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Higher flow harmonics from (3 + 1)D event-by-event viscous hydrodynamics
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We present event-by-event viscous hydrodynamic calculations of the anisotropic flow coefficients v2 to v5

for heavy-ion collisions at the Relativistic Heavy-Ion Collider (RHIC). We study the dependence of different
flow harmonics on shear viscosity and the morphology of the initial state. v3 and higher flow harmonics exhibit
a particularly strong dependence on both the initial granularity and shear viscosity. We argue that a combined
analysis of all available flow harmonics has the potential to determine η/s of the quark gluon plasma more
precisely than previously. Presented results strongly hint at a value (η/s)QGP < 2/4π at RHIC. Furthermore,
we demonstrate the effect of shear viscosity on pseudorapidity spectra and the mean transverse momentum as a
function of rapidity.
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I. INTRODUCTION

Hydrodynamics is an indispensable and accurate tool
for the description of the bulk behavior of a fluid. The
equations of hydrodynamics are just the conservation laws, an
additional equation of state, and constitutive relationships for
dissipative hydrodynamics. The idea that ideal hydrodynamics
can describe the outcome of hadronic collisions has a long
history. Applications to relativistic heavy-ion collisions have
been carried out by many researchers (see [1,2] for an extensive
list of references).

Fluctuating initial conditions for hydrodynamic simulations
of heavy-ion collisions have been argued to be very important
for the exact determination of collective flow observables and
to describe features of multiparticle correlation measurements
in heavy-ion collisions [3–22]. Real event-by-event hydrody-
namic simulations have been performed and show modifica-
tions to spectra and flow from “single-shot” hydrodynamics
with averaged initial conditions [17,20–22]. An important
advantage of event-by-event hydrodynamic calculations is the
possibility to consistently study all higher flow harmonics in
the same simulation. The initial state does not have to be
constructed as a smooth distribution with a given eccentricity,
triangularity, etc., which will cause simulations to miss some
of the dynamics relevant for the calculation of higher flow
harmonics. This is particularly important for the computation
of v4, which receives strong contributions from elliptical
deformations of the initial state, and v5, which couples to
triangularity from fluctuations and to the ellipticity of the col-
lision geometry [22]. Recent hydrodynamic simulations have
highlighted the role of viscous corrections [23], fluctuating
initial states [24] and the combination of both [25] also on
electromagnetic observables.

Different vn depend differently on η/s and the details of
the initial condition, which is determined by the dynamics and
fluctuations of partons in the incoming nuclear wave functions.
In this work we present quantitative results on the dependence
of v2 to v5 on both the shear viscosity to entropy density ratio

η/s and the granularity of the initial state, and compare to
experimental data.

This paper is organized as follows. In Sec. II we introduce
the employed second-order relativistic viscous hydrodynamic
framework. The explicit form of the hyperbolic equations in τ -
ηs coordinates and the numerical implementation are presented
in Sec. III. We discuss the initial condition for single events in
Sec. IV and explain the freeze-out procedure in Sec. V. Finally,
results are presented in Sec. VI, followed by conclusions and
discussions in Sec. VII.

II. VISCOUS HYDRODYNAMICS

In [1] we introduced the simulation MUSIC for ideal
relativistic fluids and extended it in [20] to include dissipative
effects.

In the ideal case, the evolution of the system, created in
relativistic heavy-ion collisions, is described by the following
five conservation equations:

∂μT
μν

0 = 0 , (1)

∂μJ
μ

B = 0 , (2)

where T
μν

0 is the energy-momentum tensor and J
μ

B is the net
baryon current. These are usually re-expressed using the time-
like flow four-vector uμ as

T
μν

0 = (ε + P)uμuν − Pgμν , (3)

J
μ

B = ρBuμ , (4)

where ε is the energy density, P is the pressure, ρB is the
baryon density and gμν = diag(1,−1,−1,−1) is the metric
tensor. The equations are then closed by adding the equilibrium
equation of state

P = P(ε, ρB ) (5)

as a local constraint on the variables.
Historically, these equations have first been solved in a

boost-invariant framework [26], eliminating the longitudinal
direction and assuming uniformity in the transverse direction.
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At RHIC the central plateau in rapidity extends over four
units. Hence, as long as one is concerned only with the
dynamics near the midrapidity region, boost invariance should
be a valid approximation at RHIC, restricting the relevant
spatial dimensions to the transverse plane. Much success has
been achieved by these (2 + 1)D calculations (see references
in [1] and [27,28] for thorough reviews). However, in order to
analyze experimental data away from midrapidity, inclusion
of the nontrivial longitudinal dynamics is essential [1,29–34].

The next step in improving relativistic hydrodynamic
simulations of heavy-ion collisions is the inclusion of finite
viscosities. In the first order, or Navier-Stokes formalism for
viscous hydrodynamics, the stress-energy tensor is decom-
posed into

T
μν

1st = T
μν

0 + Sμν , (6)

where T
μν

0 is given by Eq. (3)
The viscous part of the stress energy tensor in the first-order

approach is given by

Sμν = η
(∇μuν + ∇νuμ − 2

3	μν∇αuα
)
, (7)

where 	μν = gμν − uμuν is the local three-metric and ∇μ =
	μν∂ν is the local spatial derivative. Note that Sμν is transverse
with respect to the flow velocity since 	μνuν = 0 and uνuν =
1. Hence, uμ is also an eigenvector of the whole stress-energy
tensor with the same eigenvalue ε. η is the shear viscosity
of the medium. We assume the ratio η/s to be constant.
This way we can study the dependence of observables on an
effective η/s, neglecting its temperature dependence that has
been studied in, e.g., [35,36]. In particular, we do not take into
account an increasing η/s in the hadronic phase which should
preferably be done by switching to a hadronic rescattering
simulation when viscous corrections become large. Not aiming
at a precision determination of η/s(T ) in the current work these
approximations are adequate.

The form of viscous hydrodynamics using Eq. (7) is con-
ceptually simple. However, this Navier-Stokes form is known
to introduce unphysical superluminal signals [37–39], leading
to numerical instabilities. The second-order Israel-Stewart
formalism [40–42] avoids this superluminal propagation, as
does the more recent approach in [43].

In this work, we use a variant of the Israel-Stewart
formalism derived in [44], where the stress-energy tensor is
decomposed as

T μν = T
μν

0 + πμν . (8)

The evolution equations are

∂μT μν = 0 (9)

and

	μ
α	ν

βuσ ∂σπαβ = − 1

τπ

(πμν − Sμν) − 4

3
πμν(∂αuα) . (10)

When dealing with rapid longitudinal expansion, it is useful
to transform these equations to the τ -ηs-coordinate system,
defined by

t = τ cosh ηs ,

z = τ sinh ηs . (11)

We obtain the following hyperbolic equations with sources:

∂aT
ab

0 = −∂aπ
ab + Fb (12)

and

∂a(uaπcd ) = −(1/τπ )(πcd − Scd ) + Gcd, (13)

where Fb and Gcd contain terms introduced by the coordinate
change from t, z to τ, ηs as well as those introduced by the
projections in Eq. (10), and τπ is the relaxation time. Latin
indices a, b, c, d indicate that we are in the τ -ηs-coordinate
system. Summation over all four dimensions is implied for
repeated indices.

Our approach to solve these hyperbolic equations relies
on the Kurganov-Tadmor (KT) scheme [45,46], together
with Heun’s method to solve resulting ordinary differential
equations.

III. IMPLEMENTATION

As mentioned above, the most natural coordinate system
for us is the τ − ηs coordinate system defined by Eq. (11). In
this coordinate system, the conservation equation ∂μJμ = 0
becomes

∂τ (τJ τ ) + ∂v(τJ v) + ∂ηs
J ηs = 0 , (14)

where

J τ = (cosh ηsJ
0 − sinh ηsJ

3) , (15)

J ηs = (cosh ηsJ
3 − sinh ηsJ

0) , (16)

which is simply a Lorentz boost with the space-time rapidity
ηs = tanh−1(z/t). The index v and w in this section always
refer to the transverse x, y coordinates which are not affected
by the boost. Repeated indices v or w imply summation over x

and y only. Applying the same transformation to both indices
in Eq. (9), one obtains

∂τ

(
τT ττ

0

) + ∂v

(
τT vτ

0

) + ∂ηs

(
T

ηsτ

0

) + T
ηsηs

0 + ∂τ (τπττ )

+ ∂v(τπvτ ) + ∂ηs
(πηsτ ) + πηsηs = 0 , (17)

∂τ

(
τT

τηs

0

) + ∂v

(
τT

vηs

0

) + ∂ηs

(
T

ηsηs

0

) + T
τηs

0 + ∂τ (τπτηs )

+∂v(τπvηs ) + ∂ηs
(πηsηs ) + πτηs = 0 , (18)

and

∂τ

(
τT τv

0

) + ∂w

(
τT wv

0

) + ∂ηs

(
T

ηsv

0

) + ∂τ (τπτv)

+ ∂w(τπwv) + ∂ηs
(πηsv) = 0. (19)

These five equations, namely Eq. (14) for the net baryon cur-
rent, and Eqs. (17), (18), (19) for the energy and momentum,
are solved along with Eqs. (13) for the viscous part of the stress-
energy tensor, which in a more explicit way of writing read

∂c(ucπab) = − 1

2τ
uτπab + 1

τ
	aηuηπbτ − 1

τ
	aτuηπbη

− gcf πcbuaDuf − πab

2τπ

− 1

6
πab∂cu

c

+ η

τπ

(
− 1

τ
	aηgbηuτ + 1

τ
	aηgbτuτ

+ gac∂cu
b−uaDub−1

3
	ab∂cu

c

)
+(a ↔ b).

(20)
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The relaxation time τπ is set to 3η/(ε + P), in line with
the approach in [47]. It was also shown in [48] that the
dependence of observables such as v2 on τπ is negligible
when including the term (4/3)πμν(∂αuα) in Eq. (10).

To solve the equations we use the KT algorithm as explained
in [1]. In detail, we compute the first step within Heun’s method
for Eqs. (14), (17), (18), (19), then the first step for Eqs. (20),
proceed with the second step for Eqs. (14), (17), (18), (19)
using the evolved result for πab, and finally compute the second
step for Eqs. (20). This concludes the evolution of one time
step.

One major difference to the ideal hydrodynamic equations
solved in [1] is the appearance of time derivatives in the source
terms of Eqs. (17), (18), (19), (20). These are handled with the
first-order approximation

ġ(τn) = (g(τn) − g(τn−1))/	τ , (21)

in the first step of the Heun method, and in the second step we
use

ġ(τn) = (g∗(τn+1) − g(τn))/	τ , (22)

where g∗(τn+1) is the result from the first step.
As in most Eulerian algorithms, ours also suffers from

numerical instability when the density becomes small while
the flow velocity becomes large. Fortunately this happens late
in the evolution or at the very edge of the system. Regularizing
such instability has no strong effects on the observables we
are interested in. Some ways of handling this are known (for
instance see Ref. [49]).

In this study, when finite viscosity causes negative pressure
in the cell, we revert to the previous value of πμν and reduce all
components by 5%. This procedure stabilizes the calculations
without introducing spurious effects.

IV. INITIALIZATION AND EQUATION OF STATE

To determine the energy density distribution at the initial
time τ0 for a single event, we employ the Monte Carlo Glauber
model using the method described in [50] to determine the
initial distribution of wounded nucleons. Before the collision
the density distribution of the two nuclei is described by a
Woods-Saxon parametrization, which we sample to determine
the positions of individual nucleons. The impact parameter is
sampled from the distribution

P (b)db = 2bdb/(b2
max − b2

min) , (23)

where bmin and bmax depend on the given centrality class.
Given the sampled initial impact parameter the two nuclei are
superimposed. Two nucleons are assumed to collide if their
relative transverse distance is less than

D =
√

σNN/π , (24)

where σNN is the inelastic nucleon-nucleon cross section,
which at top RHIC energy of

√
s = 200A GeV is σNN =

42 mb. The energy density is taken to scale mostly with the
wounded nucleon distribution and to 25% with the binary
collision distribution. So, two distributions are generated, one
where for every wounded nucleon a contribution to the energy

density with Gaussian shape and width σ0 in both x and y is
added, one where the same is done for every binary collision.
These are then multiplied by 0.75 and 0.25, respectively, and
added.

In the rapidity direction, we assume the energy density to
be constant on a central plateau and fall like half-Gaussians at
large |ηs | as described in [1]:

ε(ηs) ∝ exp

[
− (|ηs | − ηflat/2)2

2σ 2
η

θ (|ηs | − ηflat/2)

]
. (25)

This procedure generates flux-tube like structures compat-
ible with measured long-range rapidity correlations [51–53].
The absolute normalization is determined by demanding that
the obtained total multiplicity distribution reproduces the
experimental data. We initialize with πμν(τ0) = 0.

As equation of state we employ the parametrization “s95p-
v1” from [54], obtained from interpolating between lattice data
and a hadron resonance gas. This equation of state describes
a chemically equilibrated system and hence does not account
for chemical decoupling before kinetic freeze-out. Equations
of state including partial chemical equilibrium improve on this
and will be studied in future work.

V. FREEZE-OUT

We perform a Cooper-Frye freeze-out using

E
dN

d3p
= dN

dypT dpT dφp

= gi

∫
�

f (uμpμ)pμd3�μ , (26)

where gi is the degeneracy of particle species i, and � the
freeze-out hypersurface. In the ideal case the distribution
function is given by

f (uμpμ) = f0(uμpμ)= 1

(2π )3

1

exp((uμpμ − μi)/TFO) ± 1
,

(27)

where μi is the chemical potential for particle species i and
TFO is the freeze-out temperature. In the finite viscosity case
we include viscous corrections to the distribution function,
f = f0 + δf , with

δf = D(α)f0(1 ± (2π )3f0)

(
T

E

)α

pμpνπμν

1

2(ε + P)T 2
,

(28)

where π is the viscous correction introduced in Eq. (8). This
result is obtained using a relaxation time approximation [55].
α ∈ [0, 1] depends on the details of the (unknown) underlying
microscopic theory, E = pμuμ, and D(α) = 120/�(6 − α) is
a normalization factor derived using Boltzmann statistics in
the kinetic theory (differences to quantum statistics are on the
one percent level). �(·) is the Euler γ function. Most presented
results are obtained using α = 0, leading to δf ∼ p2, but this
choice is not unique [55]. Therefore we will show a comparison
of all vn(pT ) using α = 0, 0.5, and 1 to see how large an
uncertainty is introduced in the final result by the uncertainty
in δf .
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TABLE I. Parameter sets.

η/s σ0[fm] τ0[fm/c] 〈εmax〉[GeV/fm3] TFO[MeV]

0 0.4 0.4 65.7 150
0.08 0.4 0.4 57 150
0.16 0.4 0.4 50 150
0.08 0.2 0.4 57 155
0.08 0.8 0.4 57 145

The algorithm used to determine the freeze-out surface �

has been presented in [1]. It can be used without modification
for determining the freeze-out surface of a system with
fluctuating initial conditions. In this case the error introduced
by complicated surface shapes where the surface can not be
constructed without gaps is less than 1%.

VI. ANALYSIS AND RESULTS

While in standard hydrodynamic simulations with averaged
initial conditions all odd flow coefficients vanish by definition,
fluctuations generate all flow harmonics as response to the
initial geometry. We follow [19], where v3 is computed in a
similar way to the standard event plane analysis for elliptic
flow, and for each vn define an event plane through the angle

ψn = 1

n
arctan

〈sin(nφ)〉
〈cos(nφ)〉 . (29)

Note that here we do not weigh the average by pT as done
in [19,20] and [56]. Definition (29) is closer to what is done in
the PHENIX experiment, because the pT of the particles used
to determine the event planes are not measured. Therefore
one can not apply an explicit pT weighting [57]. Most of the
particles used to determine the event plane have low transverse
momentum because of the fast dropping spectrum. Differences
between the different definitions are however small and lead
to variations of vn on the order of 1% or less.

The flow coefficients can be computed using

vn = 〈cos(n(φ − ψn))〉 . (30)

When averaging over events we compute the root mean square√
〈v2

2〉 because we compare to data obtained with the event-
plane method (see [58]). First, we present results for particle
spectra as functions of pT and ηs . Parameters were chosen
in order to reproduce the experimental data for the spectra
when including all resonances up to 2 GeV (and some higher
lying resonances to be consistent with what is included in
the employed equation of state). The used parameters can
be found in Table I. Values for the maximal average energy
density (in the center of the system) 〈εmax〉 are quoted for most
central (0–5%) collisions. In addition, all parameter sets use
ηflat = 4.8 and ση = 0.7.

Figure 1 shows the transverse momentum spectra of positive
pions, kaons and protons compared to experimental data from
PHENIX [59] in 20–30% central events. In Fig. 2 we present a
comparison of the computed charged particle spectrum for
η/s = 0.08 in 15–25% central collisions as a function of
pseudorapidity ηp with experimental data from PHOBOS [60].
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FIG. 1. (Color online) Positive pion transverse momentum spec-
trum for 20–30% central Au + Au collisions using η/s = 0.08
including resonances up to 2 GeV (solid) and up to the φ meson
(dashed) compared to data from PHENIX [59]. Results are averages
over ten single events.

With the employed parameters we achieve very good
agreement when including all resonance decays. In general,
it is computationally too expensive to include resonances up
to 2 GeV for all calculations. Hence, for most presented results
we restrict ourselves to including resonances up to the φ meson
only. This is a good approximation because pions dominate
the flow of all charged hadrons and it is mainly the ρ and ω

mesons that modify the pion distributions. Figure 3 shows how
the vn for charged hadrons are affected by including different
numbers of resonances. Including more resonances reduces all
vn, however, the quantitative effect is small. The reduction is
caused by the kinematics of resonance decays. When including
more resonances, decays will diffuse the distribution of lower
lying resonances and finally that of pions, kaons, and protons.
This diffusion leads to weaker anisotropic flow. The influence
of higher lying resonances on v3 appears to be larger than that
on the other vn.

Next, we verify that our results are not plagued by large
discretization errors. Higher flow harmonics are sensitive
to fine structures in the system and for the case of ideal
hydrodynamics with smooth initial conditions it was shown
in [1] that v4 is very sensitive to the lattice spacing if it is not
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FIG. 2. (Color online) Charged hadron spectrum for 15–25%
central Au + Au collisions including resonances up to 2 GeV (solid,
averaged over ten events) and up to the φ meson (dotted, averaged
over 100 events) compared to data from PHOBOS [60].
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FIG. 3. (Color online) Charged hadron v2 to v5 for η/s = 0.08
as a function of transverse momentum pT averaged over ten single
events, including resonances up to the φ meson (upper end of each
band) and all resonances up to 2 GeV (lower end of each band).

chosen small enough. Figure 4 shows vn(pT ) for two different
lattice spacings, our standard value of a = 0.115 fm and a
larger a = 0.2 fm. Differences are within the statistical error
bars from averaging over 100 events each.

In Fig. 5 we demonstrate the uncertainty in all vn(pT )
introduced by the uncertainty in the viscous correction δf

to the thermal distribution function. Using α = 0, 0.5, and
1 corresponding to δf ∝ p2, p3/2, and p, respectively, as
well as no δf correction at all, we find that the uncertainty
from δf for pT < 2 GeV is negligible and still moderate
for 2 GeV < pT < 3 GeV. Our results are hence robust for
pT < 2 GeV.

Because we are using a (3 + 1)-dimensional relativistic vis-
cous hydrodynamic simulation, it is interesting to demonstrate
the effect of shear viscosity on the longitudinal dynamics of
the system, which in a (1 + 1)-dimensional simulation was
studied in [61,62].

Figure 6 shows the modification of charged hadron pseudo-
rapidity spectra caused by the inclusion of shear viscosity.
The shape of the initial energy density distribution in the
longitudinal direction is the same for all curves, which
were each averaged over 200 events. The normalization was
adjusted to yield the same multiplicity at midrapidity in all
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FIG. 4. (Color online) Charged hadron v2 to v5 for η/s = 0.08
and σ0 = 0.4 fm as a function of transverse momentum pT averaged
over 100 single events for lattice spacings a = 0.115 fm (solid lines)
and a = 0.2 fm (dashed lines).
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FIG. 5. (Color online) Differential v2 and v4 (upper panel) and v3

and v5 (lower panel) in 20–30% central collisions using η/s = 0.08
and varying the p dependence of δf . Also shown is the ideal result and
the result from viscous evolution only (no δf ). We are not showing
error bands for clarity. Results are averages over 100 single events
each.

cases. In the range 2 < |ηp| < 4 the pseudorapidity spectra
are increased, for larger ηp decreased by the effect of shear
viscosity. We checked that this effect is almost entirely due
to the modified evolution when including shear viscosity. The
viscous correction to the distribution functions δf (28) only
causes minor modifications. Additional information can be
obtained by looking at the average transverse momentum 〈pT 〉
as a function of rapidity. We show in Fig. 7 that also 〈pT 〉
increases at intermediate rapidities and decreases at the largest
|y|. For this observable the effect of δf is larger.

In the viscous case, the effective longitudinal pressure
is reduced compared to an ideal fluid. Hence longitudinal
pressure gradients are smaller and longitudinal acceleration is
reduced, leading to smaller multiplicity at the largest rapidities.
Also, at the largest rapidities the system is small and freezes
out early at low transverse velocity, leading to a small 〈pT 〉.
At intermediate rapidities, the strong change in the initial
distribution leads to the largest pressure gradients. Hence,
longitudinal expansion is strongest in that region. Because
shear is proportional to the difference in longitudinal and
transverse expansion, entropy production is largest in this
region, which we have checked explicitly. The large shear
stress in this region subsequently leads to larger transverse
pressure, hence larger transverse pressure gradients. This leads
to an increased transverse velocity at intermediate rapidities,
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FIG. 6. (Color online) Charged hadron spectrum for 20–30%
central Au + Au collisions for different values of η/s including
resonances up to the φ meson.

explaining the increased average pT . The shear stress remains
large until freeze-out leading to the larger δf correction in the
same region.

In Fig. 8 we show the dependence of vn(pT ) on the shear
viscosity of the system. Results are averaged over 200 single
events each. For v2 to v4 we compare to experimental data
from the PHENIX collaboration obtained using the event plane
method [63]. The dependence of vn(pT ) on η/s increases with
increasing n. To make this point more quantitative, we present
the ratio of the pT -integrated vn from viscous calculations to vn

from ideal calculations as a function of n in Fig. 9. While v2 is
suppressed by ∼20% when using η/s = 0.16, v5 is suppressed
by ∼80%. Higher harmonics are substantially more affected
by the system’s shear viscosity than v2 and hence are a much
more sensitive probe of η/s. This behavior is expected because
diffusive processes smear out finer structures corresponding to
higher n more efficiently than larger scale structures, and has
been pointed out previously in [18].

So far all results were obtained using initial conditions with
a Gaussian width σ0 = 0.4 fm. We now study the effect of
the initial state granularity on the flow harmonics by varying
σ0. Decreasing σ0 causes finer structures to appear and hence
strengthens the effect of hot spots. This results in a hardening
of the spectra as previously demonstrated in [17]. Because
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FIG. 7. (Color online) Positive pion average pT as a function of
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we want to compare to experimental data, we readjust the
slopes to match the experimental pT -spectra by modifying the
freeze-out temperature (see Table I).

Figure 10 shows the dependence of vn(pT ) on the value
of σ0, which we vary from 0.2 fm to 0.8 fm. While v2 is
almost independent of σ0, higher flow harmonics show a very
strong dependence. In Fig. 11 we present the dependence of the
pT -integrated vn on the initial state granularity characterized
by σ0.

Higher flow harmonics turn out to be a more sensitive
probe of initial state granularity than v2. While we are not
yet attempting an exact extraction of η/s using higher flow
harmonics, our results give a first quantitative overview of the
effects of both the initial state granularity and η/s on all higher
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flow harmonics up to v5. Comparing Figs. 8 and 10, we see that
v4(pT ) obtained from simulations using η/s = 0.16 is about a
factor of 2 below the experimental result, and that decreasing
σ0 by a factor of two does not increase it nearly as much. Note
that σ0 = 0.2 fm is already a very small value given that we
assign this width to a wounded nucleon. It is hence unlikely
that a higher initial state granularity will be able to compensate
for the large effect of the shear viscosity. Similar arguments
hold for v3(pT ).
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A detailed systematic analysis of different models for the
initial state with a sophisticated description of fluctuations
is needed to make more precise statements on the value of
η/s. Also an equation of state that includes a partial chemical
freeze-out is expected to modify the results, in particular
vn(pT ) [64].

It is however clear from the present analysis that the
utilization of higher flow harmonics can constrain models
for the initial state and values of transport coefficients of the
quark-gluon plasma significantly. The analysis of only elliptic
flow is not sufficient for this task, because it depends too
weakly on both the initial state granularity and η/s.

We present v2 and v3 as a function of pseudorapidity in
Fig. 12. The v2(ηp) result from the simulation is flatter than the
experimental data out to ηp ≈ 3 and then falls off more steeply.
A modified shape of the initial energy density distribution in
the ηs direction, the inclusion of finite baryon number, and
inclusion of a rapidity dependence of the fluctuations will
modify the result.

In Fig. 13 we show results of vn(pT ) for different centralities
using η/s = 0.08. Overall, all flow harmonics are reasonably
well reproduced. Deviations from the experimental data,
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FIG. 12. (Color online) v2 and v3 as functions of pseudorapidity
ηp compared to data from PHOBOS [65]. Averages are over 100
single events each.
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especially of v3(pT ) in the most central collisions indicate
that our rather simplistic description of the initial state and
its fluctuations is insufficient. Improvements can be made by
a systematic study with alternative models for the fluctuating
initial state based on, e.g., the color-glass-condensate effective
theory (along the lines of [66]).

Finally, the higher flow harmonics integrated over a trans-
verse momentum range 0.2 GeV < pT < 2 GeV are shown
in Fig. 14 as a function of centrality. v2 has the strongest
dependence on the centrality because it is driven to a large part
by the overall geometry. The odd harmonics are entirely due
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 v2
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FIG. 14. (Color online) v2 to v5 as functions of centrality for
η/s = 0.08. Averages are over 100 single events each.

to fluctuations as we have discussed earlier, and hence do not
show a strong dependence on the centrality of the collision.

VII. SUMMARY AND CONCLUSIONS

We have demonstrated that the analysis of higher flow
harmonics within (3 + 1)-dimensional event-by-event viscous
hydrodynamics has the potential to determine transport coef-
ficients of the QGP such as η/s much more precisely than
the analysis of elliptic flow alone. We presented in detail
the framework of (3 + 1)-dimensional viscous relativistic
hydrodynamics and the concept of event-by-event simulations,
which enable us to study quantities that are strongly influenced
or even entirely due to fluctuations such as odd flow harmonics.
Parameters of the hydrodynamic simulation were fixed to
reproduce particle spectra both as a function of transverse
momentum pT and pseudorapidity ηp. The studied flow
harmonics v2 to v5 were found to depend increasingly strongly
on the value of η/s and also on the initial state granularity.
This work does not attempt an exact extraction of η/s of the
QGP, and additional work is needed to do so, however, our
quantitative results hint at a value of η/s not larger than 2/4π .
The reason is the strong suppression of v3 to v5 by the shear
viscosity. A higher granularity of the initial state counteracts
this effect, but our results indicate that this increase is not
large enough to account for η/s � 2/4π . We will report on
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a detailed analysis of higher flow harmonics at LHC energies
and a comparison to the experimental data in a subsequent
work.
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