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Phase structure of a chiral model with dilatons in hot and dense matter
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We explore the phase structure of a chiral model of constituent quarks and gluons implementing scale symmetry
breaking at finite temperature and chemical potential. In this model the chiral dynamics is intimately linked to
the trace anomaly saturated by a dilaton field. The thermodynamics is governed by two condensates, thermal
expectation values of σ and dilaton fields, which are the order parameters responsible for the phase transitions
associated with the chiral and scale symmetries. Within the mean-field approximation, we find that with increasing
temperature, a system experiences a chiral phase transition, and then a first-order phase transition of partial scale
symmetry restoration characterized by a melting gluon condensate takes place at a higher temperature. There
exists a region at finite chemical potential where the scale symmetry remains dynamically broken while the chiral
symmetry is restored. We also give a brief discussion on the σ -meson mass constrained from lattice QCD.
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I. INTRODUCTION

Effective theories of strongly interacting matter are ex-
pected to capture nonperturbative aspects of QCD in the
low-energy domain. They are constructed based on global
symmetries of QCD Lagrangian and their breaking patterns.
In the limit of massless quarks the Lagrangian possesses
the chiral symmetry and scale invariance, both of which are
dynamically broken in the physical vacuum due to the strong
interaction. The QCD trace anomaly signals the emergence
of a scale at the quantum level from the theory without
any dimension-full parameters [1]. Thus spontaneous chiral
symmetry breaking, which gives rise to a nucleon mass, and
the trace anomaly are closely linked to each other [2], and dy-
namical scales in hadronic systems are considered to originate
from them. How they behave under extreme conditions such
as high temperature and density is one of the main issues in
QCD [3].

The trace anomaly has been implemented in a chiral
Lagrangian by introducing a dilaton (or glueball) field repre-
senting the gluon condensate 〈GμνG

μν〉 [4]. Thermodynamics
of the dilatons at finite temperature and density has also been
explored and the deconfinement phase transition was studied
[5]. Incorporating the QCD scaling properties into a nonlinear
chiral Lagrangian, the in-medium scaling associated with
chiral symmetry restoration, i.e., Brown-Rho (BR) scaling [6],
was introduced, and some related works have been carried
out [7,8]. Besides, along with the lattice QCD computations,
pure gluon dynamics at finite temperature has been formulated
in several approaches [9–13].

In this paper we introduce a model of constituent quarks
and gluons implementing chiral and scale invariance in
such a way that the model mimics the nonperturbative
nature of QCD in low energies. We will explore the
thermodynamics and constrain the σ -meson mass utilizing
the QCD trace anomaly extracted from lattice QCD [12].
Imposing field theoretical requirements on the anomaly
matching, we will give a suggestive phase diagram of
QCD.

II. TOY MODEL

In this section we briefly introduce our model for con-
stituent quarks and gluons restricted to a system with two
flavors. Scale invariance is implemented in a linear σ model
via the following Lagrangian:1

L = q̄i∂/q + GSq̄(σ + i �τ · �π )q + 1

2
(∂μσ∂μσ + ∂μπ∂μπ )

+1

2
∂μχ∂μχ − Vσ − Vχ ,

Vσ = λ

4

[
(σ 2 + �π2) − σ 2

0

(
χ

χ0

)2]2

− ε

(
χ

χ0

)2

σ , (2.1)

Vχ = 1

4
B

(
χ

χ0

)4[
ln

(
χ

χ0

)4

− 1

]
,

where GS is the scalar coupling constant and B is the bag
constant. All other notations follow the standard linear σ

model. We assume that the constituent gluons become massive
due to the nonvanishing gluon condensate, 〈χ〉 �= 0. This is
achieved by introducing the Lagrangian for the constituent
gluon field Aμ,

LA = − 1

4
AμνA

μν + 1

2
G2

A

(
χ

χ0

)2

AμAμ , (2.2)

with the field strength tensor Aμν = ∂μAν − ∂νAμ and the
coupling constant GA to the dilaton field. The full Lagrangian
is thus given by

L → L + LA . (2.3)

Here we assume that the quarks have no direct coupling to
the gluons since the interaction between the quarks and gauge
fields is embedded in GS and GA.

Applying the mean-field approximation, one finds the
thermodynamic potential by performing the path integration

1There are some uncertainties on introducing χ in the explicit
breaking term. See, e.g., Refs. [6,14]. This does not change our results.
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over the quark and gluon fields:


 = 
q + 
A + Vσ + Vχ + 1

4
B ,


q = γq

∫
d3p

(2π )3
T [ln(1 − nq) + ln(1 − n̄q)] , (2.4)


A = −γA

∫
d3p

(2π )3
T ln(1 + nA) ,

with the degeneracy factors for quarks γq = 2Nf Nc = 12 and
for gluons γA = 2(N2

c − 1) = 16. A constant term is added
so that 
 = 0 at T = μ = 0. The effective masses of the
quasiparticles are defined by

Mq = GSσ , MA = GA

χ

χ0
. (2.5)

The thermal distribution functions are given by

nq = 1

e(Eq−μ)/T + 1
, n̄q = 1

e(Eq+μ)/T + 1
,

nA = 1

eEA/T − 1
, (2.6)

with the quasiparticle energies Eq =
√
| �p|2 + M2

q and EA =√
| �p|2 + M2

A.
The stationary condition, ∂


∂σ
= ∂


∂χ
= 0, leads to the fol-

lowing coupled gap equations:

γq

∫
d3p

(2π )3

Mq

Eq

GS(nq + n̄q)

+ λσ

[
σ 2 − σ 2

0

(
χ

χ0
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− ε

(
χ
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= 0 , (2.7)
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MA

EA

GAnA − λσ 2
0

[
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0

(
χ
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)2]
χ
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− 2ε
χ

χ0
σ + B

(
χ
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)3

ln

(
χ

χ0

)4

= 0 . (2.8)

The mesonic parameters λ and ε are related with the σ and
pion masses and the pion decay constant via

λ = m2
σ − m2

π

2f 2
π

, ε = m2
πfπ , (2.9)

where the vacuum σ expectation value is σ0 = fπ . In the
following calculation we will use mπ = 138 MeV and fπ =
93 MeV and alter the vacuum σ mass mσ in the range
0.6–1.2 GeV because of its uncertainty. The bag constant
B and dimensionful parameter χ0 are fixed by the vacuum
energy density E = 1

4B = 0.76 GeV fm−3 [15] and the
vacuum glueball mass MG = 1.7 GeV [16] using the following
definition:

M2
G = ∂2Vχ

∂χ2
= 4B

χ2
0

. (2.10)

The coupling constants GS and GA are determined by requiring
that a nucleon is composed of three constituent quarks and a
glueball of two constituent gluons, thus,

Mq(T = μ = 0) = 1
3mN = 300 MeV ,

(2.11)
MA(T = μ = 0) = 1

2MG = 850 MeV .

III. THERMODYNAMICS

The model introduced above describes the evolution of
the two condensates, 〈σ 〉 and 〈χ〉, driven by temperature and
chemical potential. Figure 1 shows the contours of the ther-
modynamic potential, taking the vacuum σ mass being mσ =
600 MeV in the σ -χ plane at μ = 0. As the temperature
increases from zero, first the system experiences partial
restoration of chiral symmetry at Tchiral indicated by the
dropping σ , i.e., at which the chiral susceptibility becomes
maximum, whereas another condensate χ remains almost a
constant. Above Tchiral, the potential starts to exhibit a meta-
stable state at σ ∼ χ ∼ 0, and a first-order phase transition
takes place at Tχ=0 where the scale symmetry broken by
nonvanishing χ is restored. Farther above this temperature,
the system remains at the trivial ground state.

FIG. 1. Contour plots of the thermodynamic potential at finite T and μ = 0: T = 153 MeV (chiral crossover), 251 MeV (first-order
〈χ〉 → 0 transition), and 300 MeV from left to right. The black circle indicates the ground state. mσ = 600 MeV at T = 0 was used. The
pseudocritical temperature of chiral symmetry restoration was defined as the maximum temperature of the chiral susceptibility.
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FIG. 2. (Color online) Normalized expectation values of σ and χ4

fields at μ = 0. The thick lines are calculated using mσ = 600 MeV
at T = 0 and the thin lines using mσ = 900 MeV.

The thermal expectation values of σ and χ obtained from
the gap equations in fact show a substantial reduction around
the chiral crossover and a jump at the first-order transition as
seen in Fig. 2. When the σ meson is very massive, λ → ∞,
one finds

〈σ 〉 	 fπ

〈χ〉
χ0

, (3.1)

corresponding to nonlinear realization of chiral Lagrangians,
and the thermodynamics is governed by a single condensate.
Near the chiral symmetry restoration point, the above relation
between the two condensates is not expected since the σ meson
cannot be integrated out. The condensate of the dilaton field
has a weak sensitivity to temperature even above the chiral
crossover and therefore it does not drive the disappearance
of the chiral condensate. This feature, however, strongly
depends on the σ -meson mass; and for a larger mσ , the gluon
condensate is more affected by the chiral phase transition, as
we will discuss below.

In-medium masses of σ and χ fields are defined by

M2
σ = ∂2


∂σ 2

∣∣∣∣
σ=〈σ 〉 ,χ=〈χ〉

, M2
χ = ∂2


∂χ2

∣∣∣∣
σ=〈σ 〉 ,χ=〈χ〉

. (3.2)

Their behavior as functions of temperature is given in Fig. 3.
Increasing temperature toward Tchiral, Mσ shows a strong
sensitivity to the phase transition as observed in the standard
linear σ models, whereas Mχ is rather modest. The two masses
exhibit a jump when χ vanishes. Above this temperature,
they follow a linear dependence of temperature, Mσ,χ ∼ T ,
as expected.

In Fig. 4 we show the energy density at μ = 0 as a function
of temperature. The standard linear σ model (LσM) almost
follows the curves below Tchiral, but strongly underestimates
the Stefan-Boltzmann (SB) limit, which is a typical drawback
of this model. Since the LσM Lagrangian does not contain
gluons, bulk thermodynamics quantities are qualitatively
in good agreement with the lattice results when they are
normalized by the SB limit for massless quarks, whereas not
when normalized by the SB limit for massless quarks and
gluons. What we carried out in this paper is to improve the
LσM by introducing missing gluons. As shown in the figure,
the SB limit is now reproduced. A defect to be removed is
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FIG. 3. (Color online) Thermal masses of σ (top) and χ (bottom)
fields at μ = 0.

the too strong first-order phase transition even at μ = 0 which
is absent in lattice QCD. Also, according to lattice QCD, the
energy density should approach the SB limit from below. We
remark that direct comparison must be carried out in a more
realistic framework beyond the mean-field approximation. As
shown in Refs. [10,18,19], including thermal and quantum
fluctuations of meson fields will be particularly important
around Tc.

The trace anomaly exists at any temperature which is
the only dimension-full quantity which breaks scale invariance
of the theory explicitly. In our model, at high temperature
and Mq 
 T , the pressure and energy density at μ = 0
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FIG. 4. (Color online) Scaled energy density at μ = 0. The
filled circles are the corresponding lattice data after continuum
extrapolation taken from Ref. [17].
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FIG. 5. (Color online) Phase diagram for different vacuum mσ : mσ = 0.6 GeV (left), 0.9 GeV (middle), and 1.2 GeV (right). The filled
circle indicates the critical point, and the diamond the point where the first-order and crossover lines intersect.

are approximately expressed as

P = γq

7π2

720
T 4 − γq

48
M2

qT 2 − 1

4
B ,

(3.3)

E = γq

21π2

720
T 4 − γq

48
M2

qT 2 + 1

4
B .

Consequently, one finds the trace anomaly (interaction mea-
sure) as

�(T ) = E − 3P

T 4
= B

T 4
+ γqM

2
q

24T 2
. (3.4)

Lattice calculations [17,20–22] show that � has a non-
perturbative term, � ∼ 1/T 2 [23]. We see that this kind
of contribution comes from the masses of quasiparticles.
However, the numerical value associated with the effective
quark mass in Eq. (3.4) is too small to explain this effect.
Fluctuations beyond the mean-field approximation will also
contribute to the interaction measure [10].

Turning on the quark chemical potential μ practically does
not affect the temperature at which the gluon condensate
vanishes, Tχ=0, whereas the chiral transition boundary exhibits
an elliptic shape and a critical point appears at an intermediate
μ, shown in Fig. 5 (left). The boundary line of Tχ=0 in general
has a certain μ dependence via the gap equations. However,
the σ expectation value above Tchiral is small and little affects
〈χ〉. On the other hand, the chiral crossover line gets modified
significantly depending on the mσ chosen in vacuum. For
larger mσ the phase boundary is systematically shifted to
higher T and μ. The critical point also moves toward lower T

and eventually disappears from the phase diagram [24]. This
is illustrated in Fig. 5 (middle and right). The thermodynamics
at low temperature and high chemical potential is essentially
the same as in the standard linear σ model.

Making a matching of the trace anomaly between the
model and QCD would constrain a reliable range of mσ . The
divergence of the dilatation current is given by [7]

∂μJμ = −B

( 〈χ〉
χ0

)4

+
(

4 − T
∂

∂T
− χ

∂

∂χ

)

A|χ=〈χ〉 .

(3.5)

The left side of the above equation is mostly saturated by the
gluon condensate in QCD:

∂μJμ = −
(

11

24
Nc − 1

12
Nf

)〈
αs

π
Ga

μνG
μν
a

〉
, (3.6)

where a small contribution due to the explicit breaking of chiral
symmetry is neglected. Lattice QCD calculations show that the
thermal gluon condensate decreases toward the pseudocritical
temperature of chiral symmetry restoration and drops down
to a half of its vacuum value at Tchiral, whereas it is quite
stable at lower temperatures [12]. This is also a compatible
feature with the QCD trace anomaly in terms of the soft and
hard dilatons [25], i.e., the disappearance of the soft dilaton
is associated with chiral symmetry restoration and yields the
melting gluon condensate, or partial restoration of the scale
symmetry breaking [26]. Equations (3.5) and (3.6) tend to
match for a large mσ ∼ 1 GeV. With a small mσ the gluon
condensate does not show a significant drop at Tchiral. Thus,
a rather heavy σ -meson in the vacuum seems to be favored
by QCD, and this is a conceivable scenario known from the
vacuum phenomenology of the scalar mesons. It should be
noted that the matching is somewhat incomplete: Eq. (3.5)
exceeds Eq. (3.6) by ∼15%. This may indicate that a stronger
interaction between the quark and gluon sectors should be
introduced. Besides, updating the gluon condensate at finite
temperature in lattice QCD is necessary.

IV. LIMIT OF INFINITELY HEAVY σ MESON

It is instructive to study the phase diagram in the λ →
∞ limit where the σ meson becomes infinitely heavy. As
discussed in the previous section, the two critical temperatures,
Tχ=0 and Tchiral, get closer with increasing mσ . With mσ ∼
1 GeV they are almost on top of each other and larger mσ

yields an intersection of the first-order phase transition of
scale symmetry and chiral crossover lines at finite μ. This
intersection moves to higher μ and lower T for larger mσ

as shown in Fig. 6. The boundary line of scale symmetry
restoration is less sensitive to μ when the chiral symmetry is
restored. This is because the major μ dependence comes in
via the σ expectation value 〈σ 〉 which is well suppressed in
restored phase. When mσ reaches infinity, the intersection is
kicked out and a single line of the first-order phase transition
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FIG. 6. (Color online) Phase diagram for different mσ . The line
notation is the same as in Fig. 5.

is left. The region where chiral symmetry is restored whereas
〈χ〉 �= 0 is unfavored in this limit.

The parameters of effective Lagrangians can alter with T

and μ since they are obtained by integrating higher frequency
modes out and thus expected to carry information on the
underlying QCD. Consequently, the phase diagram calculated
with the parameters fixed using the vacuum quantities would
be deformed, and the first-order phase transition could remain
on the phase diagram at high μ in a cold system.

V. IMPLICATIONS FOR THE QCD PHASE DIAGRAM

The present toy model exhibits three regions characterized
by the two condensates: (i) broken phase of chiral and scale
symmetries, (ii) chirally restored but broken phase of the scale
symmetry because of the nonvanishing 〈χ〉, and (iii) chirally
restored but explicitly broken phase of the scale symmetry
by temperature. What does the thermodynamics of the model
suggest concerning the QCD phase structure? The vanishing
condensate of the dilaton field indicates a disappearance of
the gluon composite at high temperature, and its dissociation
may signal a transition of the system from the confined to
deconfined phase. Thus, one identifies the temperature Tχ=0

with a temperature at which gluons are released:

Tχ=0 ∼ T
(g)

deconf . (5.1)

The model yields a chiral transition temperature that is
below Tχ=0 in a wide range of the parameters. In Nf = 2
QCD, this is compatible with the anomaly matching which
is often used to constrain possible massless excitations in
quantum field theories [27], and therefore the chirally restored
phase with confinement is allowed. This suggests that the
chiral symmetry restoration takes place either below or at the
deconfinement temperature, i.e.,

Tchiral � T
(q)

deconf , (5.2)

where at T
(q)

deconf the quarks are released whereas the gluons
remain confined and it is not necessarily equal to T

(g)
deconf .

As we have seen in the previous section, a large mσ can
match with the QCD requirement at μ = 0. This leads to the
three distinct temperatures which may be close to each other

confined
CS broken

quarks

gluons deconfinedT

deconfined

μ
CS restored
confined

?

FIG. 7. (Color online) Sketch of the QCD phase diagram.

on the phase diagram. We note that this is consistent with
the recent observation using a renormalization group analysis
where the fixed point of four-fermion interactions associated
with confinement plays an essential role [28]. At finite μ no
reliable constraint from QCD is known. A suggestive phase
diagram is given in Fig. 7.

VI. CONCLUSIONS AND REMARKS

In this paper we have studied thermodynamics and the phase
structure of a QCD-like model whose degrees of freedom
are constituent quarks and gluons. Both chiral and scale
symmetries are implemented in the model by introducing mean
fields representing q̄q and GμνG

μν . These symmetries are
dynamically broken at low temperature and density. The model
thus mimics the features of QCD in the strong coupling region,
i.e., the spontaneous breaking of chiral symmetry and trace
anomaly. The results suggest that a system in deconfined phase
develops gradually with increasing temperature and density
toward weakly interacting quark-gluon matter composed of
almost massless quarks and gluons.

The condensates of the σ and dilaton fields are dynamically
linked via their gap equations. How strong they are correlated
depends crucially on the σ -meson mass mσ chosen in vacuum.
We found that a large mσ ∼ 1 GeV is consistent with the lattice
result regarding the thermal behavior of the gluon condensate.
This further leads to the chiral phase transition which takes
place almost simultaneously with the deconfinement transition
at μ ∼ 0. At finite μ these two transitions are expected to be
separated.

In the scalar sector of low-mass hadrons, scalar quarko-
nium, tetra-quark states [29], and glueballs are expected to be
all mixed. How this can happen has been studied in certain
simple models; see, e.g., Ref. [30] and references therein. An
issue to be explored is how the presence of the tetra-quark
modifies the phase structure presented in this work.

As an alternative approach one can use a parity doublet
model assuming a certain assignment of chirality to nucleons
with positive and negative parity [31,32]. As proposed in
Refs. [33,34], the gluon condensate, more precisely the hard
dilaton condensate, yields a chiral invariant mass of the
nucleon, which stays nonvanishing above the chiral phase
transition point. It is interesting to explore the thermodynamics
of a parity doublet model [35] embedding dilatons, and this
will be reported elsewhere.

The present model can also be applied to a nonequilibrium
system, where the time evolution of the gluon condensate is
described by the equation of motion for the dilaton. On the
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other hand, in several models with Polyakov loops [23,36,37]
it is unclear how the kinetic term of the Polyakov loop
dynamically emerges, since the Polyakov loop by itself does
not represent a field but rather a character of the SU(3) color
group. It would be interesting to extend the work done in
Ref. [38] along this line.
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