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We compute nucleon and Roper electromagnetic elastic and transition form factors using a Poincaré-covariant,
symmetry-preserving treatment of a vector x vector contact interaction. Obtained thereby, the electromagnetic
interactions of baryons are typically described by hard form factors. In contrasting this behavior with that
produced by a momentum-dependent interaction, one achieves comparisons which highlight that elastic scattering
and resonance electroproduction experiments probe the evolution of the strong interaction’s running masses and
coupling to infrared momenta. For example, the existence, and location if so, of a zero in the ratio of nucleon Sachs
form factors are strongly influenced by the running of the dressed-quark mass. In our description of the nucleon
and its first excited state, diquark correlations are important. These composite and fully interacting correlations
are instrumental in producing a zero in the Dirac form factor of the proton’s d quark and in determining the ratio
of d-to-u valence-quark distributions at x = 1, as we show via a simple formula that expresses d, /u,(x = 1) in
terms of the nucleon’s diquark content. The contact interaction produces a first excitation of the nucleon that is
constituted predominantly from axial-vector diquark correlations. This impacts greatly on the y*p — P;1(1440)
form factors, our results for which are qualitatively in agreement with the trend of available data. Notably,
our dressed-quark core contribution to F,,(Q?) exhibits a zero at Q% ~ 0.5 mfv Faddeev equation treatments
of a hadron’s dressed-quark core usually underestimate its magnetic properties; hence, we consider the effect
produced by a dressed-quark anomalous electromagnetic moment. Its inclusion much improves agreement with
experiment. On the domain 0 < Q% < 2 GeV?, meson-cloud effects are conjectured to be important in making a
realistic comparison between experiment and hadron structure calculations. We find that our computed helicity
amplitudes are similar to the bare amplitudes inferred via coupled-channels analyses of the electroproduction
process. This supports a view that extant hadron structure calculations, which typically omit meson-cloud effects,
should directly be compared with the bare masses, couplings, etc., determined via coupled-channels analyses.
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I. INTRODUCTION

Building a bridge between QCD and the observed proper-
ties of hadrons is one of the key problems in modern science.
The international program focused on the physics of excited
nucleons is close to the heart of this effort. It addresses
the following questions: Which hadron states and resonances
are produced by QCD, and how are they constituted? The
N* program therefore stands alongside the search for hybrid
and exotic mesons as an integral part of the search for an
understanding of QCD. An example of the theory activity in
this area is provided in Ref. [1].

It is in this context that we consider the N(1440)P;;,
JP = (1/2)* Roper resonance, whose discovery was reported
in 1964 [2]. In important respects the Roper appears to be a
copy of the proton. However, its (Breit-Wigner) mass is 50%
greater [3]. This feature has long presented a problem within
the context of constituent-quark models formulated in terms
of color-spin potentials, which typically produce the following
level ordering [4]: ground state, J¥ = (1/2)* with radial
quantum number n = 0 and angular momentum / = 0; first
excited state, J© = (1/2)~ with (n, [) = (0, 1); second excited
state, J© = (1/2)F, with (n, 1) = (1, 0); etc. The difficulty is
that the lightest / = 1 baryon appears to be the N(1535)S),,
which is heavier than the Roper. Holographic models of
QCD are viewed by some as a covariant generalization
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of constituent-quark potential models [5]. In their soft-wall
variant, they predict degeneracy of (n,/) = (1,0) and (0, 1)
states within the same parity sector and can reproduce the
empirical Roper mass [6]. However, results for negative parity
baryons are not yet available. While it has been observed
that constituent-quark models with Goldstone-boson exchange
potentials can produce the observed level ordering [7], such a
foundation makes problematic a unified description of baryons
and mesons.

To correct the level ordering problem within the potential
model paradigm, other ideas have been explored. The possibil-
ity that the Roper is simply a hybrid baryon with constituent-
gluon content is difficult to support because the lightest such
states occur with masses above 1.8 GeV [8]. An alternative is to
consider the presence of explicit constituent-gg components
within baryon bound states [9]. Whilst not literally correct,
such a picture may be interpreted as suggesting that w N
final-state interactions must play an important role in any
understanding of the Roper. This perspective is common to
modern coupled-channels treatments of baryon resonances
[10-12] and finds support in contemporary numerical sim-
ulations of lattice-QCD [13] and Dyson-Schwinger equation
(DSE) studies [14-16].

Given that an understanding of the Roper has long eluded
practitioners, it is unsurprising that this resonance has been a
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focus of the N* program at Jefferson Lab (JLab). Experiments
at JLab [17-20] have enabled an extraction of nucleon-to-
Roper transition form factors and thereby exposed the first
zero crossing seen in any nucleon form factor or transition
amplitude. Explaining this new structure also presents a
challenge for theory [21].

Notwithstanding its history, an understanding of the Roper
is perhaps now beginning to emerge through a constructive
interplay between dynamical coupled-channels models and
hadron structure calculations, particularly those symmetry-
preserving studies made using the tower of DSEs [22-25].
One indication of this is found in predictions for the masses
of the baryons’ dressed-quark cores [14], which match the
bare masses of nucleon resonances determined by the Excited
Baryon Analysis Center (EBAC) [11] with a rms-relative error
of 14% and, in particular, agree with EBAC’s value for the
bare mass of the Roper resonance; viz. (in GeV),

mgos = 1.82+0.07 cf. myoes ™ = 1.76 £0.10. (1)
The DSE state is the first excitation of the ground-state
nucleon, while the EBAC bare state is the source for three
distinct features in the m N-scattering P;; partial wave,
which migrate widely from the real-energy axis once meson-
nucleon final-state interactions are enabled. It is notable that
the dressed-quark core of the nucleon’s parity partner is
approximately 400 MeV heavier than m]gong and 1.1 GeV
heavier than the core of the ground-state nucleon, a magnitude
commensurate with its origin in dynamical chiral symmetry
breaking (DCSB) [14].

Herein we probe further into the possibility that 7N
final-state interactions play a critical role in understanding
the Roper, through a simultaneous computation within the
DSE framework of nucleon and Roper elastic form factors and
the form factors describing the nucleon-to-Roper transition. In
so doing we add materially to a body of work that presents
the unified analysis of many properties of meson and baryon
ground- and excited-states based on the symmetry-preserving
treatment of a single quark-quark interaction; namely, a vector-
vector contact interaction. This procedure has already been
applied to the spectrum of u, d-quark mesons and baryons [14]
and the electromagnetic properties of 7w and p mesons and their
diquark partners [26-28]. These studies provide the foundation
for much of that which follows.

In Sec. IT we present a brief overview of our framework:
both the Faddeev equation treatment of the nucleon and
Roper dressed-quark cores, and the currents that describe the
interaction of a photon with a baryon composed from consis-
tently dressed constituents. Additional material is expressed in
appendices and referred to as necessary. In Sec. III we describe
the parameter-free calculation of nucleon elastic form factors
within a DSE treatment of the contact interaction. Germane
to our presentation are comparisons both with data and with
computations using QCD-like momentum dependence for
the propagators and vertices. In addition, we use the elastic
form factors to predict the ratio of valence-quark distribution
functions at x = 1.

We begin to describe our results for the Roper elastic
and nucleon-to-Roper transition form factors in Sec. IV. The
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FIG. 1. Poincaré covariant Faddeev equation [Eq. (B10)] em-
ployed herein to calculate baryon properties. ¥ in Eq. (B1) is the
Faddeev amplitude for a baryon of total momentum P = p, + py.
It expresses the relative momentum correlation between the dressed-
quark and -diquarks within the baryon. The shaded region demarcates
the kernel of the Faddeev equation (Appendix B ), in which: the single
line denotes the dressed-quark propagator (Appendix A 1); I' is the
diquark Bethe-Salpeter amplitude (Appendix A 4); and the double
line is the diquark propagator [Eqs. (B4) and (B9)].

description continues in Sec. V, with a consideration of the

impact on all form factors of a dressed-quark anomalous

magnetic moment. In Sec. VI we explore the effect of meson-

cloud contributions to hadron structure calculations in the

context of the y*p — P;1(1440) helicity amplitudes, which

have been analyzed using coupled-channels methods [29-32].
Section VII is an epilogue.

II. ELECTROMAGNETIC CURRENTS

We base our description of the dressed-quark core of
the nucleon and Roper on solutions of a Faddeev equation,
which is illustrated in Fig. 1, and formulated and described in
Appendices A and B . The Faddeev equations are completed
by the quantities reported in Table I (top), and our values
for the nucleon and Roper masses and eigenvectors, the latter
normalized to unity, are presented in Table I (bottom). These
masses are drawn from a unified spectrum of u, d-quark
hadrons, obtained using a symmetry-preserving regularization
of a vector x vector contact interaction [14]. That study
simultaneously correlates the masses of meson and baryon
ground- and excited-states within a single framework. In
comparison with relevant quantities, it produces a root-mean-
square relative-error/degree-of-freedom equal to 13%. The
predictions uniformly overestimate the experimental values
of meson and baryon masses [3]. Given that the employed
truncation deliberately omitted meson-cloud effects in the
Faddeev kernel, this is a good outcome because inclusion of

TABLE 1. (Top) Computed quantities required as input for
the Faddeev equation, obtained with ar/7m = 0.93 and (in GeV)
m = 0.007, Ay = 0.24, Ay, = 0.905. (Bottom) Nucleon and Roper
masses, and associated unit-normalized eigenvectors, obtained there-
with. (All dimensioned quantities are listed in GeV.)

M Mygor Mg+ Egor Fygor E,+  Mdy’
0.368 0.776 1.056 4.354 0.499 1.3029 0.622
Mass (GeV) s af a) aF ad
my = 1.14 0.88 —0.38 0.27 —0.065 0.046
mg = 1.72 —0.44 —0.030 0.021 0.73 —-0.52
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FIG. 2. Interaction vertex that ensures a conserved current for the
elastic and transition form factors in Egs. (2) and (3). The single
line represents the dressed-quark propagator, S(p) in Appendix A 1;
the double line, the diquark propagators in Eqs. (B4) and (B9); and
the vertices are described in Appendix C. From top to bottom, the
diagrams describe the photon coupling: directly to the dressed-quark,
to a diquark in an elastic scattering event, or inducing a transition
between scalar and axial-vector diquarks.

such contributions acts to reduce the computed masses. As
noted in the Introduction [Eq. (1)], such effects are particularly
important for the Roper resonance.

We are interested in three electromagnetic currents: those
defining the nucleon and Roper elastic form factors,

T2 (Ps, P) = ieﬁB(Pf-)[VuFm(Qz)

1
+MGMUQVFZB(Q2):|MB(Pi)9 (2)
B =N, R,and Q = P; — P;, and that expressing the transi-
tion form factors [Q,,y,] = 0, Eq. (A20)],

T3Py P) = ieuR<Pf>[y,f Fi.(0%

+ mansz*(Qz)]uN(Pi)- 3)
N.B. Electromagnetic current kinematics and the definition of
constraint-independent form factors are discussed in Ref. [33],
so that Eq. (2) may be viewed as a special case of Eq. (3)
which is simplified by the on-shell condition
is(Pp)y - Qup(pi) = 0.

With the contact interaction described in Appendix A and
our treatment of the Faddeev equation (Appendix B), there
are three contributions to the currents. They are illustrated in
Fig. 2 and detailed in Appendix C . The computation of form
factors is straightforward following the procedures outlined in
those appendices.
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TABLE II. Row 1, results computed herein with the contact
interaction, whose input is presented in Table 1. Row 2, results
obtained using QCD-like momentum dependence for the dressed-
quark propagators and diquark Bethe-Salpeter amplitudes in solving
the Faddeev equation. Row 3, values representative of experiment.
Row 4, contact interaction augmented by a model dressed-quark
anomalous electromagnetic moment (see Sec. V).

rlpMN erMN rlnMN r2nMN Kp Kn
Contact 3.19 2.84 1.21 319 1.02 -0.92
Ref. [34] 3.76 2.82 0.59 3.14 167 -1.59
Ref. [35] 3.76 4.18 0.56 4.33 1.79 —-1.91

Contactgamm ~~ 3.41 4.00 0.55 38 168 —1.24

III. NUCLEON ELASTIC

There are no free parameters in our computation of nucleon
elastic form factors: All those associated with our treatment of
the contact interaction are fixed in Refs. [14,28] (see Table I).
We report static properties in Table II and depict form factors
for the proton in Fig. 3 and the neutron in Fig. 4. N.B. We
use a Euclidean metric (Appendix E), and hence, in elastic
scattering, one has

Q> +2P; - Q =0, )

0 2 4 6 8 10

o 2 4 6 8 10
X

FIG. 3. (Color online) Proton Dirac (top) and Pauli (bottom) form
factors, as a function of x = Q*/m3. Solid curve, result obtained
herein using the contact-interaction and hence a dressed-quark mass
function and diquark Bethe-Salpeter amplitudes that are momentum-
independent; dashed curve, result obtained in Ref. [34], which
employed QCD-like momentum-dependence for the dressed-quark
propagators and diquark Bethe-Salpeter amplitudes in solving the
Faddeev equation; dot-dashed curve, a parametrization of experi-
mental data [35].
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10 F1n(¥)
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FIG. 4. (Color online) Neutron Dirac (top) and Pauli (bottom)
form factors, as a function of x = Q7 / m%, Solid curve, result
obtained herein using the contact interaction and hence a dressed-
quark mass function and diquark Bethe-Salpeter amplitudes that are
momentum-independent; dashed curve, result obtained in Ref. [34],
which employed QCD-like momentum dependence for the dressed-
quark propagators and diquark Bethe-Salpeter amplitudes in solving
the Faddeev equation; dot-dashed curve, a parametrization of exper-
imental data [35].

A. Dirac and Pauli form factors

In our symmetry-preserving DSE treatment of the contact
interaction we construct a nucleon from diquarks whose
Bethe-Salpeter amplitudes are momentum-independent and
dressed quarks with a momentum-independent mass function
and arrive at a nucleon described by a momentum-independent
Faddeev amplitude. This last is the hallmark of a pointlike
composite particle and explains the hardness of the computed
form factors, which is evident in Figs. 3 and 4.

The hardness contrasts starkly with results obtained from
a momentum-dependent Faddeev amplitude produced by
dressed-quark propagators and diquark Bethe-Salpeter ampli-
tudes with QCD-like momentum dependence and with ex-
periment. Evidence for a connection between the momentum
dependence of each of these elements and the behavior of
QCD’s g function is accumulating (e.g., Refs. [26-28,36-39]).
The comparisons in Figs. 3 and 4 add to this evidence,
in connection here with readily accessible observables, and
support a view that experiment is a sensitive probe of
the running of the B function to infrared momenta. This
perspective is reinforced by subsequent figures.

Table II exposes another shortcoming in the description of
nucleons via a momentum-independent Faddeev amplitude;
namely, the anomalous magnetic moments are far too small.
In a Poincaré-covariant treatment, the magnitude of the
magnetic moment grows with increasing quark orbital angular
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FIG. 5. (Color online) Flavor separation of the proton’s Dirac
form factor, as a function of x = Q? / mf\,; normalization: F l”p 0) =2,
F, 1‘1p(0) = 1. Solid curve, u quark obtained using the contact interac-
tion; short-dashed curve, d quark, contact interaction; dot-dashed
curve, u quark obtained from QCD-like momentum dependence for
the dressed-quark propagators and diquark Bethe-Salpeter amplitudes
in the Faddeev equation [34]; and long-dashed curve, d quark obtained
similarly. The data are from Refs. [42,43]: u quark, circles; and
d quark, diamonds. The dotted curves are determined from the
parametrization of data in Ref. [44].

momentum. However, a momentum-independent Faddeev
amplitude suppresses quark orbital angular momentum, as
may be seen from the absence in Eqs. (B17) of a dependence on
the relative momentum. This explains the differences between
the anomalous magnetic moments in Rows 1 and 2 of Table II.

The differences between the anomalous moments in
Rows 2 and 3 have a different origin; viz., QCD’s dressed
quarks possess large momentum-dependent anomalous mag-
netic moments owing to DCSB [40], and the discrepancy is
resolved by incorporating this phenomenon. Owing to the
momentum dependence of these moments, the magnetic radii
are also affected, so that r,,, 72, in Row 2 are shifted markedly
toward the values in Row 3. This is illustrated in Ref. [41] and
in Row 4, which is discussed further in Sec. V.

In Fig. 5 we depict a flavor decomposition of the proton’s
Dirac form factor. In neither the data nor the calculations is the
scaling behavior anticipated from perturbative QCD evident
on the momentum domain depicted. This fact is emphasized
by the zero in F dp, whose existence is independent of the
interaction. Its location is not, and the extrapolation of a
modern parametrization of data produces a zero which is
coincident with that predicted by the QCD-based interaction
[34,45]. The zero owes to the presence of diquark correlations
in the nucleon. It has been found [34] that the proton’s
singly represented d quark is more likely to be struck in
association with an axial-vector diquark correlation than
with a scalar, and form factor contributions involving an
axial-vector diquark are soft. However, the doubly represented
u quark is predominantly linked with harder scalar-diquark
contributions. This interference produces the zero in the Dirac
form factor of the d quark in the proton. The location of the
zero depends on the relative probability of finding 1+ and
07" diquarks in the proton: With increasing probability for an
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FIG. 6. (Color online) Flavor separation of the proton’s Pauli
form factor, as a function of x = Q?/ mi,: d quark, top; and u quark,
bottom. Solid curve, result obtained using the contact interaction;
dashed curve, obtained from QCD-like momentum-dependence for
the dressed-quark propagators and diquark Bethe-Salpeter amplitudes
in the Faddeev equation [34]; dotted curve, determined from the
parametrization of data in Ref. [44]; data from Refs. [42,43,46].

axial-vector diquark, it moves to smaller-x; in Ref. [34] the
scalar-diquark probability is 60%, whereas herein it is 78%.

We plot the flavor decomposition of the proton’s Pauli form
factor in Fig. 6. Once again, the contact-interaction results
are far too hard and the general trend of the data favors a
Faddeev equation built from dressed-quark propagators and
diquark Bethe-Salpeter amplitudes which are QCD-like in
their momentum dependence.

B. Sachs form factors

The bottom panel of Fig. 7 depicts the ratio of proton Sachs
electric and magnetic form factors:

2

Gp(Q) = Fi,(0) — 4Q2 F,(0), (5)
My

Gup(0?) = Fi,(0) + F2p(Q7). (5b)

Once again, the existence of a zero is independent of the
interaction upon which the Faddeev equation is based but the
location is not. That location is insensitive to the size of
the diquark correlations [34].

To assist in explaining the origin and location of a zero
in the Sachs form factor ratio, in the top panel of Fig. 7 we
depict the ratio of Pauli and Dirac form factors: both the actual
contact-interaction result and that obtained when the Pauli
form factor is artificially “softened”; viz.,

F2,(0%)

2 _—

(6)
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FIG. 7. (Color online) (Top) Normalized ratio of proton
Pauli and Dirac form factors. Solid curve, contact interaction;
long-dashed curve, result from Ref. [41], which employed QCD-like
momentum-dependence for the dressed-quark propagators and
diquark Bethe-Salpeter amplitudes; long-dash-dotted curve, drawn
from parametrization of experimental data in Ref. [35]; and dotted
curve, softened contact-interaction result, described in connection
with Eq. (6). (Bottom) Normalized ratio of proton Sachs electric and
magnetic form factors. Solid curve and long-dashed curve, as above;
dot-dashed curve, linear fit to data in Refs. [51-55], constrained
to one at Q? = 0; short-dashed curve, [1, 1]-Padé fit to that data;
and dotted curve, softened contact-interaction result, described in
connection with Eq. (6). In addition, we have represented a selection
of data explicitly: solid squares [52], circles [54], triangles [55], and
open squares [56].

As observed in Ref. [47], a softening of the proton’s Pauli
form factor has the effect of shifting the zero to larger values
of Q. In fact, if F>, becomes soft quickly enough, then the
zero disappears completely.

The Pauli form factor is a gauge of the distribution of mag-
netization within the proton. Ultimately, this magnetization is
carried by the dressed quarks and influenced by correlations
amongst them, which are expressed in the Faddeev wave
function. If the dressed quarks are described by a momentum-
independent mass function, then they behave as Dirac particles
with constant Dirac values for their magnetic moments and
produce a hard Pauli form factor. Alternatively, suppose that
the dressed quarks possess a momentum-dependent mass
function, which is large at infrared momenta but vanishes
as their momentum increases. At small momenta they will
then behave as constituent-like particles with a large magnetic
moment, but their mass and magnetic moment will drop toward
zero as the probe momentum grows. (N.B. Massless fermions
do not possess a measurable magnetic moment [40].) Such
dressed quarks will produce a proton Pauli form factor that is
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large for Q2 ~ 0 but drops rapidly on the domain of transition
between nonperturbative and perturbative QCD, to give a
very small result at large Q. The precise form of the Q2
dependence will depend on the evolving nature of the angular
momentum correlations between the dressed quarks. From
this perspective, existence, and location if so, of the zero
in M,,GE,,(QZ)/GM,,(Qz) are a fairly direct measure of the
location and width of the transition region between the nonper-
turbative and perturbative domains of QCD as expressed in the
momentum dependence of the dressed-quark mass function.

We expect that a mass function which rapidly becomes
partonic—namely, is very soft—will not produce a zero, have
seen that a constant mass function produces a zero at a small
value of Q?, and know that a mass function which resembles
that obtained in the best available DSE studies [48,49] and
via lattice-QCD simulations [50] produces a zero at a location
that is consistent with extant data. There is an opportunity here
for very constructive feedback between future experiments
and theory.

C. Valence-quark distributions at x = 1

At this point we would like to exploit a connection between
the Q% = 0 values of elastic form factors and the Bjorken-
x = 1 values of the dimensionless structure functions of deep
inelastic scattering, F>"”(x). Our first remark is that the x = 1
value of a structure function is invariant under the evolution
equations [24]. Hence, the value of

450
dy(x) dy(x) FJ(x)
,  Where = e @)
uy(x) |, uy(x) 44— 765
2

is a scale-invariant feature of QCD and a discriminator between
models. Next, when Bjorken-x is unity, then Q> + 2P - Q =
0; that is, one is dealing with elastic scattering. Therefore,
in the neighborhood of x =1 the structure functions are
determined by the target’s elastic form factors. The ratio in
Eq. (7) expresses the relative probability of finding a d quark
carrying all the proton’s light-front momentum compared with
that of au quark doing the same or, equally, owing to invariance
under evolution, the relative probability that a Q> = 0 probe
either scatters from a d quark or a u quark; viz.,

d,x)| P

()|, PP

®)

Plainly, in SU(6) constituent-quark models, the right-hand
side of Eq. (8) is 1/2. However, when a Poincaré-covariant
Faddeev equation is employed to describe the nucleon,

d 2 pp, 1 pp.
Plp _ §P1pa+§P1pm (9)
PPt pltyipht 2pht

where we have used the notation of Ref. [34]. Namely,
P = F} (Q* = 0) is the contribution to the proton’s charge
arising from diagrams with a scalar diquark component
in both the initial and final state: u[ud] ® y ® ulud]. The
diquark-photon interaction is far softer than the quark-photon
interaction and hence this diagram contributes solely to u,

at x=1. P = Fl“p(Q2 = 0) is the kindred axial-vector
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TABLE III. Probabilities described after Eq. (9), from which one
may compute the evolution-invariant x = 1 value of the structure
function ratio.

Plp,s Plp-a P]I’ym % %2;

v 2
M = constant 0.78 0.22 0 0.18 0.41
M(p?) 0.60 0.25 0.15 0.28 0.49

diquark contribution; viz., 2d{uu} ® y ® d{uu} + u{ud} ®
y ® u{ud}. At x = 1 this contributes twice as much to d, as
it does to u,. P/ = F{;(Q2 = 0), is the contribution to the
proton’s charge arising from diagrams with a different diquark
component in the initial and final state. The existence of this
contribution relies on the exchange of a quark between the
diquark correlations and hence it contributes twice as much to
u, as it does to d,. If one uses the “static approximation” to the
nucleon form factor [Eq. (B16)] as with the contact-interaction
herein, then P/ = 0.

It is plain from Eq. (9) that d,/u, = O in the absence of
axial-vector diquark correlations, that is, in scalar-diquark-
only models of the nucleon. Furthermore, Eq. (9) produces
dy/u, = 0.05, Fy/FY = 0.30, using the case II solution in
Ref. [57], which is fully consistent with Fig. 5 therein.

Using the probabilities derived from Table I (bottom),
one obtains the first row in Table III, while the second
row is drawn from Ref. [34]. (Here we correct an error
in Ref. [24], which inadvertently interchanged 2 <> 1 in
evaluating the P/ contribution.) Both rows in Table III are
consistent with d,/u, = 0.23 +0.09 (90% confidence level,
F}'/Fy = 0.45 £ 0.08) inferred recently via consideration of
electron-nucleus scattering at x > 1 [58]. However, this is also
true of the result obtained through a naive consideration of the
isospin and helicity structure of a proton’s light-front quark
wave function at x ~ 1, which leads one to expect that d
quarks are five-times less likely than u quarks to possess the
same helicity as the proton they comprise; viz., d,/u, = 0.2
[59]. Plainly, contemporary experiment-based analyses do
not provide a particularly discriminating constraint. Future
experiments with a tritium target could help [60].

IV. NUCLEON — ROPER TRANSITION AND ROPER
ELASTIC

A computation of the nucleon-to-Roper transition form
factors must be performed in conjunction with that of the
Roper elastic form factors. They are connected via orthonor-
malization: The Roper is orthogonal to the nucleon, which
means F;.(Q? = 0) = 0 for both the charged and the neutral
channels; and the canonical normalization of the Roper
Faddeev amplitude is fixed by setting Fz+(Q* = 0) = 1. The
transition is calculated with the kinematic arrangements,

Pﬁ:—m%, Pizz—m%,, m%—mi,—}—ZPi-Q—i—Qz:O,
(10)

from the transition current expressed by the diagrams in Fig. 2,
which are as explained in Appendix C except that the final
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baryon, W, is the Roper resonance. These considerations lead
to the modifications described in Appendix D .

Note that in connection with all form factors involving
the Roper resonance, we only report results obtained with our
symmetry-preserving treatment of the contact interaction. This
is afirst step. Based on the information in Sec. I1I, we anticipate
that a momentum-dependent interaction will produce Roper-
related form factors that are similar for Q% < 0.5GeV? but
softer at larger momentum scales.

A. Roper Faddeev amplitude

The Faddeev amplitude for the Roper resonance in Table I
(bottom), whose origin is explained in Appendices B and D,
contrasts strikingly with that of the nucleon and suggests a
fascinating new possibility for the structure of the Roper’s
dressed-quark core. To explain this remark, we focus first on
the nucleon, whose Faddeev amplitude describes a ground-
state that is dominated by its scalar diquark component
(78%). The axial-vector component is significantly smaller
but nevertheless important. This heavy weighting of the scalar
diquark component persists in solutions obtained with more
sophisticated Faddeev equation kernels (see, e.g., Table II in
Ref. [34]). From a perspective provided by the nucleon’s parity
partner and the radial excitation of that state, in which the scalar
and axial-vector diquark probabilities are [16] 51%—49% and
43%-57%, respectively, the scalar diquark component of the
ground-state nucleon actually appears to be unnaturally large.

One can nevertheless understand the structure of the
nucleon. As with so much else, the composition of the nucleon
is intimately connected with DCSB. In a two-color version
of QCD, the scalar diquark is a Goldstone mode, just like
the pion [61]. (This is a long-known result of Pauli-Giirsey
symmetry.) A memory of this persists in the three-color
theory and is evident in many ways. Among them, through
a large value of the canonically normalized Bethe-Salpeter
amplitude and hence a strong quark+-quark-diquark coupling
within the nucleon. (A qualitatively identical effect explains
the large value of the w N coupling constant.) There is no
such enhancement mechanism associated with the axial-vector
diquark. Therefore, the scalar diquark dominates the nucleon.

With the Faddeev equation treatment described herein, the
effect on the Roper is dramatic: Orthogonality of the ground
and excited states forces the Roper to be constituted almost
entirely (81%) from the axial-vector diquark correlation. It
is important to check whether this outcome survives with a
Faddeev equation kernel built from a momentum-dependent
interaction.

B. Roper elastic

The Roper mass and Faddeev amplitude in Table I (bottom)
produce the radii and anomalous magnetic moments in
Table IV and the elastic form factors depicted in Figs. 8 and 9.
Notwithstanding the markedly different internal structure, the
Roper elastic form factors are similar to those of the nucleon,
in both magnitude and Q evolution.

The exception is the Dirac form factor of the neutral Roper,
which exhibits a zero at Q% ~ 3m%\,. This behavior derives
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TABLE IV. Row 1, Roper results computed herein with the
contact interaction, whose input is presented in Table I. Row 2, related
contact-interaction nucleon results repeated for ease of comparison.
Rows 3 and 4, analogous results obtained with a model dressed-quark
anomalous magnetic moment (Sec. V).

+ 0 0
r]R+MN rzR My r,R My r2R My  Kkp+ K RO

Roper 2.96 2.66 0.81 3.19 0.61 -0.61
Nucleon 3.19 2.84 1.21 3.19 1.02 -0.92
Ropergamm 3.29 3.90 0.22 346 175 —1.20
Nucleongamm ~ 3.41 4.00 0.55 385 1.68 —1.24

from a constructive interference between Diagrams 2 and 3 in
Fig. 2 that, with increasing Q2, sums to overwhelm the always-
negative contribution from Diagram 1. As Q? increases, the
dominant contributions expressed by Diagrams 2 and 3 are
associated with a photon scattering from the positively charged
[ud] and {ud} correlations, whereas Diagram 1 is alone in
measuring only a negative charge; that is, that of the d
quark. Ultimately, therefore, suppression of the scalar-diquark
component in the Roper is responsible for the zero in Fjgo at
0?>0.

C. Transition

In Figs. 10 and 11 we depict the charged-Roper — proton
transition form factors computed using our treatment of the
contact interaction. The calculated form factors underestimate

0 2 4 6 8 10

FIG. 8. (Color online) Comparison of charged-Roper and proton
Dirac (top) and Pauli (bottom) form factors, as a function of
x = Q*/m3. Solid curve, Roper; dashed-curve, proton. All results
obtained using the contact interaction, and hence a dressed-quark
mass function and diquark Bethe-Salpeter amplitudes that are
momentum independent.
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FIG. 9. (Color online) Comparison of neutral-Roper and neutron
Dirac (top) and Pauli (bottom) form factors, as a function of x =
0? / m%,: Solid curve, neutral-Roper; and dashed-curve, neutron. All
results obtained using the contact-interaction, and hence a dressed-
quark mass-function and diquark Bethe-Salpeter amplitudes that are
momentum-independent.

0 2 4 6
X 04f e
d o

w L /-',:

= -04f

% _oa8f/

g 12

T

2 —1.6t

FIG. 10. (Color online) (Top) Fi. [solid and dot-dashed curves
with dressed-quark anomalous magnetic moment (Sec. V)] and F3,
(dashed and dotted curves with dressed-quark anomalous magnetic
moment) as a function of x = Q*/m3,, computed using the frame-
work described herein. (Bottom) Computed form of Fy,(x) compared
with available data [18-20]. The squares, triangles, and stars are
preliminary results [62] from a simulation of Ny = 2 + 1 lattice-QCD

at, respectively, m /m> .. =~ 8, 10, 40.

PHYSICAL REVIEW C 85, 025205 (2012)

0 2 4 6

©
N

o

|
o
N

—=Forop(X)/KRop

|
o
o)

o
no

FQRﬁp(X)
o
N

|
©
N

|
o
o

X

FIG. 11. (Color online) Comparison between F.(x) computed
using the framework described herein and available data [18-20],
with x = Q?/ m%v (Top) Normalized to unity at x = 0; (bottom)
as computed. In both panels the dashed curve was computed with
a model for the dressed-quark anomalous electromagnetic moment
(Sec. V). The squares, triangles, and stars are preliminary results
from a simulation of Ny =241 lattice-QCD at, respectively,
mi/m?, . ~8,10,40[62].

mexpt. —

the data on the domain 0 < Q> <3 GeV? and are very
probably too hard. Both of these defects are natural given that
we have deliberately omitted effects associated with a meson
cloud in the Faddeev kernel and the current, and used a contact
interaction.

However, the results are qualitatively in agreement with
the trend apparent in available data and reproduce the zero
in F»(Q?% at Q> ~0.5 mfv without fine tuning. These are
meaningful successes given that they are features derived only
from that which we consider to be the Roper’s dressed-quark
core.

As shown in the figures, lattice-QCD results are also
available for these form factors [62]. They have roughly the
same magnitude as the experimental data. In contrast to earlier
simulations of quenched-QCD, these Ny = 2 + 1 results also
support the presence of a zero in F»,.

In Fig. 12 we display the separate contributions from each
diagram represented by the current in Fig. 2. Whilst Diagram
1 with a scalar diquark bystander is plainly dominant, a
significant contribution is also received from Diagram 2 with
a photon probing the structure of the axial-vector diquark
correlations. The form factor is negative at Q% = 0 owing to
orthogonality, which produces sgsy < 0, and passes through
zero because of the zero in the Roper’s Faddeev amplitude,
which is characteristic of a radial excitation.

Figure 13 depicts the neutral-Roper — neutron transition
form factors. Each possesses a zero at Q% ~ 3m%v; the Dirac
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FIG. 12. (Color online) Separation of F,,(x) into contributions
from different diagrams, with x = Q%/m3: solid curve, photon on
u-quark with scalar diquark spectator; dashed curve, photon on scalar
diquark with u-quark spectator; dot-dashed curve, photon on axial-
vector diquark with quark spectator; dotted curve, photon-induced
transition between scalar and axial-vector diquarks with u-quark
spectator. N.B. Owing to Eq. (C5), there is no contribution involving
an axial-vector diquark spectator.

form factor is an order of magnitude smaller than its analog
in the charged-Roper transition; and regarding Fhgo_,,, cf.
Fyg+_ p,in the neighborhood of Q2 = 0 the similar magnitude
but opposite sign is consistent with available data [3].

V. ANOMALOUS MAGNETIC MOMENTS

It is noticeable from the bottom panel of Fig. 11 that
the magnitude of F>.(Q* =0) is underestimated in our

-0.67

-

10F2R5n(X), 10F2Rp(X) 100F1R_n(X), 10F R, p(X)

X

FIG. 13. (Color online) (Top) F|zo_,, (solid curve) as a function
of x = Q*/m3, compared with Fjg+_, (dashed curve), computed
using the framework described herein. (Bottom) Analog for Fszo_,,.
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framework: —0.1 (cf. experiment [18]), —0.56 +0.02. A
similar but smaller deficit is apparent in our computed
nucleon anomalous electromagnetic moments (Table II). In
this connection it is interesting to explore the effect produced
by the dressed-quark anomalous electromagnetic moment,
which is produced by DCSB [40] and is known to have a
material impact on the nucleons’ Pauli form factors [41].

To this end we modified the quark-photon coupling as
described in Appendix C 6 and recomputed all the form
factors described above. Some results for the nucleon are
summarized in the last row of Table II: In each case, inclusion
of the dressed-quark anomalous magnetic moment produces a
significant improvement in the comparison with data. A similar
comparison is made for the Roper in Table IV.

Results for the Roper — proton transition form factor are
included in Figs. 10 and 11. Inclusion of a dressed-quark
anomalous electromagnetic moment has a pronounced effect
on F,,, which moves the result a little closer to experi-
ment: F,(Q? =0) = —0.1 - —0.16 (cf. experiment [18])
—0.56 £ 0.02. It does not, however, compensate sufficiently
for the absence of meson-cloud effects.

VI. MESON CLOUD

In Fig. 14 we draw the helicity amplitudes for the
y*p — P11(1440) transition. They may be computed from

FIG. 14. (Color online) Helicity amplitudes for the y*p —
Py1(1440) transition, with x = Q*/m3,: Ay, (top) and S (bottom).
Solid curves, computed using the treatment of the contact interaction
described herein, including the dressed-quark anomalous magnetic
moment (Appendix C 6); dashed curves, the light-front constituent-
quark model results from Ref. [63]; long-dash-dotted curves, the
light-front constituent-quark model results from Ref. [64]; short-
dashed curves, our smooth fit to the bare form factors inferred in
Ref. [30-32]; data, Refs. [18-20].
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the transition form factors in Eq. (3):

AL(Q%) = c(QIIF1(Q) + F2.(Q7)], (11a)
2 __M NI MR+ my F2*(Q2)
S4(Q%) =—=5e(Q )[ (09— mR+mN],
(11b)
with
2 92 /02 Q2
c<Q2>=[&], gows = o — . (12)
mRmNK 2mR

where 02 = Q>+ (mg £ my), K = (m} — m3)/Qmp),
and « is QED’s fine structure constant.

In addition to our own computation, Fig. 14 displays results
obtained using a light-front constituent-quark model [63],
which employed a constituent-quark mass of 0.22 GeV and
identical momentum-space harmonic oscillator wave functions
for both the nucleon and the Roper (width = 0.38GeV) but
with a zero introduced for the Roper, whose location was
fixed by an orthogonality condition. The quark mass is smaller
than the DCSB-induced value we determined from the gap
equation (see Table I) but a more significant difference is
the choice of spin-flavor wave functions for the nucleon and
Roper. In Ref. [63] they are simple SU(6) x O(3) S-wave
states in the three-quark center-of-mass system, in contrast to
the markedly different spin-flavor structure produced by our
Faddeev equation analysis of these states, Table I (bottom).

Owing to this, in Fig. 14 we also display the light-front
quark model results from Ref. [64]. It is stated therein that
large effects accrue from ‘“configuration mixing,” that is,
the inclusion of SU(6)-breaking terms and high-momentum
components in the wave functions of the nucleon and the
Roper. In particular, that configuration mixing yields a marked
suppression of the calculated helicity amplitudes in compar-
ison with both relativistic and nonrelativistic results based
on a simple harmonic oscillator ansatz for the baryon wave
functions, as used in Ref. [63].

There is also another difference; namely, Ref. [64] employs
Dirac and Pauli form factors to describe the interaction
between a photon and a constituent-quark [65]. As apparent
in Fig. 2 of Ref. [64], they also have a noticeable impact,
providing roughly half the suppression on 0.5 < Q%/GeV? <
1.5. The same figure also highlights the impact on the form
factors of high-momentum tails in the nucleon and Roper wave
functions.

In reflecting upon constituent-quark form factors, we note
that the interaction between a photon and a dressed quark
in QCD is not simply that of a Dirac fermion [40,66-71].
Moreover, the interaction of our dressed quark with the photon
is also modulated by form factors, see Appendices A3 and
C 6 . However, the purely phenomenological form factors in
Refs. [64,65] are inconsistent with a number of constraints
that apply to the dressed-quark-photon vertex in quantum field
theory; for example, the dressed-quark’s Dirac form factor
should approach unity with increasing Q2 and neither its Dirac
nor Pauli form factors may possess a zero. Notwithstanding
these observations, the results from Ref. [64] are more similar
to ours than those in Ref. [63].
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Helicity amplitudes can also be computed using EBAC’s
dynamical coupled-channels framework [29]. In this approach,
one imagines that a Hamiltonian is defined in terms of bare
baryon states and bare meson-baryon couplings; the physical
amplitudes are computed by solving coupled-channels equa-
tions derived therefrom; and the parameters characterizing
the bare states are determined by requiring a good fit to
data. In connection with the y*p — P;1(1440) transition,
results are available for both helicity amplitudes [30-32]. The
associated bare form factors are reproduced in Fig. 14: for
0? < 1.5 GeV? we depict a smooth interpolation and for larger
Q? an extrapolation based on perturbative QCD power laws
(AL~ 1/Q% ~ S1).

The bare form factors are evidently similar to the results
obtained herein and in Ref. [64], both in magnitude and in
Q? evolution. Regarding the transverse amplitude, Ref. [30]
argues that the bare component plays an important role in
changing the sign of the real part of the complete amplitude
in the vicinity of Q% = 0. In this case the similarity between
the bare form factor and the results obtained herein is perhaps
most remarkable, for example, the appearance of the zero in
A%, and the 0% = 0 magnitude of the amplitude (in units of

1073GeV~1/?)

Ref.[63] Ref.[64] Ref.[30 — 32] Contact
Ai1(0) =351 323 —18.6 —16.3

These similarities strengthen support for an interpretation
of the bare-masses, -couplings, etc., inferred via coupled-
channels analyses, as those quantities comparable with hadron
structure calculations that exclude the meson-baryon coupled-
channel effects which are determined by multichannel unitarity
conditions.

An additional remark is valuable in this connection. EBAC
computes electroproduction form factors at the resonance pole
in the complex plane and hence they are complex-valued
functions. Whilst this is consistent with the standard theory of
scattering [72], it differs markedly from phenomenological ap-
proaches that use a Breit-Wigner parametrization of resonant
amplitudes in fitting data. As concerns the y*p — P;1(1440)
transition, the real parts of EBAC’s complete amplitudes are
qualitatively similar to the results in Refs. [17-20] but EBAC’s
amplitudes also have sizable imaginary parts. This complicates
a direct comparison between theory and extant data.

VII. EPILOGUE

We computed form factors for elastic electromagnetic nu-
cleon and Roper scattering and nucleon — Roper transitions
using a Poincaré-covariant, symmetry-preserving DSE treat-
ment of a vector x vector contact interaction. Within this inter-
nally consistent framework current conservation is assured and
we obtain: a dressed-quark that is described by a momentum-
independent mass function but whose computed interaction
with the photon is described by a Q2-dependent vertex; scalar
and axial-vector diquark correlations (constituted from dressed
quarks) whose Bethe-Salpeter amplitudes are independent of
constituent relative momentum but whose interactions with
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the photon are described by calculated Q?-dependent form
factors; and baryons, whose nontrivial spin-flavor structure is
determined from the solution of a Faddeev equation, which
produces a bound state composed from dressed quarks and
diquarks, described by a momentum-independent Faddeev
amplitude but whose elastic electromagnetic and transition
form factors are Q2 dependent.

We found that the electromagnetic interactions of baryons
constituted thus from the contact interaction are typically
described by hard form factors. Although this was to be
expected, itis nevertheless important to compute and record the
behavior because this hardness contrasts markedly with results
obtained from the momentum-dependent Faddeev amplitudes
produced by dressed-quark propagators and diquark Bethe-
Salpeter amplitudes with QCD-like momentum dependence,
and with experiment. Hence, the present calculations provide
concrete comparisons which support a view that experiment
is a sensitive probe of the evolution of the strong interaction’s
running masses and coupling to infrared momenta, and hence
of the long-range behavior of the 8 function.

In this connection, our analysis of the proton’s elastic form
factors suggests that the existence, and location if so, of a zero
in the ratio of Sachs form factors are strongly influenced by the
running of the dressed-quark mass. Our calculations indicate
that a constant mass function produces a zero at a small value
of 0?; a mass function that is very soft will not produce a zero;
and a mass function which resembles that obtained in the best
available DSE- and lattice-QCD studies produces a zero at a
location that is consistent with extant data. Obtaining a clear
experimental answer to the question of whether there is a
zero, and its location in the latter case, is therefore particularly
important.

It is worth reiterating that the diquark correlations, whose
properties are computed and employed herein, are composite
and fully interacting. They must not be confused with the
pointlike and sometimes inert degrees of freedom used in
constituent-quark + constituent-diquark potential models of
baryons. Indeed, our analysis showed that the structure and
interactions of the diquark correlations play an important role
in the development of each baryon form factor. For example,
they are instrumental in producing a zero in the Dirac form
factor of the proton’s d quark and in determining the ratio of
d-to-u valence-quark distributions at x = 1. It is unsound and
misleading to employ a framework in which the correlations
are considered as inert and structureless.

We found that the Roper elastic electromagnetic form
factors are generally similar to those of the nucleon, both
in magnitude and Q? evolution. The one exception is the
neutral Roper’s Dirac form factor, which exhibits a zero at
Q? ~ 3 GeV?. This outcome owes particularly to the presence
of electromagnetically active diquark correlations. It is notable
in this connection that our treatment of the contact interaction
produces a first excitation of the nucleon which is constituted
almost entirely (81%) from axial-vector diquark correlations.
This is an intriguing possibility that should be checked using
a Faddeev equation kernel built from an interaction with
QCD-like momentum dependence.

A primary motivation for this study was a desire to correlate
nucleon elastic and transition form factors, so that the latter
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could be considered well constrained, and then probe further
for a connection between the properties of a baryon’s dressed-
quark core and the bare quantities which feature in modern
coupled-channels analyses of resonance electroproduction. We
focused primarily on the y*p — P;;(1440) transition and
obtained form factors that underestimate extant data on the
domain 0 < Q? < 3 GeV?>. This is consistent with having
deliberately omitted effects associated with a meson cloud
in the Faddeev kernel and the current. However, the results
are qualitatively in agreement with the trend of available data;
for instance, F».(Q?) obtained from the dressed-quark core
exhibits a zero at Q% ~ 0.5 mfv

In Faddeev equation treatments of a baryon’s dressed-quark
core it is common to find that anomalous electromagnetic
moments are underestimated. This is apparent herein, in
connection, too, with transition form factors. We therefore
explored the effect produced by a dressed-quark anomalous
electromagnetic moment, whose existence is an essential
consequence of DCSB. We found that with a realistic value
for this dressed-quark moment, the magnitudes of hadron
magnetic moments are typically increased by ~90% and
magnetic radii by ~30%, and thereafter agree much better
with experiment.

As mentioned above, on the domain 0 < Q2 <2 GeVZ2itis
widely suspected that the inclusion of effects associated with
strong meson-baryon final state interactions—the so-called
meson cloud—is important in making a realistic comparison
between experiment and hadron structure calculations. We
considered this conjecture in the context of the y*p —
P;1(1440) helicity amplitudes and found that the bare am-
plitudes determined via coupled-channels analyses are similar
to the form factors produced by our dressed-quark core, both
in magnitude and Q2 evolution. This outcome strengthens
support for an interpretation of the bare-masses, -couplings,
etc., inferred via coupled-channels analyses, as those quantities
with which the results of hadron structure calculations should
directly be compared, if those calculations have knowingly
excluded the meson cloud.

The Roper-related calculations we have described should
now be repeated using a momentum-dependent interaction
that is drawn, as closely as reasonably possible, from the
behavior of QCD. We expect this to produce form factors
that, for Q2 < 0.5GeV?, are similar to those we have obtained
from the contact interaction, but softer at larger momentum
scales. Near term, such computations are achievable within the
framework of Ref. [34], which has provided the basis for many
comparisons herein. Looking further ahead, we anticipate
that some priority will be given to the improvement of
computational techniques, so that the interaction of Ref. [49],
for example, can be used directly in the study of transitions to
excited states, in analogy with the treatment of ground-state
nucleon form factors [38,39,73].
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APPENDIX A: CONTACT INTERACTION

1. Gap equation

The starting point for our study is the dressed-quark
propagator, which is obtained from the gap equation:

S(p) ' =iy -p+m
d4q ) A4 p
+ 2ny'S D,(p — q)EVuS(q)TFv(q, P
(A1)

wherein m is the Lagrangian current-quark mass, D,,, is
the vector-boson propagator, and I', is the quark—vector-
boson vertex. Much is now known about D,, in QCD
[74] and nonperturbative information is accumulating on
I', [40,75-77]. However, this is one of a series of studies
undertaken to build a stock of material that can be used to
identify unambiguous signals in experiment for the pointwise
behavior of the interaction between light-quarks, the light-
quark’s mass function, and other similar quantities. Whilst
these are particular qualities, taken together they can plausibly
enable a characterization of the nonperturbative behavior of the
theory underlying strong interaction phenomena [1,24,25].
We therefore work with the following choice:
dra IR
§2Dy(p — @) = S0 —s, (A2)
mg

where mg = 0.8 GeV is a gluon mass scale typical of the
one-loop renormalization-group-improved interaction intro-
duced in Ref. [49], and the fitted parameter oqr/m = 0.93
is commensurate with contemporary estimates of the zero-
momentum value of a running-coupling in QCD [78,79].
Equation (A2) is embedded in a rainbow-ladder truncation
of the DSEs, which is the leading-order in the most widely
used, global-symmetry-preserving truncation scheme [80].
This means

Lvp, ) =w (A3)

in Eq. (A1) and in the subsequent construction of the Bethe-
Salpeter kernels.

One may view the interaction in Eq. (A2) as being inspired
by models of the Nambu—Jona-Lasinio type [81]. However,
our treatment is atypical. It is notable that one typically
finds Eqgs. (A2) and (A3) produce results for low-momentum-
transfer observables that are practically indistinguishable from
those produced by more sophisticated interactions [26-28].

Using Egs. (A2) and (A3), the gap equation becomes

167 O R d q

S\ p)=iy- P+m+Tm—2 Gy Y S(@) Y, (A4)

an equation in which the integral possesses a quadratic
divergence, even in the chiral limit. When the divergence is
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regularized in a Poincaré covariant manner, the solution is
S(p)~' =iy -p+M, (AS)
where M is momentum independent and determined by
40[1R ©
M=m+M 5 dss
3mm G Jo
Our regularization procedure follows Ref. [82]; that is, we

write

1 00

— / dt efr(erMz)
s + 1‘42 0

ST (A6)

2
Tir

— dr e T+ (A7)
T
e~ GHMITL _ p~(s+M)7;
= , A8
s+ M? (A8)
where ;. are, respectively, infrared and ultraviolet regu-
lators. It is apparent from Eq. (AS8) that a finite value of
7y =: 1/A; implements confinement by ensuring the absence
of quark production thresholds [25,83]. Because Eq. (A2) does
not define a renormalizable theory, then A,y := 1/7,, cannot
be removed but instead plays a dynamical role, setting the
scale of all dimensioned quantities. Using Eq. (A7), the gap
equation becomes

4oy

M=m+M— C'“(MZ) (A9)
3n G

where C“‘(Mz)/M2 =TI'(-1, Mztuzv) —I'(—1, Mzri%), with

I'(«, y) being the incomplete y function.

2. Point-meson Bethe-Salpeter equation

In rainbow-ladder truncation, with the interaction in
Eq. (A2), the homogeneous Bethe-Salpeter equation for a
color-singlet meson is

16
Ik P) = — ”m/@ﬁmMPm,mm

where x(q; P) = S(g + P)I'(q; P)S(q) and I'(g; P) is the
meson’s Bethe-Salpeter amplitude. Because the integrand
does not depend on the external relative momentum, &, then
a symmetry-preserving regularization of Eq. (A10) yields
solutions that are independent of k. This is the defining
characteristic of a pointlike composite particle.

With a dependence on the relative momentum forbidden
by the interaction, the rainbow-ladder pseudoscalar and vector
Bethe-Salpeter amplitudes take the form!

I (p)

i 1
=1V5En(P)+MV5V°PFn(P), (AT1)

r2(P) =yl E,(P), (A12)

where P,y =0and y, +y. = y,.

"'We assume isospin symmetry throughout and hence do not include
the Pauli isospin matrices explicitly.
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TABLE V. Meson-related results obtained with or/7m = 0.93
and (in GeV): m =0.007, A; =0.24, A, =0.905 [28]. The
Bethe-Salpeter amplitudes are canonically normalized; «, is the
in-pion condensate [84,85]; and f; , are the mesons’ leptonic decay
constants. Empirical values are k., ~ (0.22GeV)? and [3] f,, = 0.092
GeV, f, =0.153 GeV.

E. F. E, K;B my m, [ fo

3.639 0481 1531 0243 0.140 0928 0.101 0.129

Values of some meson-related quantities, of relevance
herein and computed using the contact-interaction, are re-
ported in Table V.

3. Ward-Takahashi identities

No study of low-energy hadron observables is meaningful
unless it ensures expressly that the vector and axial-vector
Ward-Takahashi identities are satisfied. Violation of these
identities is a flaw of constituent-quark models that cannot
be remedied. The m = 0 axial-vector identity states (ky =
k+ P)

PuTsu(ky k) = S7 (kpiys +iysS™ (k)

where I's, (ky, k) is the axial-vector vertex, which is deter-
mined by

(A13)

167‘[ Ol[R
Usu(ky, k) = ysyu — /(2 i Yo X51 (G4 @) Ve
(A14)

One must implement a regularization that maintains
Eq. (A13). That amounts to eliminating the quadratic and
logarithmic divergences. Their absence is just the circumstance
under which a shift in integration variables is permitted, an
operation required to prove Eq. (A13). It is guaranteed so long
as one implements the constraint [14,26,28]

1
0= / da [C*(@(M2, . P?) + Ci*@(M, a. PY)].
0

(A15)
with
o(M?, o, P?) = M? + a(1 — a)P?, (A16)
Cl'(z) = —2(d/dz)C"(2)
= z[[(0, M?7,) — T'(0, M?72)].  (A17)
The vector Ward-Takahashi identity
PyiT) (ke k) = S (ky) — S71 (k). (A18)

wherein '}, is the dressed-quark-photon vertex, is crucial for a
sensible study of a bound state’s electromagnetic form factors
[70]. The vertex must be dressed at a level consistent with the
truncation used to compute the bound state’s Bethe-Salpeter
or Faddeev amplitude. Herein this means the vertex should be
determined from the following inhomogeneous Bethe-Salpeter
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equation:

167 Ol]R d q ( ) (A19)
3 (27_[)4 yctX;L 9+ 4)Va>

where  x,.(q+,q) = S(q + P)I',(Q)S(g). Owing to the
momentum-independent nature of the interaction kernel, the
general form of the solution is

TW(Q) =yl Pr(Q®) + vy PL(QY).
Inserting Eq. (A20) into Eq. (A19), one readily obtains
PL(QY) =1, (A21)

owing to corollaries of Eq. (A13). Using these same identities,
one finds [28]

L@ =y, -

(A20)

1
2y __
PO = 1o (A22)
with [C}(2) = Ci(z)/7]
1
2y _ 4R 2
Ky(Q)—3nmé/0 daa(l —a)Q
x C\' (@(M?, a, Q). (A23)

4. Diquark Bethe-Salpeter amplitudes

In the rainbow-ladder truncation, color-antitriplet quark-
quark correlations (diquarks) are described by an homoge-
neous Bethe-Salpeter equation that is readily inferred from
Eq. (A10); viz., following Ref. [86] and expressing the diquark
amplitude as

¢ (ki P) = Tg4q(k; PYCTHC, (A24)
then
8 OR d q
gtk P) = = o / S @i P (A25)

Hence, one may obtain the mass and amplitude for a diquark
with spin-parity J¥ from the equation for a J~¥ meson in
which the only change is a halving of the interaction strength.
The flipping of the sign in parity occurs because fermions and
antifermions have opposite parity.

Scalar and axial-vector quark-quark correlations are domi-
nant in studies of the nucleon and Roper:

N . 1
L9 (P) = iysEqq+(P) + 37757+ PFaqor(P), - (A26)
Lhu(P) =yl Egqre(P). (A27)

These amplitudes are canonically normalized:

P, =2tr

d'q_ Lo 9 oF .
@i Lo P gp S+ PITg (P)S(q): (A28)

and

2 d*q
P, = —t/ o) qqa( P)—S(q+ P)qua(P)S(q).

(A29)
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APPENDIX B: FADDEEV EQUATION

We describe the dressed-quark-cores of the nucleon and
Roper via solutions of a Poincaré-covariant Faddeev equation
[87]. The equation is derived following the observation that
an interaction which describes mesons also generates diquark
correlations in the color-3 channel [86]. The fidelity of the
diquark approximation to the quark-quark scattering kernel is
verified by recent studies [39].

Within this approach, a J = % baryon is represented by a
Faddeev amplitude,

V=W + W, + s, (BD)

where the subscript identifies the bystander quark and, for
example, W, , are obtained from W3 by a cyclic permutation
of all the quark labels. We employ a simple but realistic
representation of W. The spin- and isospin—% nucleon and
Roper are each a sum of scalar and axial-vector diquark
correlations:

Ws(pi, i ) =Ny + NS, (B2)
with (p;, «;, ;) the momentum, spin, and isospin labels of the
quarks constituting the bound state, and P = p; + p> + p3
the system’s total momentum.

The scalar diquark piece in Eq. (B2) is
NY (pivei, 1) = [FO+ (3o K)]0E

o0

x AY (K) [S(€; P)u(P)] (B3)

where the spinor satisfies Eq. (E4), with M the mass obtained
by solving the Faddeev equation, and it is also a spinor in
isospin space with ¢4 = col(1, 0) for the charge-one state and
¢_ =col(0, 1) for the neutral state; K = p| + p2» =: ppyy,
pua = pi — pas €= (—ppay + 2p3)/3;

1

2 2
K + m(ifIO+

3
az’

AY(K) = (B4)
is a propagator for the scalar diquark formed from quarks 1
and 2, with m+ the mass scale associated with this corre-
lation, and I'" is the canonically-normalized Bethe-Salpeter
amplitude describing their relative momentum correlation,
Appendix A4; and S, a 4 x4 Dirac matrix, describes
the relative quark-diquark momentum correlation. The color
antisymmetry of W3 is implicit in '/ " with the Levi-Civita
tensor, €,c,c;, expressed via the antisymmetric Gell-Mann
matrices; viz., defining

(H' =i\, H> = =i\, H? =i)%), (B9)
then €C1L‘203 = (HCS)ClL‘z' (B6)
The axial-vector component in Eq. (B2) is

) 1 T T2
N (piy i, 1) = |:tl F,lj (‘P[12]§K)]

2 [31e%]
X AL (K) [AL@ Pu(P)]Z, (B7)

where the symmetric isospin-triplet matrices are

1 1
t+ = %(‘CO + T3)a to =T, t = _2(.[0 - T3)7
(B8)
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and the other elements in Eq. (B7) are straightforward
generalizations of those in Eq. (B3) with, for example,

MUK = gy (B +355) ®9)
v TR g2 \TwT o )

: K°+ m‘]‘]]+ m‘ﬂ]ﬁ-

One can now write the Faddeev equation for Ws:

S(k; P)u(P)
Al (k; P)u(P)

_ d*e . S; P)u(P)
=4 / oy & EP) [Ai(ﬁ; P)u(P)} :

(B10)
The kernel in Eq. (B10) is

J
Mk, € P) = |: Moo Moy :| B11)

(M), (M
with
Moo =T (ky — £y /25 40) ST(Lyy — ky)
x T, — kyq/2: —kyq) S(8g) A% (£y,),  (B12)

where ¢, = ¢, k;, =k, 0,y = —L+ P, kyy, = —k + P and the
superscript “T”” denotes matrix transpose, and

Mo, =t/ I‘};(kq — L4q/2:L4q)S" (Lag — kg)
X Ty — koq/2: —kgq) S(Lg) AL (Lee). (B13)
(Mgl = T (kg = £gq/2: Laq) S (Lgq — kg) T

X TNy = kgq/2:—keg) S(U) A” (L40),  (B14)
(M, =7 T} (kg — £gq/2:84q) ST (0gq — ko) £
X ) (0g — kgq/2: —kgq) S(€) AL (64e).  (B15)

Our dressed-quark propagator is described in Appendix A 1
and the diquark propagators are given in Egs. (B4) and
(B9), so the Faddeev equation is complete once the diquark
Bethe-Salpeter amplitudes are known. They are reviewed
in Appendix A4 . We note here, however, that we follow
Ref. [14] and employ a simplification of the kernel; viz., in the
Faddeev equation, the quark exchanged between the diquarks
is represented as

T 8N
S (k) — L (B16)
where gy = 1.18 [14]. This is a variant of the so-called “static
approximation,” which itself was introduced in Ref. [88] and
has subsequently been used in studying a range of nucleon
properties [89]. In combination with diquark correlations
generated by Eq. (A2), whose Bethe-Salpeter amplitudes are
momentum-independent, Eq. (B16) generates Faddeev equa-
tion kernels which themselves are momentum independent.
The dramatic simplifications that this produces are the merit
of Eq. (B16).

The general forms of the matrices S(¢; P) and A (¢; P),
which describe the momentum-space correlation between the
quark and diquark in the nucleon and Roper, are described
in Refs. [90,91]. However, with the interaction described in
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Appendix A 1 augmented by Eq. (B16), they simplify greatly; eigenvector
viz., S(P)
AL(P) = a\(P)ysyu + ay(P)ysPy,i =+,0, (B17b) W(P) = a?(p) ; (B18)
with the scalars s, a’i’z independent of the relative quark- ay (P)
diquark momentum and P? = —1. a(P)
The mass of the ground-state nucleon is then determined d kernel
by a 5 x 5 matrix Faddeev equation; viz., ¥ = KW, with and kerne
|
00 01 01 01 01
K _\/2 le Kaal _\/2 Ksaz Ksuz
11
_\/2 Kala 0 \/2 Kulul 0 \/2 Ka1a2
_ 10 11 11 11 11
K(P) - Kals \/2 Ku1u1 Kalal \/2 Kalag Kamg ’ (B19)
11
'\/2 Ka'yj O \/2 K[lz[ll O \/2 K(12(12
10 11 11 11 11
Kazs \/2 Ku2u1 Kazal \/2 Kagag Ka2u2
constructed using cy = glzv/(4rr2M);
oy = onla, M, mgq, ,my) = (1 —a) M* + amqq L —a(l—amy, oy =onle, M,mg,, ,my); (B20)
and
K¥ = K% + Ky + K%, (B21a)
K = cvE], . / daC (of)(amy + M), (B21b)
I
mpy —iu
K¥r = —2¢vEqqy, Fyqpr — m / daC (og)(1 — a)amy + M), (B2lc)
m2 ! —iu
Kg(j, =cy (12q0+ I\q/lqg /0 daC, (cr](\),)(amN + M); (B21d)
01 _ z01 01
Ko = Kopa, + Kpar» (B2le)
01 Eqqp Eqqpe (' S, 23
sy = on— e | daCy (on)[m;,.. BM +amy) +2a(1 —a)y’m ], (B21f)
99+ 0
FupiEpgomy 1 =i
o= —cn "’Znoz—"qﬁ i daCy (o})(1 —a)[m my, (M +3amy) +2(1 — a)* Mmy |; (B21g)
949+
01 _ z01 01
Ksaz - KAE(M + KaFaz (BZlh)
01 Eqqy: Eqays b 1 22 2 .
K, = cNmz— ; daC, (UN)(amN — M)[(l —a)my — mqql+], (B21i)
99+
o1 Faqor Eqq,w My 1 2 2 2 7. .
K), = A daC (o) (1 — a)amy — M)[(1 — ay’m? — my, (B21j)
q9,+
10 _ ¢10 10
Kals - KaIAE + KL!]SF’ (BZH()
E E 1 .
0 CN Eqqer Eqq,+ w0
o = ?#/0 daCy (on)(amy + M)[2m],  + (1 —a)’my], (B211)
1+
Kl = Mm}v/ dozC [ —a[2m2, 4 (1 —ay’md(@my + M); (B21m)
aisg 3 méqﬁ M o 99+ N ’
10 _ ¢10 10
Kazs - Kast + Kast’ (len)
E E 1 i
0 CN Sqgp+ Lgq,+ i 22
o = ?#/0 daCy (on)(amy + M)[m;, = —4(1 —a)’my], (B210)
1+
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1
10 cn Fago Eqq my i o 2 22 ;
2y = Gt B [ aaTl o) el 201~ @y + 40 (B21p)
1+
E2 1 .
11 CN Fqq+ —iu 1 2 2.2 .
Kaa = ‘?ﬁ/o da Ty (o)) [2m3, , (M —amy) + (1 — aPm} (M + Samy)]; (B21q)
1+
2y E; b
11 N q99,+ u 1 2 2,2 M
Kaw =302, / daCy(oy) [y, + (1 = a)’m} J@my - M); (B210
1+
K” _ CN quﬁ ld Eiu 1 2 11 M 21 2.2 7 2mD1: B21
aa; T _?ﬂ 0 o I(O-N)[mWIH—( amy + )_ ( —Ol) mN( amy + )]’ ( S)
1+
SC E2 ! —iu
Kl = =220 [ e od) [, — (1 = @i Jamy — M) (B210
949+ 0

The computation of this kernel is detailed in Ref. [14]. The
eigenvectors exhibit the pattern
at = —v24° i=1,2.

i i’

(B22)

The kernel for the Roper resonance has the same form but
there is one change; namely, the functions C" are replaced by
functions F™ = C" — dzD"™, where

N

DV(w(M?, a, P?)) =/ dss

0 s+ w
T2
m 3 B 2 2
— dt = exp[-tw(M*, &, P7)],
oy T
(B23)

Fiz) = —z2(d/d2)F"(z), and Fi(z) = Fi(2)/z. As ex-
plained in Sec. 3.2 of Ref. [14], this has the effect of inserting a
zeroatq”? = 1/dr inthe amplitude for the nucleon’s excitation,
which then has the structure of a radial excitation of the
bystander quark with respect to the diquark “core.”

Solving for the Roper with this kernel and M dlf/ 2 =0.62

we obtain
Mass (GeV) s af ay  ad . (B24)
mg = 1.72 —0.0828 0.590 —0.417 —0.561 0.397

The eigenvector differs from that listed in Table I (bottom) for
reasons that are explained in Appendix D .

APPENDIX C: ELECTROMAGNETIC CURRENT

Using the properties of our baryon spinors, the current in
Eq. (2) can be rewritten in the form

THQ) = ieAﬁ(Pf)[y,L Fi5(Q%)
b6 0 (0 |ABRY, (€D
2MB M,V v JF 1)

where the positive-energy projection operator is defined in
Eq. (E8). In this connection each of the three diagrams in
Fig. 2 can similarly be expressed

L}(Q) = AX(POT(Pr, P)NY(P), k=1,2,3.

In being explicit, we focus on the elastic form factors for the
charged baryon. N.B. For the neutral particles, one simply
exchanges the flavors of the doubly and singly represented
quarks.

1. Diagram 1

The uppermost diagram in Fig. 2 describes a photon cou-
pling directly to a dressed quark, through the vertex described
in Appendix A 3. It can be seen to represent the following
three expressions, the first involving the scalar diquark and the
second two involving the axial-vector diquarks:

1, =s(P) / S pieyy, Pr(QM)SUHAY (=), (C2)
L
where [, = [ %, liipy=L* P s e, =2/3;and

It = af(P)Z/Z M;uS(Lys)

xieqy, Pr(Q)SU)M g ALy (—0), (C3)
7t = [ osce)

xieyy, Pr(QM)SE)M s AdLy(—0), (C4)

with e = —1/3, j = 1,2 and My, = ysyg, Moy = yslsu. If
one assumes isospin symmetry, as herein, then it is notable

that owing to Eq. (B22)
1+ 10 _ .
Z,,+Z;,=0, j=12 (€Y

which means diagrams with axial-vector diquark spectators do
not contribute to charged-particle form factors.

2. Diagram 2

The second diagram in Fig. 2 depicts the photon scattering
elastically from a diquark, with the dressed-quark as spectator.
Again, it can be expressed through the sum of three separate
terms, the first involving the scalar diquark:

12, = s(P)? / S)AY (—e_))
4

e ToH(—0_p, —C_)A” (=€), (CO)
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where e[,4; = 1/3. Here Fg* is the dressed-photon—scalar-
diquark vertex, computed in Ref. [28]:

PO (=l —L_) = —(b_y +L_))Fo-(Q%),  (CT)

with the following expression providing an accurate interpola-

tion on the domain Q? € [—mf), 10] GeV?,m,, is the p meson’s

mass,

mterpolal]on 1+ 0.25 Q2 + 0.027 Q4
141270240130

The remaining terms involve elastic scattering from the
axial-vector diquark:

Fo+(Q?) (C8)

I:" =af(Py /MNS(E)AW( £5)

uu}r ( E,f, _Efi)Agﬂ(_Zfi)Mjﬂs (C9)

W,po

I = a?(P)2/ZMJaS(€)A1 (=)

X etua)T o (—l_p, =L)ALy (—0_)M 5, (C10)
with Cluu) = 4/3, eudy = 1/3, and
Lhroky =K+ Q/2.k =K —0Q/2)
3
=Y T] (K.Q F*(Q%).,  (ClI)
where
Ty ,0(K. Q) =2K, Pl (p") Pl (p)). (C12a)
. Q? T, f
(K, Q)= [Q - }7’ (P
/4 p P '02m%+ e
— [Q +p! % ]PT (") (C12b)
“om?, |

0’ 0’
T (K. Q) = pocy [Q,, ,,2 %][Qﬁ ({2 %],

(C12¢)

PL.(p) =8ps — Ppps/p*. The electric, magnetic, and
quadrupole form factors of the axial-vector diquark are
constructed as follows:

Gy (0% = F*(0)+ %nG‘Q*(Q%, (13a)
Gy (0% = —F, (). (13b)
Gy (0% =F*(Q)

+ET(Q) + 1 +n] F7(QY). (130

where n = Q?/ [4m%+]. These quantities were computed in
Ref. [28] and the following functions provide accurate inter-

polations on Q* € [—m?, 10] GeV?*:
(Q ) mterpolauon 1-0.16 Q2 (C14a)
1+1.1702+0.012 0%
(Q ) 1nterpolal10n 2.13-0.19 Q2 (C14b)
1+1.0702—0.10 0%’
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G1+(Q ) mterpolallon 0.81 — 0.029 Q2 ' (C14C)
14 1.11 Q2 — 0.054 Q*
3. Diagram 3

The last diagram depicts a dressed-quark spectator to a
photon-induced transition between scalar and axial-vector
diquarks. It may be constructed from a sum,

3 __ 7301 310
Iju - Zju +Im ’ (C15)
where
) = s(P)a(P) fe S()AY (=)
X ieua Ton(Q, —L- )AL (—t)Ms,  (C16)
73 = s(P)a) (P)/M S(OAL (—t)
X ieuay T (=0 p, Q)AY (=€), (C17)
with
TY (ko k1) =T9 (—ka, ki) =T (k1, k) (C18)
and
O (k1. k) = 2 €ppapkiakas G(Q%).  (C19)

mqql+

The coupling and form factor were computed in Ref. [28],
with the results go; = 0.78, and a function for which an
accurate interpolation on Q* € [—m?, 10] GeV? is provided
by

mterpolanon 140.10 Q2

- F C20
1+1.0730% (€20

G"'(0%

4. Current conservation

In Secs. 1-3 of this appendix we have expressed formulae
in terms of the baryon’s unit-normalized Faddeev amplitude.
In analogy with mesons, the canonical normalization con-
dition amounts to an overall multiplicative rescaling so that
Fi5(0% = 0) = 1 for the charged state [92].

Ward-Takahashi identities play an important role in com-
puting the rescaling factor. To explain, consider the contri-
bution to Fi5(Q?) from Eq. (C2), defined as e,s(P)*Fp 11,
and that from Eq. (C6), e[ud]s(P)zF]BAI;z. Then so long as a
translationally invariant regularization scheme is used, one can
show

Fig1(Q® = 0) = Fi3(Q* = 0).
In addition, with definitions clear by analogy, one has

FIB_Z;,(Q2 =0)= FIB,IE,,(QZ =0),

(C21)

Jj=12,p=+,0.
(C22)

Along with the fact that 73 , does not contribute to F| (0% =
0), then Egs. (C21) and (C22) ensure simple additivity of the
quark and diquark electric charges and thereby guarantee a
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unit-charge isospin = (41/2) baryon through a single rescal-
ing factor; and a neutral isospin = (—1/2) baryon without fine
tuning. In applying our regularization scheme, we consistently
enforce Egs. (C21) and (C22).

5. Typical contribution

There are many terms in the complete expression for the
baryon elastic electromagnetic form factors: according to one
enumeration scheme, 11 each for Fig and F,p. Hence, we
choose only to list one pair as an example, namely, that deter-
mined from Eq. (C6). The procedure is the same in all cases.

Using Eq. (Cl), one constructs momentum-dependent
Dirac-matrices that, under a trace operation, project the Fip
and F,p components of each diagram. All of the scalar
expressions thus obtained are simplified by using the kinematic
conditions (KO‘F(i’f) =—{+ P(,'!f))

P} =—mj =P, (C23a)

P - Q=-50% (C23b)

P - Py =—mj — 107 (C23c)
K, = —mj., (C23d)

Q- Ko+ = —30%, (C23e)

0 Korp = 0% (C23f)
Ko+i - Korp = —m. — 0% (C23g)

A Feynman parametrization is then employed to produce
a single denominator from the product of three propagators
which appears, and the momentum-integration variable is
subsequently shifted, in our case:

=1+ alP+B0). (C24)
This produces a simple denominator,
(17 + o(M?, m5., 0*, a, B, (C25)

where M is the dressed-quark mass and
o, B, M, mo+, mg, Q%)
= M*(1 —a) + a(mg. — (1 —o)my + o?B(1 — B)Q?,
(C26)

and a numerator that is simplified using Eqs. (C23), their
corollaries,

Pi- Koyi = —1- Pi = (1 —aymyy — 50807, (C27a)
P Koy =—1-P—(1—a)my — (1 +ap)Q% (C27b)
¢-P=1-P —amj— tapQ? (C27¢)
0-Kopi =1+ —=2a)- P, —2apl-Q
—a(l —a)my — Sapll +2a(1 — B)1Q?,

(C27d)
0-Q=1-P—la(1-2p)0? (C27¢)
- Koyp =€ -Koyi +¢- 0, (C271)

and subsequently O(4) invariance.
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Finally, the momentum integral is regularized to yield
Fip (0% = ‘/Olda dp2a[Q* + 4’"%]71
X { [2m3(am3 + M)(4m%(1 — )
+(1-2a$)Q%) — %cxzﬂ(l - 2/3)Q4}C_£”(w),

1 . .
+1[30° + 83 ][ @) — oCF @) }
(C28)
1
Fop (0% = — / dodp 20 2mg[Q* + 4m%]_1
0

x {[4m(amp + M)(1 — o) + [(1 — 2ap)M
+a(l — [l +28)mpl1Q*]C5 (),

—m3[Cl'() — oCy()]}, (C29)

where

Cw) = (0?/2)C" (w) = %(e*wffv — ), (C30)
C, (@) = C(w)/w?, is a derived form of Eq. (A7).

In computing the Roper elastic form factor there is one
modification at this point, arising in connection with the zero
we have inserted in the associated Faddeev equation (see the
last paragraph of Appendix B ). Namely, the functions C" are
replaced by functions

RM™ = C" — 2dsD" + d7H"™, (C31)

where

52

iu 2 2N _ *
H (w(M,a,P))—/O dsss+w

2
Tin 6
— / dt — exp[—tw(M?, a, P?)],
T T

(C32)

Hi(2) = —2(d/d2YH"(2), Hi(z) = Hi(2)/z and Hy(z) =
(2 /2YHM"(2), 'F[iz“ (z)/z*. Through this expedient we represent
the square of a Faddeev amplitude that possesses a zero, as
would appear in computing the elastic form factor of the
excitation.

6. Dressed-quark anomalous magnetic moment

In the presence of DCSB, a dressed light-quark possesses
a large anomalous electromagnetic moment [40]. To indicate
the effect on form factors that one might expect from this phe-
nomenon, we modified the quark-photon coupling as follows:

T(Q) =y, Pr(Q*) + ﬁ%Qv exp(—Q*/4M?), (C33)

where M is the dressed-quark mass. Both the value of ¢ = 1/2
and the rate at which the anomalous moment term decays are
taken from the distribution computed in Ref. [40].

The anomalous moment has no effect on the elastic form
factor of the scalar diquark but it does change the form factors
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of the axial-vector diquarks; viz., with our standard parameter
choice (Table V) and z = Q?2, the following functions provide
an accurate interpolation of the result:

1+ 0.98z

F'(z) = , C34
1 =055, 1 1.2622 (C342)
3.23 + 0.0487
F()=— C34b
> O =15 1000372 (C340)
N 1.19 +0.33
F'(z) = < (C34c)

1 + 1.38x + 4.6272°

Comparison with Egs. (C13) and (C14) reveals that the
dressed-quark anomalous electromagnetic moment in
Eq. (C33) increases the axial-vector diquarks’ magnetic
moment by 50% and the magnitude of its quadrupole moment
by 30%.

APPENDIX D: TRANSITION CURRENT

With the baryon spinors we have defined, the current in
Eq. (3) can be expressed

TH(Ps, P) = ieAﬁ(Pf>[y,f F1.(Q%)

2 [ AN
+ MR+MNUMVQUF2*(Q ):|A+(P1)’ (Dl)
where the positive-energy projection operators are as defined
in Eq. (E8). The same three diagrams contribute to the
transition but with the modification that the final state is the
Roper resonance. This means that the kinematics are different
[Eq. (10)], and in Eq. (C2), for example,

s(P)* — sg(Py)sn(P). (D2)

With such changes implemented throughout, the analysis
proceeds unchanged, although one must pay attention to the
modified kinematics when computing invariants [Egs. (C23)]
and working through the Feynman parametrization
[Eqs. (C27)] until final expressions, such as those in
Egs. (C28) and (C30), are obtained.

At this point, the functions C" are replaced by the functions
Fu_so that the zero we have inserted into the Roper’s Faddeev
amplitude is expressed in the transition form factors.

We require that the Roper’s dressed-quark core be orthog-
onal to that of the nucleon and insist that each radially excited
state possess a zero in its Faddeev amplitude, as in Ref. [14].
The latter requirement ensures that the contact interaction is
able to produce a radial excitation of both the A resonance and
its parity partner. However, it modifies the Faddeev kernel, so
that the nucleon kernel is different from that for the Roper and
therefore orthogonality is not assured. This drawback, which
accompanies the interaction’s simplicity, is readily corrected
now that we have expressions for the transition form factors.

As mentioned above, orthogonality means that F (0% =
0) = 0 for both the charged and the neutral resonances. (The
analog of this condition has been used in studies of meson
radial excitations, both with momentum-independent [93,94]
and momentum-dependent kernels [95,96].) In Ref. [14],
lacking expressions for the transition form factors, the location
of the zero in the Roper’s Faddeev amplitude was fixed
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following inspection of its position in meson Bethe-Salpeter
amplitudes. This led to the choice 2M?dr = 1.0 +0.2.

Herein, we first consider Fig+_ ,(Q* = 0). Employing
Eq. (D1), the analogs of Egs. (C2), (C6), (C16), and using
Egs. (C5), one finds that F1R+H,,(Q2 = 0) receives just one
contribution, viz., that of Diagram 1 where the photon strikes
a dressed-quark in association with a scalar diquark (all
others are zero at Q° = 0). Orthogonality of the proton and
charged-Roper is then assured if

L isa,

dr
a value just 3% smaller than the lower bound estimated in
Ref. [14] so that the mass estimate therein (1.82 £ 0.07 GeV)
was reasonable. In fact, with Eq. (D3) one obtains the Roper
mass in Table I (bottom), which is in even better agreement
with EBAC’s result for the dressed-quark core; viz., 1.76 &+
0.1 GeV [Eq. (D].

This procedure does not fix the value of sg. For guidance in
this respect we turn again to studies of meson excitations. At
zero relative momentum in a radial-excitation’s Bethe-Salpeter
amplitude, the magnitude of the dominant Dirac stucture’s
leading Chebyshev moment is approximately one-half of that
for the ground state [96,97]. We therefore choose

(D3)

sg = —isy = —0.44, (D4)

as listed in Table I (bottom). The sign here matches that
produced by the Roper’s Faddeev equation but the magnitude is
five times larger: The Faddeev equation for the Roper produces
a state that is 99% axial-vector diquark.

Now, given the canonical normalization condition,
Fig+(Q* = 0) = 1, and Egs. (B22), there is only one entry left
to be fixed in the Roper’s Faddeev amplitude. That is set by the
condition F|go_,,(Q? = 0) = 0, whose only nonzero entries
are Diagram 1 quark plus axial-vector diquark contributions.
We thus arrive at the Faddeev amplitude entries for the Roper
in Table I (bottom).

APPENDIX E: EUCLIDEAN CONVENTIONS

In our Euclidean formulation:

4

P-qg=)_ pias (EI)
i=1

i

E[y/u wl  (E2)

€134 = 1. (E3)

W v} =280 ¥ =y ow=
tr[ysyuvw¥p¥ol = =4 €uupo
A positive energy spinor satisfies
a(P,s)(iy - P+M)=0=(y- - P+ Mu(P,s), (E4

where s = :I:% is the spin label. The spinor is normalized:

u(P,s)u(P,s)=2M, (ES)
and may be expressed explicitly:
Xs
u(P,s)=vM — i€ ( P ) , (E6)
M—ic Xs
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with & = iv/ P2 + M2,

X+=<(1)>, x=<?). (E7)

For the free-particle spinor, ii(P, s) = u(P, s) 4.
The spinor can be used to construct a positive energy
projection operator:

1
AL(P) = —

2M

1
P9 _P9 = —(—i 'P M .
2 u(P,s)u(P, s) = (=iy - P + M)

(E®)
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A charge-conjugated Bethe-Salpeter amplitude is obtained
via

['(k; P)=C'I'(—k; P)' C, (E9)

where “T” denotes a transposing of all matrix indices and
C = y»y4 is the charge conjugation matrix, C' = —C. We
note that
T
Clyl C=—yyu,

[C,ys]1=0. (E10)
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