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We derive equations for fluid dynamics from a non-extensive Boltzmann transport equation consistent
with Tsallis’ non-extensive entropy formula. We evaluate transport coefficients employing the relaxation time
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I. INTRODUCTION

The transport properties of matter at extreme high tem-
perature and energy density, well proved in high-energy
accelerator experiments at the Relativistic Heavy Ion Collider
(RHIC) and at the Large Hadron Collider (LHC), raised some
fundamental questions related to the smallest distance scale in
physics. Theories, motivated by conformal field theory and
higher dimensional dual gravity, in fact predicted a lower
limit for the shear viscosity over entropy density ratio being
around 1/4π in natural units [1]. Although this limitation can
be overcome in more sophisticated, nonlinear dual gravity
models [2] or other approaches [3–5], the actual calculation
[6–11] and measurement of the viscosity and related properties
of elementary matter remained in the focus of research
interest.

Moreover, the scientific evaluation of experimental signals,
extracted from analyses of particle spectra and correlations,
can be interpreted in terms of thermal concepts only if our
knowledge about the material quality of a (strongly) interacting
quark-gluon plasma is well established [12]. Besides the inter-
pretation of temperature [13,14], the whole hydrodynamical
and statistical approach relies on our basic assumptions about
the equation of state (EoS) and the dissipative capacities of
this new stage of strongly interacting matter [15,16].

Modern statistical physics methods for the theoretical
description of high-energy phenomena include a consideration
of non-extensive thermodynamics [17–25]. Besides giving
a more general framework than Boltzmann did for the
entropy formula, also the mesoscopic background including
Langevin, Fokker-Planck, or Boltzmann type equations can
be extended to involve deviations from the classical 19th
century picture [26–30]. Most of these generalizations depend
on a single parameter, denoted by q, which also influences
the canonical equilibrium state leading from an exponential
Gibbs distribution in energy to a power-law tailed one. These
are observable in experimental transverse momentum spectra
and multiplicity fluctuations [31–34]; therefore the important
question arises, how are the kinetic and hydrodynamical
approaches affected by the value of this parameter. Are there
qualitative or only quantitative minor deviations to be expected
when q �= 1? Fits to the RHIC and the LHC spectra make a
hadronic matter value of qH ≈ 1.08..1.2 [35–37] and a quark
matter value of qQ ≈ 1.22 [38] probable.

These fits point out a deviation from the standard
Boltzmann-Gibbs (BG) statistics for q = 1. The degree of
non-equilibrium in a system is defined relative to a fixed local q
equilibrium. Assuming q �= 1 means that the local equilibrium
differs from the standard BG equilibrium. On the other hand it
may be regarded as non-equilibrium compared to the classical
q = 1 if one considers a time evolution of this parameter.
However, we do not consider this possibility in the present
paper.

We investigate a general non-equilibrium system which—
for any given q—dissipates energy and produces entropy.
This we call q non-equilibrium. Similarly to classical BG
systems this q non-equilibrium is related to the response of the
system to gradients of different thermodynamical intensives.
This q non-equilibrium state does not relax to a standard BG
equilibrium, but to a local q equilibrium.

In this paper we derive the relativistic fluid dynamical
equations of motion from a non-extensive relativistic Boltz-
mann transport equation (NEBE) and calculate the transport
coefficients employing the relaxation time approximation
for the collision integral. Such calculations were done in
the nonrelativistic limit [39] with a non-extensive Boltz-
mann equation [40,41] slightly different from ours. The q-
generalized first-order relativistic Navier-Stokes-Fourier equa-
tions of relativistic dissipative fluid dynamics are also derived
within this framework. We use the metric of flat space-time
gμν ≡ diag(1,−1,−1,−1) and natural units throughout this
work, h̄ = kB = c = 1.

II. NON-EXTENSIVE BOLTZMANN EQUATION AND
RELATIVISTIC HYDRODYNAMICS

We follow Lavagno [42] and recall the q-modified non-
extensive Boltzmann equation (NEBE) compatible with Tsal-
lis’ [17–19] suggestion for a generalized non-extensive entropy
formula. Extensions of the classical Boltzmann equation, like
the one we adopt here from Ref. [42], are put forward without
any derivation from microscopic quantum field dynamics,
with the purpose to study classical statistical effects due to
correlations possibly induced by finite system size compared
to the characteristic interaction range [18].

For the sake of simplicity we neglect external field effects
which simplifies the Vlasov operator in the following general
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Boltzmann-type equation:

kμ∂μf̃k = C[f ], (1)

where fk ≡ f (xμ, kμ) is the single-particle phase-space dis-
tribution function and f̃k = (fk)q , with q ∈ (0, 2). C[f ] is the
collision integral. The space-time coordinates are xμ = (t, x)
and the particle four-momentum kμ = (k0, k) is normalized to
the mass m = √

kμkμ. The NEBE is a closed equation assum-
ing that the number of binary collisions around space-time
coordinates xμ is proportional to an expression Hq[fk, fk′ ],
where the explicit form of the collision integral involving
binary collision with incoming momenta pμ and p′μ and
outgoing momenta kμ and k′μ is given as

C[f ] = 1

2

∫
dK ′dPdP ′Wkk′→pp′

× (Hq[fp, fp′ ] − Hq[fk, fk′ ]). (2)

Here the factor 1/2 takes into account the symmetry of
the initial or final momentum configuration in the case
of identical particles if we interchange the labels, i.e.,
(kμ, k′μ) ↔ (k′μ, kμ) or (pμ, p′μ) ↔ (p′μ, pμ). Furthermore,
dK ≡ gd3k/[(2πh̄)3k0] is the Lorentz-invariant momentum-
space volume, with g being the number of internal degrees of
freedom, e.g., spin degeneracy, while Wkk′→pp′ is the Lorentz-
invariant transition rate. The transition rate is symmetric with
respect to the sequence of final states Wkk′→pp′ = Wkk′→p′p,
and it is symmetric for time-reversed processes Wkk′→pp′ =
Wpp′→kk′ . In this way it fulfils the detailed balance property.
The collision integral is positive for any f � 0 and it does not
change sign under time reversal. The q-generalized version
of the so-called Stosszahlansatz, the assumption of molecular
chaos,

Hq[fk, fk′ ] ≡ expq[lnq(fk) + lnq(fk′)], (3)

uses the q-deformed exponential and logarithm functions,

expq(x) ≡ [1 + (1 − q)x]1/(1−q), (4)

lnq(x) ≡ x1−q − 1

1 − q
. (5)

For q → 1 the above expressions are the standard exponential
and natural logarithm functions. Here we stress that for q = 1
the detailed balance solution of the above equations obeys the
classical Boltzmann-Gibbs statistics, not the usual quantum
statistics.

The entropy four-current has to be properly defined as

Sμ ≡ −
∫

dKkμ[f̃k lnq(fk) − fk], (6)

demanding positive entropy production according to the
second law of thermodynamics:

∂μSμ ≡ −
∫

dK lnq(fk)[kμ∂μf̃k] � 0. (7)

Note that Lavagno defined the entropy four-current as S
μ

L ≡
− ∫

dK kμf̃k[lnq(fk) − 1], while the current form was intro-
duced, correcting Lavagno’s definition, by Osada and Wilk
[43–46]. We shall return to this point later.

To elucidate the relation to a fluid dynamical description,
let us define now the following momentum-space integrals of
the NEBE,

∂μNμ ≡
∫

dK kμ∂μf̃k =
∫

dKC[f ], (8)

∂μT μν ≡
∫

dK kνkμ∂μf̃k =
∫

dKkνC[f ], (9)

where we introduced the q-modified particle four-current and
symmetric energy-momentum tensor,

Nμ ≡
∫

dK kμf̃k, (10)

T μν ≡
∫

dK kμkνf̃k. (11)

It is straightforward to show that the left-hand side of Eqs. (8)
and (9) vanishes when the particle number, the energy, and
the momentum in individual collisions are conserved, that is,
if pμ + p′μ = kμ + k′μ holds. This property is expressed by
specifying the so-called collision invariants by using ψ = α +
βμkμ, such that ∫

dKαC[f ] = 0, (12)
∫

dKβμkμC[f ] = 0. (13)

It implies the macroscopic conservation laws of the particle
four-current and energy-momentum tensor for any solution of
the NEBE,

∂μNμ = 0, (14)

∂μT μν = 0, (15)

besides a non-negative entropy production from Eq. (7).
The entropy production vanishes in local q equilib-

rium and it leads to the collision invariant ψ = lnq(f0k).
The distribution function which satisfies ∂μSμ(f0k) = 0 is
the canonical equilibrium one. This result is equivalent
with the requirement that lnq(f0k) = α0 + β

μ

0 kμ, whence the
q-equilibrium distribution is given by

f0k = expq(α0 − β0k
μuμ). (16)

Here α = α0 and βμ = β0u
μ are the collisional invariants

given previously, and uμ is a four-vector normalized to
1, uμuμ = 1. These quantities will be identified with the
inverse temperature, β0 = 1/T ; the chemical potential over
temperature, α0 = μ/T ; and the fluid dynamical four-velocity
of matter uμ. The formula in Eq. (16) reduces to the well-
known Jüttner distribution or relativistic Maxwell-Boltzmann
distribution for q = 1, that is, fJ = exp (α0 − β0k

μuμ). There-
fore it is clear that in local q equilibrium there are only five
fields that completely characterize the system for any given q.

For the purpose of a quick reference let us introduce
�μν ≡ gμν − uμuν , used to project an arbitrary four-vector
into another four-vector orthogonal to uμ. Any four-vector,
Aμ, and in particular the four-momenta of particles can be
decomposed into two parts using an arbitrary fluid dynamic
flow velocity, uμ : kμ = Eku

μ + k〈μ〉, where Ek = kμuμ is the
local rest frame (LRF) energy of the particle and k〈μ〉 = �μνkν
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contains the LRF momenta [47]. The LRF or co-moving
frame is defined with u

μ

LRF = (1, 0, 0, 0). Moreover, the space-
time gradient or four-divergence, ∂μ ≡ ∂/∂xμ = uμd/dτ +
∇μ, should also be decomposed into parts parallel and
orthogonal to the flow. Here, the co-moving or proper time
derivative, d/dτ ≡ uμ∂μ, is also denoted by an overdot,
Ȧμ ≡ dAμ/dτ , and ∇μ ≡ �ν

μ∂ν denotes the gradient. For
second-rank tensors the orthogonal and traceless projection is
defined as A〈μν〉 = �μναβAαβ , where �μναβ ≡ 1

2 (�μα�βν +
�να�βμ) − 1

3�μν�αβ .
Now, using the local q-equilibrium distribution function

we are prepared to introduce the following generalized
thermodynamic integrals:

Iq(i,j ) ≡ 1

(2j + 1)!!

∫
dK(Ek)i−2j (�μνkμkν)j f0k, (17)

Jq(i,j ) ≡ 1

(2j + 1)!!

∫
dK(Ek)i−2j (�μνkμkν)j (f0k)q, (18)

Kq(i,j ) ≡ q

(2j + 1)!!

∫
dK(Ek)i−2j (�μνkμkν)j (f0k)2q−1,

(19)

where i, j � 0 are natural numbers and (2j + 1)!! =
(2j + 1)!/(j !2j ) denotes the double factorial. At a given
fixed temperature (f0k)q = (∂f0k/∂α0)|β0 and q(f0k)2q−1 =
[∂(f0k)q/∂α0]|β0 , whence it follows that

Jq(i,j ) =
(

∂Iq(i,j )

∂α0

)
β0

, Kq(i,j ) =
(

∂Jq(i,j )

∂α0

)
β0

. (20)

The above integrals for q < 1 run over a finite range in
energy, Ek � T/(1 − q), and are always convergent. For q >

1 the integrands have power-law tails satisfying a convergence
criterion: (i + 2) < 1/(q − 1) is required for the Iq(i, j )
integrals to be finite. Correspondingly the maximal index i is
1 higher for the Jq and 2 higher for the Kq integrals. Finally,
for q = 1 the familiar Jüttner distribution makes all integrals
convergent by its exponential tail for any finite indices.
In the case Iq=1(i, j ) = Jq=1(i, j ) = Kq=1(i, j ) = I (i, j ) we
retrieve the familiar relativistic thermodynamic integrals (see
Refs. [48–50]). Note that in the papers by Lavagno [42] and
Lavagno et al. [51], the q-modified Bessel function of the
second kind was introduced, Kn(q, z), where z = mβ0, which
in our notation corresponds to Jq(i,j ) in the LRF.

It is also straightforward to show by partial integration that
the following recursive relations hold in equilibrium:

Jq(i,j ) = − 1

β0
Iq(i−1,j−1) + i − 2j

β0
Iq(i−1,j ), (21)

Kq(i,j ) = − 1

β0
Jq(i−1,j−1) + i − 2j

β0
Jq(i−1,j ). (22)

Furthermore, one can also show that

Iq(i+2,j ) = m2Iq(i,j ) − (2j + 3)Iq(i+2,j+1), (23)

Jq(i+2,j ) = m2Jq(i,j ) − (2j + 3)Jq(i+2,j+1), (24)

Kq(i+2,j ) = m2Kq(i,j ) − (2j + 3)Kq(i+2,j+1), (25)

as well as

İq(i,j ) ≡ ∂Iq(i,j )

∂α0
α̇0 + ∂Iq(i,j )

∂β0
β̇0

= Jq(i,j )α̇0 − Jq(i+1,j )β̇0, (26)

and similarly

J̇q(i,j ) ≡ ∂Jq(i,j )

∂α0
α̇0 + ∂Jq(i,j )

∂β0
β̇0

= Kq(i,j )α̇0 − Kq(i+1,j )β̇0. (27)

Let us recall the definition of the q-modified entropy
four-current and calculate the equilibrium entropy density,
s0 = S

μ

0 uμ, with S
μ

0 = Sμ(f0k) for the q-equilibrium distri-
bution function from Eq. (16). Making use of the previously
introduced q-generalized thermodynamic integrals we obtain

s0 ≡ −α0

∫
dKEkf̃0k + β0

∫
dKE2

k f̃0k +
∫

dKEkf0k

= −α0Jq(1,0) + β0Jq(2,0) + Iq(1,0). (28)

Identifying the momentum integrals, or for short “the mo-
ments” as the particle density n0 = Jq(1,0), the energy density
e0 = Jq(2,0), and the pressure p0 = −Jq(2,1). Here we have
used Eq. (21) to obtain Jq(2,1) = −β−1

0 Iq(1,0), which translates
into the familiar ideal gas EoS, p0 = β−1

0 Iq(1,0). This is the
reason why the definition of the entropy four-current has to be
given in the specific form of Eq. (6). Hence the fundamental
thermodynamic equation follows directly from Eq. (28):

s0 = −α0n0 + β0(e0 + p0). (29)

Note that β0p0 �= n0, because n0 = Jq(1,0) �= Iq(1,0). However,
if the number of particles is conserved, the integrals of Iq and
Jq should lead to the same number of particles per unit volume,
although the normalizations of the distribution functions differ.

The definition of entropy leads to the fundamental thermo-
dynamic relation and the well-known Gibbs-Duhem relations:

ds0 = −α0dn0 + β0de0, (30)

dp0 = n0

β0
dα0 − (e0 + p0)

β0
dβ0. (31)

The last equation follows from Eqs. (22) and (27). Note that
the above thermostatic relations resemble those of classical
BG thermodynamics. Kinetic theory does not specify the
zeroth law of thermodynamics; therefore, whether the ther-
modynamic temperature is different from the temperature in
kinetic theory is an open question [52]. However, choosing a
single parameter for the temperature, the equations of q fluid
dynamics become formally identical with those of classical
fluid dynamics for q = 1.

Before going further we discuss the fluid dynamical
equations in q equilibrium. The particle four-current and
energy-momentum tensor are calculated from Eqs. (10) and
(11) using the local q-equilibrium distribution function from
Eq. (16); hence

N
μ

0 = n0u
μ, (32)

T
μν

0 = e0u
μuν − p0�

μν. (33)
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These decompositions are formally identical with those of
a perfect fluid; hence some authors call it a perfect q fluid
[45,46]. Moreover, the conservation laws from Eqs. (14) and
(15) lead, at least formally, to the well-known Euler equations
of perfect fluid dynamics,

∂μN
μ

0 = 0, (34)

∂μT
μν

0 = 0, (35)

making a closed system of equations by supplementing with
an EoS. These equations imply a vanishing local entropy
production in q local equilibrium, ∂μS

μ

0 = 0, for smooth initial
conditions, i.e., without discontinuities, and EoS’s without
first-order phase transitions. Note that in general the EoS is
not restricted to be an ideal gas EoS. In our case the EoS is
given as p0 = 1

3 (e0 − m2Jq(0,0)), which in the massless limit
returns the familiar e0 = 3p0, and hence the speed of sound is
cs = √

1/3, irrespective of the q parameter [42].
On this account the general formula can be de-

rived by rewriting the above equations with the help of
the thermodynamic integrals and relations dα0 = (de0 +
Kq(3,0)dβ0)/Kq(2,0) and dβ0 = −(de0 − Kq(2,0)dα0)/Kq(3,0).
After some algebra we get that the speed of sound squared,
c2
s = ( ∂p0

∂e0
), at fixed entropy per particle, s0/n0, is given as

c2
s = 1

3
+ m2

3

Dq(1,0)

Dq(2,0)

− m2

3

(Kq(3,0)Kq(0,0) − Kq(2,0)Kq(1,0))

h0Dq(2,0)
, (36)

where h0 ≡ Kq(3,1)/Kq(2,1) = (e0 + p0)/n0 is the enthalpy per
particle and Dq(1,0) = Kq(2,0)Kq(0,0) − K2

q(1,0) and Dq(2,0) =
Kq(3,0)Kq(1,0) − K2

q(2,0).

III. BEYOND q EQUILIBRIUM

If a system is out of equilibrium the distribution function
is different from the local q-equilibrium distribution, f̃k �=
f̃0k . This will lead to additional terms in the thermodynamic
quantities and increase the entropy until the system relaxes
to local q equilibrium according to the microscopic dynamics
described by a NEBE. Once local q equilibrium is reached
these additional dissipative quantities vanish.

Making use of the previously introduced notations, the
macroscopic fields, such as the particle four-current and the
energy-momentum tensor, can be decomposed in a general
frame in the following way:

Nμ ≡ uμ

∫
dKEkf̃k +

∫
dKk〈μ〉f̃k, (37)

T μν ≡ uμuν

∫
dKE2

k f̃k + 1

3
�μν

∫
dK(�αβkαkβ)f̃k

+ 2u(μ
∫

dKEkk
〈ν〉)f̃k +

∫
dKk〈μkν〉f̃k, (38)

where the round brackets around the greek indices denote
symmetrization: A(μν) = (Aμν + Aνμ)/2. Therefore, we can
uniquely identify the fundamental fluid dynamical quantities
such as the particle density, the energy density, and the

isotropic pressure:

n ≡ uμNμ =
∫

dKEkf̃k, (39)

e ≡ uμuνT
μν =

∫
dKE2

k f̃k, (40)

p ≡ −1

3
�μνT

μν = −1

3

∫
dK(�αβkαkβ)f̃k. (41)

Similarly the particle diffusion current, the energy-momentum
current, and the stress tensor are given by

V μ ≡ �μ
αNα =

∫
dKk〈μ〉f̃k, (42)

Wμ ≡ �μ
αuβT αβ =

∫
dKEkk

〈μ〉f̃k, (43)

πμν ≡ T 〈μν〉 =
∫

dKk〈μ k ν〉f̃k. (44)

These macroscopic fields, expressed above as momentum
integrals over the non-equilibrium distribution function, f̃k ,
are part of the particle four-current and energy-momentum
tensor of a non-equilibrated fluid. Some of these quantities are
related to their equilibrium thermodynamical pendants through
the so-called matching conditions. It is standard practice to
assume that the particle density and the energy density are
unchanged from their equilibrium values,

n = n0, e = e0, (45)

while the isotropic pressure, p, separates into two parts: the
thermodynamical pressure,

p0 = −1

3

∫
dK(�αβkαkβ)f̃0k, (46)

and the bulk viscous pressure,


 = −1

3

∫
dK(�αβkαkβ)δf̃k, (47)

such that p = p0 + 
. Here we introduce the deviation
from equilibrium, δf̃k = f̃k − f̃0k . The matching conditions
require that

∫
dKEkδf̃k = ∫

dKE2
k δf̃k = 0, while V μ(f̃k) ≡

V μ(δf̃k), Wμ(f̃k) ≡ Wμ(δf̃k), and πμν(f̃k) ≡ πμν(δf̃k). Now,
it is clear that only the non-equilibrium deviations lead to
dissipation, since the moments of the equilibrium distribution
function lead to vanishing dissipative quantities 
(f̃0k) =
V μ(f̃0k) = Wμ(f̃0k) = πμν(f̃0k) = 0.

For completeness, here we calculate the entropy four-
current from Eq. (6) up to first order in deviations from
equilibrium δf̃k by expanding the entropy four-current around
f̃0k . This expression is given as

Sμ(f̃k) = S
μ

0 −
∫

dKkμ(α0 − β0k
μuμ)δf̃k + O

(
δf̃ 2

k

)
= S

μ

0 − α0V
μ + β0W

μ + O
(
δf̃ 2

k

)
, (48)

where S
μ

0 = −α0N
μ

0 + β0T
μν

0 uν + β0p0u
μ and we make use

of the definitions from Eqs. (42) and (43). Note that the higher-
order deviations from q equilibrium can only be calculated
once δf̃k is specified. The first-order result is independent of
such details.
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We recall that Eckart [53] was the first to discuss relativistic
dissipative fluids in a proper way. The energy-momentum
tensor decomposition proposed by him contained no bulk
viscous pressure, 
 = 0, and no particle diffusion current,
V μ = 0; hence the fluid dynamical flow velocity was fixed
to the conserved particles, uμ = Nμ/

√
NμNμ. Moreover the

energy-momentum current in this case was identified with the
heat flow, qμ = Wμ. Later Landau and Lifshitz [54] intro-
duced a different decomposition where the flow is tied to the
flow of the energy-momentum uμ = T μνuν/

√
T μαuαTμβuβ .

This defines the flow as the only timelike eigenvector of the
energy-momentum tensor. Therefore the energy-momentum
diffusion current vanishes, Wμ = 0, in this frame. These phys-
ically different choices are related by the general expression
for the heat flow, qμ ≡ Wμ − h0V

μ.
Here we show that using the NEBE we obtain formally the

same results as in the case of the classical Boltzmann equation,
but they are generalized to include the non-extensivity of
entropy.

IV. TRANSPORT COEFFICIENTS IN THE RELAXATION
TIME APPROXIMATION

Because the equations of dissipative fluid dynamics are
not closed due to the fact that f̃k is unknown, we need to
find additional equations and relations that close the system
of equations. Let us assume, following Chapman and Cowling
[55], that the non-equilibrium contributions from the streaming
term are negligible near the equilibrium δf̃k  f̃0k , that is,
kμ∂μδf̃k → 0. In this way kμ∂μf̃k � kμ∂μf̃0k and therefore
all non-equilibrium moments vanish from the left-hand side
of the transport equation. Hence we obtain the gradients of
thermodynamic quantities multiplied by transport coefficients.
We calculate the streaming term in q equilibrium as

kμ∂μf̃0k = qf
2q−1
0k (kμ∂μα0 − Ekk

μ∂μβ0 − β0k
νkμ∂μuν).

(49)

From here we follow the pioneering works of Anderson and
Witting [56] and employ the relaxation time approximation.
This simplifies the collision integral of the NEBE,

C[fk] � −Ek

(f̃k − f̃0k)

τC

, (50)

where τC is the relaxation time. The relaxation time can be in-
terpreted as a mean time between collisions. Furthermore, this
approximation fixes the local rest frame so that the energy flow
vanishes, as is shown below. Note that these approximations
are made to simplify the collision term, which in the NEBE is
even more complicated than in the classical case. Nevertheless,
these model equations and solutions can be used to make very
reasonable first estimates for the transport coefficients.

Replacing f̃k = f̃0k + δf̃k in the NEBE and using the
previous assumptions we get the following transport equation,

kμ∂μf̃0k = −Ek

τC

δf̃k. (51)

Utilizing Eqs. (49) and (50) we arrive at

δf̃k = τCqf
2q−1
0k

[(
β0

Ek

θ

3
(kαkβ�αβ) − α̇0 + Ekβ̇0

)

+ (
h−1

0 − E−1
k

)
kμ∇μα0 + β0

Ek

k〈μ k ν〉σμν

]
. (52)

Here we replaced ∂μuν = uμu̇ν + 1
3θ�μν + σμν + ωμν ,

where θ = ∇μuμ is the expansion scalar, σμν = ∇〈μ uν〉 is
the shear stress tensor, and ωμν = (∇μuν − ∇νuμ) /2 is the
vorticity. In the last term β0k

〈μ k ν〉ωμν = 0, due to the fact
that the vorticity is antisymmetric while k〈μ k ν〉 is symmetric.
Note that we made use of the conservation laws of perfect
fluids to calculate the proper time derivatives and hence we
express them in terms of gradients. Thus, applying Eq. (27)
for different i and j values we obtain

α̇0 = n0D−1
q(2,0)[h0Kq(2,0) − Kq(3,0)]θ, (53)

β̇0 = n0D−1
q(2,0)[h0Kq(1,0) − Kq(2,0)]θ, (54)

u̇μ = β−1
0

[
h−1

0 ∇μα0 − ∇μβ0
]
. (55)

Knowing the non-equilibrium distribution function, we can
calculate now dissipative quantities. The stress tensor can be
obtained in a straightforward manner from Eq. (44), together
with the definitions of the integral from Eq. (19), as being

πμν = τCβ0σ
αβ

(
q

∫
dKf

2q−1
0k E−1

k k〈μ k ν〉k〈α kβ〉

)

= 2(τCβ0Kq(3,2))σ
μν, (56)

whence the traditional Newton-Navier-Stokes relation be-
tween the stress tensor and shear tensor emerges:

πμν = 2ησμν. (57)

The shear viscosity coefficient is given by

η = τCβ0Kq(3,2). (58)

The relativistic generalization of the Newtonian shear σμν and
the Navier-Stokes relation between the stress and the shear
have the same form for the q-modified statistics as the ones
obtained using the classical BG statistics.

Similarly to the shear viscosity the heat-conductivity
coefficient can be calculated. One can show that Wμ ∼
(Kq(2,1) − h0Kq(3,1)) = 0 in the Anderson-Witting relaxation
time approximation. Using Eq. (42) and qμ = −h0V

μ, the
result is

qμ = τC (∇μα0)

[
h0

(
q

3

∫
dKf

2q−1
0k E−1

k (kμkν�μν)

)

−
(

q

3

∫
dKf

2q−1
0k (kμkν�μν)

)]

= τC(∇μα0)[h0Kq(1,1) − Kq(2,1)]. (59)

The Fourier-Navier-Stokes law becomes

qμ = −κ
(
h−1

0 β−2
0 ∇μα0

)
, (60)

where ∇μα0 = −h0T
−2 (∇μT − T u̇μ) and the coefficient for

heat conductivity or thermal conductivity is given by

κ = τCh0β
2
0 (Kq(2,1) − h0Kq(1,1)). (61)
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Finally the bulk viscous pressure, also known as the volume
or second viscosity, can be calculated from Eq. (47) where we
used Eqs. (53) and (54) to express the proper time derivatives
in Eq. (52); hence


 = −τC

θ

3

[
β0

q

3

∫
dKf

2q−1
0k E−1

k (�αβkαkβ)2

+ n0

(K30 − h0K20

D20

)
q

∫
dKf

2q−1
0k (�αβkαkβ)

− n0

(K20 − h0K10

D20

)
q

∫
dKf

2q−1
0k Ek(�αβkαkβ)

]

= −τC

θ

3

[
5β0Kq(3,2) + 3n0

(K30 − h0K20

D20

)
Kq(2,1)

− 3n0

(K20 − h0K10

D20

)
Kq(3,1)

]
. (62)

From this the relativistic version of the classical Stokes result
follows immediately


 = −ζθ, (63)

with the bulk viscosity coefficient

ζ = τC

n0

3D20

[
5
β0

n0
D20Kq(3,2) + 3(K30 − h0K20)Kq(2,1)

− 3(K20 − h0K10)Kq(3,1)

]
. (64)

Once again we note that the above results formally resemble
those of the BG statistics; the only explicit q dependence
occurs in the definitions of the q-modified thermodynamic
integrals. All formulas show that the transport coefficients are
directly proportional to the mean free time between collisions
and so inversely proportional to the cross section.

Having defined the dissipative quantities, the deviation from
the q equilibrium Eq. (52) can be written as

δf̃k = qf
2q−1
0k (C

 + Cqk

μqμ + Cπkμkνπμν), (65)

where C
, Cq , and Cπ are tedious expressions inversely
proportional to the respective transport coefficients and may
be calculated from the above formulas.

V. NON-EXTENSIVE EFFECTS IN THE TRANSPORT
COEFFICIENTS

In this section we investigate the previously obtained results
in the LRF where Ek|LRF = √

m2 + k2. The thermodynamic
integrals are calculated in hyperspherical coordinates: kμkμ =
m2, kμuμ ≡ k0 = m cosh χ , k2 = m2 sinh2 χ , �μνkμkν =
−m2 sinh2 χ , and dK = g

(2π)3 4πm2 sinh2 χdχ . Note that the
integrals for q � 1 are calculated up to infinity while for
q < 1 the upper limit of integration is χmax = cosh−1( T

m(1−q) ).
Furthermore, the chemical potential is set to zero, μ = 0, while
the spin degeneracy is g = 1.

In Fig. 1 we plot the natural logarithm of the qth power of
the q-equilibrium distribution function from Eq. (16) in the
LRF, with m = 140 MeV and T = 140 MeV for longitudinal
momenta kL ∈ [0, 10] GeV and transverse momenta kT = 0.

0 2 4 6 8 10
10�41

10�34

10�27

10�20

10�13

10�6

kL �GeV�

ln
f 0

kq

q�1.2
q�1.1
q�1
q�0.9

FIG. 1. (Color online) The f̃0k distribution as a function of
longitudinal momenta for different q parameters: q = 0.9 (thick line),
q = 1 (thin line), q = 1.1 (dashed line), and q = 1.2 (dotted line).
The mass of particles and the temperature are m = T = 140 MeV.

The functions are plotted for q = 0.9 (thick line), q = 1 (thin
line), q = 1.1 (dashed line), and q = 1.2 (dotted line). Note
that for q = 0.9 the function is practically cut off at kL =
m sinh χmax.

Next we plot the speed of sound squared c2
s as a function of

temperature and q parameter from Eq. (36) (Fig. 2). The mass
of particles is fixed at m = 140 MeV, while the temperature is
T ∈ [2, 500] MeV. We see that for any value of q the speed
of sound is increasing with temperature while it saturates for
T � m to the ultrarelativistic limit, c2

s = 1/3, independently
of q. This is a straightforward result from Eq. (36). The speed
of sound is larger for larger q at any given temperature.

The shear viscosity divided by the relaxation time from
Eq. (58), ητ−1

C = β0Kq(3,2), is shown in Fig. 3(a). On the

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

T �GeV�

c s2

q�1.2
q�1.1
q�1
q�0.9

FIG. 2. (Color online) The c2
s as a function of temperature for

different q parameters: q = 0.9 (thick line), q = 1 (thin line), q = 1.1
(dashed line), and q = 1.2 (dotted line).
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FIG. 3. (Color online) The shear viscosity coefficient divided by
the relaxation time ητ−1

C (a) and the shear viscosity coefficient over
entropy density divided by the relaxation time (η/s)τ−1

C (b) as a
function of temperature for different q values.

other hand the shear viscosity to entropy ratio divided by
the relaxation time η

s
τ−1
C = Kq(3,2)

Jq(2,0)−Jq(2,1)
can be inspected for

different values of q in Fig. 3(b).
We observe that the viscosity increases with increasing

temperature for all q values. This behavior is more pronounced
for larger q values; hence there is a monotonic increase
in the viscosity coefficient with increasing q at a given
temperature. At the same time it turns out that the shear
viscosity to entropy ratio at a given temperature is almost
insensitive to different values of q. Figure 3(b) demonstrates
that for a given relaxation time τC the η/s ratio does not
change significantly and at high temperatures the q dependence
diminishes. This also means that the ratio of dissipative to
equilibrium quantities such as πμν/(e0 + p0) � (η/s)/T does
not change at high temperatures. This is due to the fact that
the entropy density also increases with increasing q values
by about the same factor. In the classical Maxwell-Boltzmann
massless limit (ητ−1

C )q=1 = β0I(3,2) = 4/(15e0) and s(q=1) =
β0(I(2,0) − I(2,1)) = 4β0e0/3, we recover the familiar results
[57].

0.0 0.1 0.2 0.3 0.4 0.5
0

5

10

15
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35

T �GeV�

Κ�
Τ C
�f

m
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q�0.9

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6
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(a)

(b)

FIG. 4. (Color online) The heat-conductivity coefficient divided
by the relaxation time (a) and the heat-conductivity coefficient to
entropy density ratio divided by the relaxation time (b) as a function
of temperature for different q values.

Similarly to the viscosity coefficient, we also plot the
coefficient for the heat-conductivity from Eq. (61), as well as
the ratio of heat conductivity to entropy density divided by the
relaxation time. Both of these quantities, shown in Figs. 4(a)
and 4(b), are sensitive to the value of the parameter q.

Furthermore, we observe that the heat conductivity in-
creases with increasing q values, and the ratio κ

s
τ−1
C increases

in a noticeable fashion.
Figures 5(a) and 5(b) show the bulk viscosity coefficient

divided by the relaxation time and the bulk viscosity coefficient
to entropy density ratio divided by the relaxation time.

We observe that the value of the bulk viscosity coefficient is
very small. It is about 10−3 times smaller than the coefficient
of shear viscosity ζ � 10−3η, which corroborates the classical
result that the bulk viscosity in the nonrelativistic or ultrarela-
tivistic massless limit vanishes, while it is much smaller than
the shear viscosity in between for massive particles [57,58].
On the other hand the bulk viscosity to entropy density ratio
does show a monotonic increase with increasing q but only for
T  m. For T > m the behavior is reversed due to the fact
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FIG. 5. (Color online) The bulk viscosity coefficient divided by
the relaxation time (a) and the bulk viscosity coefficient to entropy
density ratio divided by the relaxation time (b) as a function of
temperature for different q values.

that the entropy density increases with temperature at a slower
rate compared to the viscosity.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have calculated the transport coefficients
from a q-modified Boltzmann equation. The results show
that all transport coefficients increase monotonically with
increasing q values for relativistic ideal gases. The speed
of sound is also increasing with increasing q but it saturates
quickly to the well-known ultrarelativistic limit independent
of q.

Furthermore, we derived the q-generalized versions of
the classical Navier-Stokes-Fourier equations of relativis-
tic dissipative fluid dynamics from a q-generalized Boltz-
mann transport equation. These equations relate the dis-
sipative quantities to the thermodynamical forces linearly
with positive transport coefficients that dependent on the
parameter q.

The resulting equations are nevertheless parabolic, hence
acausal and unstable [59]. Hyperbolicity related problems are
not solved by introducing the parameter q. This manqué can
be resolved by an appropriate choice of the relaxation time
in the evolving fluid [60]. Superior but more complicated
equations of motion may be derived from the NEBE as in the
classical theory, with methods different from the one presented
in this work (see, for example, Refs. [61–65]).
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[50] A. Muronga, Phys. Rev. C 76, 014910 (2007).

[51] A. Lavagno, P. Quarati, and A. M. Scarfone, Braz. J. Phys. 39,
457 (2009).
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