nuclear density. In this Rapid
Communication we show that the three-neutron force (3n)
is the key microscopic ingredient that determines the nature of
this transition.

The importance of three-body forces in nuclear physics is
well known, and quantum Monte Carlo (QMC) calculations of
light nuclei have clarified its structure and strength. However,
in these systems the dominant three-body force acts between
two neutrons and a proton or between two protons and a
neutron. While the force among three neutrons is important
in light neutron-rich nuclei, the short distance behavior is
not easily accessible [5]. Properties of large neutron-rich
nuclei are potentially sensitive to this interaction, especially
if the symmetry energy provides a reliable measure of the
energy difference between pure neutron matter and symmetric
nuclear matter at saturation density. There has been much
recent progress in both theory and experiments to measure
the symmetry energy and its density dependence, as reviewed
in Refs. [6,7]. The symmetry energy is expected to be in the

range 32 ± 2 MeV. We explore this experimentally suggested
range for the nuclear symmetry energy and show that a more
precise determination is needed to adequately constrain the 3n
interaction.

In this work we solve the nonperturbative many-body
nuclear Hamiltonian using the auxiliary field diffusion Monte
Carlo (AFDMC) [8] method. Its accuracy in studying nuclear
systems has been tested in light nuclei [9]. The extension
to include three-body forces in pure neutron-rich systems is
straightforward with no additional approximations within the
AFDMC technique [10], and a comparison with the Green’s
function Monte Carlo (GFMC) has been extensively tested in
neutron drops [11]. We present results for the EoS of neutron
matter using phenomenological two-neutron (2n) potentials,
which provide an accurate description of nucleon-nucleon
scattering data up to high energies, and study the role of the
poorly constrained 3n interaction.

In earlier work it has been established that the EoS
in the density regime (1–3)ρ0 plays an essential role in
determining the neutron star radius [12]. In this density
regime, the 3n interaction plays a critical role because of
a large cancellation between the attractive and repulsive
parts of the 2n interaction arising from the long- and short-
distance behavior, respectively. Consequently, we find that
the neutron star radius for a canonical mass of 1.4Msolar is
especially sensitive to the 3n interaction. Although matter in
the neutron star will contain a small admixture of protons,
here we calculate the EoS of pure neutron matter for the
following reasons. First, the structure of the interactions
between neutrons is simpler than those between neutron and
protons. Second, these simpler interactions are amenable to
QMC methods to solve the many-body problem as it is
devoid of the complexities of the isospin-dependent spin-orbit
and three-nucleon potentials and clustering effects likely in
systems with protons. Third, the fraction of protons required
to ensure stability is small and is typically less than 10%.
Finally, since generically neutron matter has higher pressure
than matter containing any fraction of protons or strangeness
in the form of hyperons or kaons, our results provide
stringent upper bounds on the neutron maximum mass and
radius.
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To compute the EoS for neutron stars it is necessary to
describe the nucleon-nucleon interactions at short distances or
large relative momenta up to p � 2pFn � 660 MeV(ρ/ρ0)1/3,
where pFn is the Fermi momentum, ρ is the typical density
in the neutron star core, and ρ0 = 0.16 fm−3 is the nuclear
saturation density. Relative momenta up to pFn are required
in even a mean-field (Fermi gas) description, and the nn
interaction scatters nucleons to larger momenta up to order
(1.5–2)pFn at saturation density. Descriptions of higher
density neutron matter with softer interactions if they are
consistently evolved to lower scales, must include 3n (and
potentially 4n) interactions.

Phenomenological two-nucleon potentials such as the
Argonne potential have been constructed to describe scattering
data up to relative momenta �600 MeV with high accuracy
[13]. Despite the fact that the Argonne potential has been fit
up to laboratory energies of 350 MeV, it very well reproduces
scattering data up to much larger energies [14]. The AV8’
interaction we employ in this study is identical to the full AV18
interaction in s and p waves and includes the dominant one-
pion interaction in higher partial waves. Chiral interactions
also reproduce the scattering data very well below 350 MeV
laboratory energy, but they fail rapidly above because of the
cutoff in presently available interactions. At larger momentum
transfer, the potentials cannot describe inelasticities, but in
scattering channels where inelasticities are known to be small
they have been shown to provide a good description. They also
provide good predictions [15] of high-momentum components
of nuclear wave functions as observed in nucleon [16,17] and
electron scattering [18,19]. These high-momentum observ-
ables provide a test of the assumed short-distance features.
In the low-energy high-momentum region relevant to neutron
stars the inelasticities in 2n scattering must be absorbed into
many-body forces (3n, 4n,. . .) intimately connected to the
short-distance behavior of the 2n interaction.

The nuclear Hamiltonians we consider contain the nonrel-
ativistic kinetic energy and the 2n and 3n interactions:

H = − ∇2

2m
+ V2n + V3n. (1)

For the 2n potential, we use the Argonne AV8′ model [20]
and the form of the 3n interaction is inspired by both the
Urbana IX and the Illinois models [5]. We consider a range
of 3n interactions that contain long-distance s- and p-wave
2π exchange contributions, an intermediate-range (3π loops)
contribution, and a spin-independent short-range repulsive
term. Explicitly,

V3N = APW
2π O2π,PW + ASW

2π O2π,SW + A3πO3π + AROR.

(2)

This form of interaction includes all the terms present in
low-order chiral interaction, plus selected terms found to be
important in studies of light nuclei and nuclear matter using
the Argonne interactions.

The structure of the operators O appearing above are
defined in Ref. [5]. The relative contributions of these four
components of the 3n force depends on the 2n interaction.
We find that, for the Argonne potential, the 2n interactions

suppress the long-distance (2π ) contribution of the 3n force in
the ground state. This suppression is a result of the pion-range
correlations induced by the 2n force; we find it also occurs for
the super-soft core NN interaction [21]. For typical ranges of
values of the strength parameters APW

2π and ASW
2π considered

in Ref. [5] we find the contribution of these operators to the
ground-state energy is repulsive but very small at all densities
studied. In contrast, this interaction is large and attractive in
light nuclei where both neutrons and protons contribute. The
intermediate-range (3π ) 3n interaction was introduced to fit the
properties of weakly bound neutron-rich nuclei such as 8He
[5]. Earlier calculations [10] have shown that this interaction is
strong and attractive in neutron matter for typical values of A3π

quoted in Ref. [5]. In this work, we explored a range of values
for A3π from zero to that in the Illinois-7 3n interaction [22]
because the structure of this term is still not fully understood or
constrained. We use a phenomenological short-range repulsive
term as in the Urbana and Illinois three-body forces, with VR =
AROR = AR

∑
cyc T 2(mπrij )T 2(mπrjk), where the function

T (x) is defined in Ref. [5]. We have also considered a different
form V R

μ = AR

∑
cyc v(rij )v(rjk) with and v(r) = exp(−2μr);

other different forms of VR have been explored, giving very
similar results.

The 3n interaction we employ is not intended to be a
microscopic treatment of the complete 3n interaction. It
assumes that for the neutron matter equation of state the
effects of more complicated spin-dependent short-distance 3n
interactions, relativistic effects, and potential 4n interactions
can be mimicked with simplified three-neutron interactions
with a wide range of spatial dependence. This assumption
has been tested in the case of relativistic corrections, where
in Ref. [23] it was found that the density dependence of the
relativistic effects is similar to that of the 3n interaction. Further
tests of the density dependence of specific higher-order terms
in the chiral interaction are valuable. The different forms of
VR we have explored span a wide range of density dependence
for the 3n interaction, as shown below.

For the 3n interaction we vary both A3π and μ to study
the sensitivity to short-range physics. The strength of the
short-range 3n interaction AR is taken to be a free parameter
adjusted to yield the experimentally accessible nuclear sym-
metry energy. Although not proven, we make the following
reasonable assumptions: (1) relativistic effects in neutron
matter show a similar density dependence to the short-range
three-nucleon interaction as carefully studied in Ref. [23], (2)
the density dependence of additional spin-dependent short-
range 3n interactions (for example, higher-order terms in chiral
expansions) in the equation of state of neutron matter can be
described in a spin-independent model, and (3) four-nucleon
force contributions with different density dependence are
suppressed relative to the 3n force for densities up to (2–3)ρ0.
This last assumption can be justified at nuclear density by
the high-precision fits to light-nuclei obtained with only 3n
forces [24]; at higher density this model assumption can
be tested by its predicted correlation between properties of
neutron-rich nuclei and neutron stars.

We assume that Esym = Eneutron(ρ0) − Enuclear(ρ0) and us-
ing experimental values of Esym = 32 ± 2 MeV [25] and
Enuclear(ρ0) = −16.0 ± 0.1 MeV from nuclear masses models
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FIG. 1. (Color online) The energy per particle of neutron matter
for different values of the nuclear symmetry energy (Esym). For
each value of Esym the corresponding band shows the effect of
different spatial and spin structures of the three-neutron interaction.
The inset shows the linear correlation between Esym and its density
derivative L.

[26] we obtain an empirical constraint for neutron matter
energy Eneutron(ρ0) = 16 ± 2 MeV. Potential higher-order cor-
rections to the quadratic nuclear symmetry energy, for which
there is some theoretical motivation but no clear experimental
evidence, may affect the extraction of the neutron matter
energy and increase the associated error. In this work we ignore
these poorly known corrections and tune AR to reproduce the
neutron matter energy in the range 16 ± 2 MeV. Our results
are shown in Fig. 1, where the green and blue points are
QMC results for different choices of AR corresponding to
Eneutron(ρ0) = 16 MeV(Esym = 32 MeV) and Eneutron(ρ0) =
17.7 MeV(Esym = 33.7 MeV), respectively. The results are
compared to those obtained using a 2n force without 3n
(Esym = 30.5 MeV) and 2n combined with the Urbana IX
3n (Esym = 35.1 MeV). The bands depict the sensitivity to
short-distance spin and spatial structure of the 3n interaction
and are obtained by varying the range of the 3n short-distance
force and A3π .

In the vicinity of nuclear density, Eneutron(ρ) =
Eneutron(ρ0) + L/3(ρ − ρ0)/ρ0, where L is related to the
derivative of the nuclear symmetry energy. The inset in Fig. 1
shows the correlation between Esym and L. This correlation is
insensitive to the large variations in the range of the short-range
3n force μ and the strength of the 3π term A3π . This is in sharp
contrast to the predictions of mean-field theories where the
slope was found to be very sensitive to the choice of effective
interactions [27]. Previous calculations of neutron matter up
to ρ0 [28] use a chiral 2n interaction fit to laboratory energies
of 350 MeV plus the two-pion exchange three-nucleon inter-
action to calculate the neutron matter equation of state using
perturbation theory. In contrast to our results, a significant
repulsion from the 2π exchange long-range 3n interaction
was found. Since this force is better constrained by light
nuclei, these earlier calculations can make a prediction for the
neutron matter energy independent of the phenomenological
short-range interaction, which plays an important role in

TABLE I. Fitting parameters for the neutron matter EoS defined
in Eq. (3) for selected different Hamiltonians.

3N force Esym L a α b β

(MeV) (MeV) (MeV) (MeV)

none 30.5 31.3 12.7 0.49 1.78 2.26

V PW
2π + V R

μ=150 32.1 40.8 12.7 0.48 3.45 2.12

V PW
2π + V R

μ=300 32.0 40.6 12.8 0.488 3.19 2.20

V3π + VR 32.0 44.0 13.0 0.49 3.21 2.47

V PW
2π + V R

μ=150 33.7 51.5 12.6 0.475 5.16 2.12

V3π + VR 33.8 56.2 13.0 0.50 4.71 2.49

UIX 35.1 63.6 13.4 0.514 5.62 2.436

our calculation. To understand this basic difference, further
tests of the convergence of perturbation theory and the chiral
expansion in the diagrammatic calculations, a survey of other
two-body interactions in the AFDMC, and the incorporation of
chiral interactions in nonperturbative methods such as lattice
and suitable extension of QMC would be necessary.

Current determinations of L have relied on analysis of
neutron skins, surface contributions to the symmetry energy of
neutron-rich nuclei, and isospin diffusion in heavy-ion reac-
tions. These studies have been useful but not very constraining
as acceptable values are in the range L = 40–100 MeV [25].
However, a better determination of L even with modest
reduction in the error would test our model for 2n and 3n
interactions.

The predictions of QMC can be accurately fit using

E(ρ) = a

(
ρ

ρ0

)α

+ b

(
ρ

ρ0

)β

, (3)

where the coefficients a and α are sensitive to the low-density
behavior of the EoS, while b and β are sensitive to the
high-density physics [29]. We find that the 3n force plays
a key role in determining the coefficient b and the variation of
the other EoS parameters is comparatively small. Numerical
values for these parameters are reported in Table I for selected
Hamiltonians.

To calculate the mass and radius of neutron stars we solve
the Tolman-Oppenheimer-Volkoff (TOV) equations for the
hydrostatic structure of a spherical nonrotating star using
the QMC equation of state for neutron matter [30,31]. The
QMC EoS we use is for ρ � ρcrust = 0.08 fm−3. Below this
density we use the EoS of the crust obtained in earlier works
in Refs. [32,33].

The neutron star mass-radius predictions are obtained by
varying the 3n force and are shown in Fig. 2. The striking
feature is the estimated error in the neutron star radius with a
canonical mass of 1.4Msolar. The uncertainty in the measured
symmetry energy of ±2 MeV leads to an uncertainty of about
3 km for the radius, while the uncertainties in the short-distance
structure of the 3n force predicts a radius uncertainty of �1 km.
The different bands of Fig. 2 correspond to the EoS of Fig. 1
with the same colors, giving different values of Esym.

The central density of stars with M � 1.5Msolar are larger
than 3ρ0. At these higher densities, effects such as relativistic
corrections to the kinetic energy, retardation in the potential,
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FIG. 2. (Color online) Mass-radius relation for the EoS with
three-neutron interactions corresponding to the bands for different
Esym shown in Fig. 1. The intersections with the orange lines roughly
indicate central densities realized in these stars.

and four- and higher body forces become important. Conse-
quently, nonrelativistic models violate causality and predict a
sound speed cs = √

∂p/∂ε � c for ρ � (4–5)ρ0. To overcome
this deficiency we adopt the strategy suggested in Ref. [34] and
replace the EoS above a critical density ρc by the maximally
stiff or causal EoS given by p(ε) = c2ε − εc, where p is the
pressure, ε is the energy density, c is the speed of light, and
εc is a constant. This EoS is maximally stiff and predicts the
most rapid increase of pressure with energy density without
violating causality. The constant εc is the parameter that
determines the discontinuity in energy density between the
low- and high-density equations of state. Our choice of εc

ensures that the energy density is continuous and provides an
upper bound on both the radius and the maximum mass of the
neutron star.

Figure 3 shows how the bounds on the maximum radius
and mass of the neutron star vary with our choice of the
critical density ρc. It also illustrates that the bounds provide
useful constraints only when the EoS is known up to (2–3)ρ0.
In Ref. [35] bounds on the radius were derived by using
an EoS of neutron matter calculated up to ρ0 with specific
assumptions about polytropic equations of state at higher
densities. Our upper bounds are model independent and show
that the radius of a 1.4Msolar neutron star can be as large
as 16 km if ρc = ρ0. To obtain a tighter bound the equation
of state between 1ρ0 and 2ρ0 is important. The red, green,
blue, and black curves are predictions corresponding to the
3n interaction strength fit to Esym = 30.5, 32.0, 33.7, and
35.1 MeV, respectively. We also note that these bounds do not
change much for ρc � 4ρ0 because the QMC EoS is already
close to being maximally stiff in this region. These upper
bounds provide a direct relation between the experimentally
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FIG. 3. (Color online) Bounds on the maximum mass and radius
for different equations of state as a function of the critical density ρc.
The left panel shows the maximum mass; the right top and bottom
panels show the maximum possible radius for any neutron star with
mass greater than 1.2Msolar and for a neutron star with M = 1.4Msolar,
respectively.

measurable nuclear symmetry energy and the maximum
possible mass and radius of neutron stars.

To summarize, we predict that the correlation between
the symmetry energy and its derivative at nuclear density
is nearly independent of the detailed short-range 3n force
once its strength is tuned to give a particular value of Esym.
Consequently, in our model one short-distance parameter AR

completely determines the behavior of the EoS. At higher
density, the sensitivity to short-distance behavior of the 3n
interaction translates to an uncertainty of about 1 km for the
neutron star radius with mass M = 1.4Msolar. The uncertainty
at high density due to a poorly constrained symmetry energy
is larger, �3 km. Within our model we predict that neutron
star radii are in the 10–13 km range for nuclear symmetry
energy in the range 32–34 MeV. If nuclear experiments can
determine that Esym � 32 MeV, QMC predicts that L �
45 MeV at nuclear density, and for neutron stars it predicts
Mmax < 2.2Msolar and R < 12 km for a neutron star with
M = 1.4Msolar. The relationship between the symmetry energy
and its density dependence is experimentally relevant, and its
implications on the neutron star mass-radius relationship are
subject to clear observational tests.
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