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Skyrme forces and the fusion-fission dynamics of the 132Sn + 64Ni → 196Pt∗ reaction
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The dependence of the fusion-fission process on Skyrme forces is studied by using the dynamical cluster-decay
model (DCM) and the �-summed extended-Wong model in the 132Sn + 64Ni → 196Pt∗ reaction, where the nuclear
proximity potential is obtained by using the semiclassical extended Thomas-Fermi (ETF) approach in the Skyrme
energy density formalism (SEDF) under the frozen density approximation. The DCM gives an excellent fit to
the measured fusion evaporation residue (ER) and the fission cross sections below and above barrier energies,
with ER data needing “barrier lowering” at below-barrier energies for each Skyrme force (an in-built property of
the DCM). The fission cross sections show a contribution of quasifission (qf) at the above-barrier two or three
highest energies, depending on the Skyrme force. Calculations are illustrated for three Skyrme forces, GSkI, SSk,
and SIII. Another interesting result is that there is a change of fission mass distribution from a predominantly
asymmetric one to a symmetric one with a decrease in the N/Z ratio of the compound nucleus, independent of the
choice of nuclear interaction potential, which gives an opportunity to address the isospin effects in the Pt∗ nucleus.
Within the �-summed extended-Wong model we find that the GSkI and SSk forces fit the total fusion cross-section
data exactly, whereas the SIII force needs “barrier modification” in order to fit the data at below-barrier energies.
This happens because the isospin and neutron-proton asymmetry nature of GSkI and SSk forces is different from
that of the SIII force, and because the center-of-mass energy Ec.m. dependence of the barrier height for the SIII
force and that of Blocki et al. [Ann. Phys. (NY) 105, 427 (1977)] differs strongly (by a constant amount of
∼7 MeV) from those for GSKI and SSk forces. Note that, because of the associated preformation factor with
each fragment, the DCM has the advantage of treating various decay processes separately, whereas the Wong
model describes only the total fusion cross section, a sum of cross sections due to all contributing processes.
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I. INTRODUCTION

A compound nucleus, depending on its mass, disinte-
grates by emitting multiple light particles (the evaporation
residues, or ER), followed by fission (fusion-fission), and
the noncompound quasifission (qf) or deep inelastic collision
(DIC) process of a dinuclear system, where projectile- and
target-like fragments are seen in the decay channel. Thus,
for a compound nucleus reaction, the fusion cross section is
defined as the sum of the fusion-evaporation cross section
σER, the fission cross section σfiss, and the quasifission cross
section σqf . Recently, an experiment was performed to produce
the neutron-rich compound nucleus 196Pt∗ by bombarding a
radioactive 132Sn beam on 64Ni, and the σER and σfiss were
measured [1]. Interestingly, at sub-barrier energies, only the
ER cross section is measured since fission of 196Pt∗ is then not
observed. On the other hand, at above-barrier energies, the qf
component in the fission cross sections could not be separated
because of the inverse kinematics of the 132Sn + 64Ni reaction,
and because of the beam intensity being several orders of
magnitude lower than that of the stable 112,118,124Sn beams.
In view of the known unexpected behavior of the fusion
evaporation cross sections at energies far below the Coulomb
barrier, i.e., the fusion hindrance seen in the coupled-channel
calculations (ccc) [2,3] for some other Ni-induced reactions
(58,64Ni + 58,64Ni and 64Ni + 100Mo), the experimental data
on 132Sn + 64Ni reaction [1] offer an interesting opportunity to

study the fusion and fusion-fission dynamics with different
theoretical models. Here, in the following, we carry out such a
study by using the dynamical cluster-decay model (DCM) of
preformed clusters [4–8] and the �-summed extended-Wong
model [9,10] of Gupta and collaborators. Further importance
of this work is that it involves a neutron-rich radioactive beam,
and the nuclear structure effects of the incoming nuclei and/or
decay products are shown to influence the fusion cross sections
at near- and below-barrier energies.

Recently, the dynamical cluster-decay model (DCM) was
applied [5] to study the decay of compound nuclear systems
176,182,188,196Pt∗ formed in 64Ni + 112,118,124Sn and 132Sn + 64Ni
reactions. A nice fitting of the data to ER and fission cross
sections was obtained, except that the fission cross section σfiss

showed some contribution of the quasifission (qf) process at
the highest one or two energies. Besides qf, an in-built “barrier
modification” effect was shown to be the essential requirement
for fitting the data to both ER and fission at below-barrier
energies, just as for other well known 64Ni + 64Ni and
64Ni + 100Mo reactions [6–8]. Another important result
of this study was a change of the mass distributions from
predominantly symmetric to asymmetric in going from light
mass 176,182Pt∗ to heavy mass 188,196Pt∗ compound nuclei,
which was found to be due to the deformations and orientations
of fission fragments. Note that, in the work [5] based on the
DCM, the pocket formula due to Blocki et al. [11] was used
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for calculating the nuclear proximity potential. In the present
study, we introduce the use of different Skyrme forces in
DCM via the nuclear proximity potential obtained [12] from
the semiclassical extended Thomas-Fermi (ETF) approach
in the Skyrme energy density formalism (SEDF) [13–15]
under the frozen density approximation [16]. Compared to
the nuclear proximity potential due to Blocki et al., with fixed
barrier height, position, and curvature, the nuclear proximity
potential derived from the SEDF has the advantage of allowing
the use of different Skyrme forces, having different barrier
characteristics, to introduce the barrier modification effect for
the best fit to data via different Skyrme forces. In other words,
Skyrme forces provide the flexibility for a better comparison
of data, since a large number of them are available that fit
different ground-state properties of nuclei from different mass
regions.

More recently, the above-mentioned nuclear proximity po-
tential [12], derived from the SEDF-based ETF approach, has
also been used [10] in the �-summed extended-Wong model
[9], at above as well as below barrier energies, for studying the
ER and capture cross section of Ni- and Ca-induced reactions,
respectively. The �-summed extended-Wong model [9] is an
extended version of the Wong formula [17], where the angular
momentum effects are explicitly included and are found to
contain the barrier modification effects due to �-dependent
barriers. Barrier modification or no barrier modification at
sub-barrier energies in the �-summed extended-Wong model
is shown to depend not only on the choice of Skyrme force
but also on the type of reaction under investigation. The
σER of the considered Ni-based reactions (58,64Ni + 5864Ni
and 64Ni + 100Mo) at sub-barrier energies required different
Skyrme forces for the best fit to data. It is of interest here to
study the chosen 132Sn + 64Ni → 196Pt∗ reaction also on the
basis of the �-summed extended-Wong model [9] using the
Skyrme-force-based nuclear proximity potential [12].

In this paper, we show that the application of the DCM to
the 132Sn + 64Ni reaction using three Skyrme forces, namely
SIII, GSkI, and SSk, leads to a result similar to the one obtained
using the nuclear potential of Blocki et al., for this as well as
other 64Ni + 112,118,124Sn reactions [5]; i.e., nice fits to both
ER and fission cross sections are obtained. The effect of using
different Skyrme forces on “barrier lowering” at sub-barrier
energies in ER data is studied. Besides this, the qf contribution
in fission data is predicted at higher center-of-mass energies
Ec.m., which increase with the decrease in barrier height due
to different Skyrme forces. Furthermore, the extended Wong
model is applied to the 132Sn + 64Ni reaction, showing different
nature of fits for different Skyrme forces, i.e., just as for other
Ni-based reactions (58,64Ni + 58,64Ni and 64Ni + 100Mo) [10],
whereas the GSkI and SSk forces fit the data without any
barrier adjustment, the force SIII needs barrier adjustment for
the best fit at below-barrier energies.

The result of the previous paragraph raises the question of
why some Skyrme forces are better than others, and better
than an interaction like that of Blocki et al. Since stronger
isospin effects are needed for tackling the steep fall of the cross
sections at below Coulomb barrier energies [18], the re-
cent parametrizations GSkI and SSk provide the appropriate
isospin effects, whereas the older SIII parametrization and the

potential of Blocki et al. are less sensitive toward neutron-
proton asymmetry and isospin effects. Also, the old Skyrme
force parametrization SIII differs from the very recent GSkI
and SSk forces in that they contain the tensor coupling with
the spin and the gradient terms. In addition, the GSkI force
also includes three density-dependent interactions, discussed
in the next section.

The paper is organized as follows: The formalism, in
terms of both the DCM and extended Wong model using
nuclear proximity potential derived from the SEDF-based ETF
approach, is given in Sec. II. Nuclei are considered to be in the
same plane, and deformations are included up to hexadecapole
deformations (β2–β4) with optimum orientations θopt. [19] in
the DCM, but the orientations θ are integrated in the extended
Wong model [10]. Note that θopt. are only use for quadrupole
deformations (β4 = 0). Our calculations and results are pre-
sented in Sec. III, and a brief summary is given in Sec. IV.

II. THE FORMALISM

A. Skyrme energy density formalism in the semiclassical
extended Thomas-Fermi approach

The energy density formalism defines the nuclear interac-
tion potential as

VN (R) = E(R) − E(∞), (1)

i.e., the nucleus-nucleus interaction potential as a function of
separation distance, VN (R), is the difference of the energy ex-
pectation values E of the colliding nuclei that are overlapping
(at a finite separation distance R) and those that are completely
separated (at R = ∞), where

E =
∫

H (�r)d�r, (2)

with the Skyrme Hamiltonian density defined as [20]
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Here, ρ = ρn + ρp, τ = τn + τp, and �J = �Jn + �Jp are the
nuclear, kinetic energy, and spin-orbit densities, respectively.
m is the nucleon mass, and xj , tj (j = 0, 1, 2), x3i , t3i , αi ,
(i = 1, 2, 3), W0, and A are the Skyrme force parameters, fitted
recently by Agrawal et al. [20], denoted GSkI, GSkII, and SSk
forces. These authors modified the earlier well known [14,21]
Hamiltonian density by introducing six additional parameters
in the third term [two each of x3i , t3i , and αi (i = 1, 2)],
and an additional last term with constant A = 1 to account
for tensor coupling with spin and gradient. For the other
earlier fitted Skyrme forces [14,21], such as SIII, SV, SkM∗,
etc., the constants A, x3i , t3i , and αi (i = 2, 3), are all zero,
and t31 = 1

6 t3, x31 = x3, and α1 = α. It is important to note
here that the parameters of the new forces GSkI, GSkII, and
SSk were determined by fitting several properties of some
normal and isospin-rich nuclei [20], and our present study
deals with asymmetric and isospin-rich colliding nuclei where
such forces are expected to give more realistic results. Since
the barrier characteristics of the GSkII force lie in between the
GSkI and SSk forces, we are using here only the GSkI and
SSk forces in our calculations.

The kinetic energy density in the ETF method, considered
here up to second-order terms, those being enough for
numerical convergence [15], is (q = n or p)

τq(�r) = 3

5
(3π2)2/3ρ5/3

q + 1

36

( �∇ρq)2

ρq

+ 1

3
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+ 1
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, (4)

with fq as the effective-mass form factor,

fq(�r) = 1 + 2m

h̄2

1
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Note that both τq and fq are each functions of ρq and/or
ρ only.

The spin �J is a purely quantal property, and hence has no
contribution in the lowest Thomas-Fermi (TF) order. However,
at the ETF level, the second-order contribution gives

�Jq(�r) = −2m

h̄2

1

2
W0

1

fq

ρq
�∇(ρ + ρq), (6)

also a function of ρq and/or ρ alone.
For the frozen density approximation used here, the

densities for the composite system are [16]

ρ = ρ1 + ρ2,

τ (ρ) = τ1(ρ1) + τ2(ρ2), (7)
�J (ρ) = �J1(ρ1) + �J2(ρ2),

with ρi = ρin + ρip, τi(ρi) = τin(ρin) + τip(ρip), and �Ji(ρi) =
�Jin(ρin) + �Jip(ρip).

For the nuclear proximity potential, following Blocki et al.
[11] and Gupta et al. [12,22,23], we introduce the slab

approximation of semi-infinite nuclear matter with surfaces
parallel to the x-y plane, moving in the z direction, and
separated by distance s having minimum value s0. Then, the
interaction potential VN (R) between two nuclei separated by
R = R1 + R2 + s, is given by

VN (R) = 2πR̄

∫ ∞

s0

e(s)ds

= 2πR̄

∫
{H (ρ, τ, �J )

− [H1(ρ1, τ1, �J1) + H2(ρ2, τ2, �J2)]}dZ

= 4πR̄γ bφ(D) = VP (R) + VJ (R), (8)

where VP (R) and VJ (R) are the spin-density independent
and spin-density dependent parts of the nuclear interaction
potential. R̄ = R1R2/(R1 + R2) is the mean curvature ra-
dius, defining the geometry of the system, and φ(D) is
the universal function in terms of a dimensionless variable
D = s/b, with b as the surface width, defined later in
Eq. (14). The nuclear surface energy constant γ = 0.9517[1 −
1.7826(N−Z

A
)2] MeV fm−2. For further details on φ(D), etc.,

see Ref. [12].
For the nuclear density ρi of each nucleus, the T -dependent,

two-parameter Fermi density (FD) distribution for the slab
approximation is given by [12]

ρi(zi) = ρ0i(T )

[
1 + exp

(
zi − Ri(T )

ai(T )

)]−1

,

(9)
−∞ � z � ∞,

with z2 = R − z1 = [R1(α1, T ) + R2(α2, T ) + s] − z1, cen-
tral density

ρ0i(T ) = 3Ai

4πR3
i (T )

[
1 + π2a2

i (T )

R2
i (T )

]−1

, (10)

and the radii for spherically symmetric deformed nuclei

Ri(αi, T ) = R0i(T )

[
1 +

∑
λ

βλiY
(0)
λ (αi)

]
. (11)

The spherical or half-density nuclear radius R0i and surface
thickness parameters ai at T = 0 are obtained by fitting the
experimental data [24,25] to respective polynomials in the
nuclear mass region A = 4–238 [12], as

R0i(T = 0) = 0.9543 + 0.0994Ai − 9.8851 × 10−4A2
i

+ 4.8399 × 10−6A3
i − 8.4366 × 10−9A4

i

ai(T = 0) = 0.3719 + 0.0086Ai − 1.1898 × 10−4A2
i

+ 6.1678 × 10−7A3
i − 1.0721 × 10−9A4

i .

(12)

In Eq. (11), λ = 2, 3, 4, . . . are the multipole deformations,
and αi are the angles between radius vector Ri(αi) and the
symmetry axis, measured clockwise from the symmetry axis.
For the estimation of s0, we refer to [26] for coplanar nuclei.
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The T dependence in the above formulas are then intro-
duced as in Ref. [27],

R0i(T ) = R0i(T = 0)[1 + 0.0005T 2],
(13)

ai(T ) = ai(T = 0)[1 + 0.01T 2].

Also, the surface width b is made T dependent [28],

b(T ) = 0.99(1 + 0.009T 2), (14)

where T is related to the incoming center-of-mass energy Ec.m.

or the compound nucleus (CN) excitation energy E∗
CN via the

entrance channel Qin value, as

E∗
CN = Ec.m. + Qin = 1

a
ACNT 2 − T (T in MeV), (15)

with a = 9 or 10, respectively, for intermediate-mass or
superheavy systems. Qin = B1 + B2 − BCN, with binding
energies B taken from [29]. Furthermore, since ρi = ρni

+ ρpi
,

for nucleon density we define

ρni
= (Ni/Ai)ρi and ρpi

= (Zi/Ai)ρi. (16)

B. The dynamical cluster-decay model (DCM)

The DCM is worked out in terms of the collective coordi-
nates of mass (and charge) asymmetry η = (A1 − A2)/(A1 +
A2) [and ηZ = (Z1 − Z2)/(Z1 + Z2)], relative separation R,
the multipole deformations βλi , and the orientations θi (i =
1, 2) of two nuclei in the same plane. In the DCM, we define
the compound nucleus (CN) decay cross section in terms of
partial wave analysis as

σ =
�max∑
�=0

σ� = π

k2

�max∑
�=0

(2�+ 1)P �
0 P�, k =

√
2μEc.m.

h̄2 , (17)

where the preformation probability P �
0 refers to η motion

and the penetrability P� to R motion. �max is the maximum
angular momentum, fixed here for the light-particle cross
section approaching zero, i.e., σER(�) → 0 at � = �max.

P0 for each � is the solution of the stationary Schrödinger
equation in η, at a fixed R,[

− h̄2

2
√

Bηη

∂

∂η

1√
Bηη

∂

∂η
+ V (η)

]
ψν(η) = Eν

ηψ
ν(η), (18)

and the penetrability P� is the WKB integral

P� = exp

[
−2

h̄

∫ Rb

Ra

{2μ[V (R) − Qeff]}1/2dR

]
, (19)

with V (Ra, T ) = V (Rb, T ) = T KE(T ) = Qeff for the two
turning points. Qeff is the effective Q value of the de-
cay process, and the first turning point Ra = R1(α1, T ) +
R2(α2, T ) + 
R(η, T ).

Then, the deformation- and orientation-dependent fragmen-
tation potential in Eq. (18), at any temperature T , is given by

V (η, T ) =
2∑

i=1

VLDM(Ai, Zi, T ) +
2∑

i=1

δU exp

(
−T 2

T 2
0

)

+VC(R,Zi, βλi, θi, T ) + VN (R,Ai, βλi, θi, T )

+V�(R,Ai, βλi, θi, T ). (20)

Here, VLDM from Ref. [30] and δU from Ref. [31] are the
T -dependent liquid drop and shell correction energies. VC and
V� are the T -dependent Coulomb and angular-momentum-
dependent potentials, respectively. VN is the nuclear proximity
potential discussed in Sec. II A using the ETF approach of
SEDF under the frozen density approximation.


R(T ), in the definition of Ra above, is the neck-length
parameter, assimilating the neck formation effects [32,33].
The choice of 
R for a best fit to the data allows us to define
the effective barrier lowering parameter 
VB(�) for each �

as the difference between the actually used barrier V (Ra, �)
and the top of the calculated barrier VB(�),


VB(�) = V (Ra, �) − VB(�). (21)

Note, since 
VB is defined as a negative quantity, the actually
used barrier is effectively lowered. It is relevant to point out
here that, since the empirically fitted neck length 
R(T ) is
unique, the barrier lowering parameter 
VB(Ec.m.) is also a
uniquely fixed quantity.

C. The �-summed extended-Wong model

According to Wong [17] the fusion cross section in terms
of partial waves, for two deformed and oriented nuclei lying in
same plane, is also given by Eq. (17), but with P �

0 = 1 for each
�, i.e., there is no preformation factor, and hence the model
is not applicable to various observed decay processes. Thus,
the extended �-summed Wong model is a special case of the
DCM with P �

0 = 1 and penetrability P� calculated in the Hill-
Wheeler [34] approximation of an inverted harmonic oscillator
for the total interaction potential V (R) of the incoming
channel, whereas the same in the DCM is calculated by the
WKB integral for each decay channel. In the Hill-Wheeler
approximation, the penetrability P�, in terms of the barrier
height V �

B and curvature h̄ω�, is given by

P� =
[

1 + exp

(
2π

(
V �

B − Ec.m.

)
h̄ω�

)]−1

, (22)

with h̄ω� evaluated at the barrier position R = R�
B correspond-

ing to barrier height V �
B . It is important to realize here that in

the present analysis only the barrier height V �
B , position R�

B ,
and curvature h̄ω� of V (R) come in to play, the depth of pocket
playing no role.

Carrying out the � summation empirically for a best fit to
the measured total cross section, as described by Gupta and
collaborators [9], and upon integrating over the angles θi , we
get the fusion cross section σfus as a function of Ec.m..

III. CALCULATIONS AND RESULTS

We have made our calculations for the fusion-evaporation
residues and fusion-fission of the 196Pt∗ compound nucleus
using the DCM, and for the total fusion cross section using
the �-summed extended-Wong model, with nuclear proximity
potential obtained from the SEDF-based ETF method for
three illustrative Skyrme forces GSkI, SSk, and SIII, and
compared with the potential of Blocki et al. [5]. These forces
cover a large range of the barrier characteristics (VB , RB ,
and h̄ω). The effects of orientations and deformations are
included, as mentioned in the Introduction.
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FIG. 1. (a) Fragmentation potential V (A2) for the decay of compound nucleus 196Pt∗, plotted at � = 0 and �max values, using different
Skyrme forces and compared with interaction of Blocki et al. from Ref. [5]. (b) The same as (a) but for the compound nucleus 176Pt∗.

A. Decay of 196Pt∗ using the DCM

First of all we look at the fragmentation potentials V (A2)
for the three Skyrme forces, compared with the potential due
to Blocki et al., plotted in Fig. 1(a) for the � = 0 and �max

cases. We notice that the forces GSkI (solid line with star)

and SSk (solid line with hollow triangle) behave nearly alike,
since, for both the forces, the same fragments contribute to the
decay processes. Also �max values are close to each other (see
columns 3 and 4 in Table I), and the potential energy minima
are stronger at the asymmetric fragments than the symmetric

TABLE I. The ER and fission cross sections for the 196Pt∗ system, calculated on the DCM at different Ec.m.’s for various Skyrme forces,
compared with the experimental data [1]. The upper-limit of the ER cross section at Ec.m. = 142.5 MeV, included in Fig. 8, is not included
here. The quasifission (qf) contribution in fission is also calculated, wherever required.

Ec.m. T �max(h̄) 
R (fm) σ (mb)

(MeV) (MeV) SSk GSkI SIII SSk GSkI SIII DCM Expt.

SSk GSkI SIII

Evaporation residue (ER)
195.2 1.9944 108 110 120 2.271 2.173 1.481 259 259 260 259
183.7 1.8556 102 104 113 2.322 2.24 1.6753 253 251 257 251.4
175.2 1.7458 103 105 114 2.293 2.213 1.637 265 265 265 264.8
171 1.6889 101 103 113 2.275 2.197 1.625 218 219 218 218
167.2 1.6357 92 96 111 2.3794 2.274 1.643 235 235 234 234
165.5 1.6113 100 102 111 2.261 2.163 1.607 184 184 183 184
158.1 1.5004 89 92 108 2.288 2.175 1.498 70 70.2 70 70
154 1.4353 86 90 107 2.239 2.12 1.412 31.5 31.3 32 31.5
151 1.3856 82 86 106 2.159 2.033 1.247 5.08 5.03 4.87 5 ± 1
148.1 1.3359 77 82 105 2.089 1.96 1.093 0.7 0.7 0.67 0.7 ± 0.2

Fission and predicted quasifission (qf)
195.2 1.9944 108 110 120 2.996 2.989 1.94 189.4 224 224 544

2.904 2.739 1.876 352a 321a 318a

183.7 1.8556 102 104 113 2.959 2.871 1.94 177.6 200 230 371
2.875 2.704 1.83 194a 171a 140a

175.2 1.7458 103 105 114 2.937 2.825 1.8945 208 212 230 232.9
2.682 2.515 25.2a 21.2a

171 1.6889 101 103 113 2.8403 2.685 1.793 142.8 141.2 139.4 138
165.5 1.6113 100 102 111 2.701 2.539 1.649 31 31.4 31.4 31.2

aSymbolizes quasifission (qf) contribution.
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FIG. 2. Preformation probability P0 as a function of fragment
mass Ai corresponding to the fragmentation potential in Fig. 1(a).

fragments. The same is true for SIII (solid line with hollow cir-
cle) and the potential of Blocki et al. (solid line with rectangle),
except that the latter one also favors a contribution from the
symmetric mass distribution (the minimum at A/2 is relatively
deeper). The contribution of asymmetric fragments for the SIII
force is similar to other two Skyrme forces (GSkI and SSk),
the difference being only in the magnitude. In other words,
for all four cases the potential energy minima are stronger

at the asymmetric fragments than the symmetric fragments.
One may also notice that at � = 0, for all four interactions, the
contribution of the ER is more prominent than the symmetric or
asymmetric fission fragments, whereas at � = �max the fission
fragments start competing with the ER, the lighter fragments.

We have also tested the role of changing the radioactive
132Sn beam to a stable 112Sn beam by calculating the fragmen-
tation potential for 176Pt∗, using all the three Skyrme forces and
the potential of Blocki et al., as shown in Fig. 1(b). The inter-
esting result is that there is a noticeable change in the structure
of V (A2) by adding or subtracting 20 neutrons; i.e., the pre-
dominantly asymmetric fission distribution for 196Pt∗ changes
to a predominantly symmetric one for 176Pt∗, independent of
the choice of nuclear interaction potential. Such a change in
fission mass distribution provides the possibility of studying
the fine- or sub-structure in fission products of Pt∗ isotopes.

The above results from fragmentation potentials can be
better understood in terms of the preformation factor P0,
plotted in Fig. 2 as a function of Ai. We notice from Fig. 2
that, in the decay of 196Pt∗ at � = �max, the contribution of
the asymmetric fragment (AF) component is predominant for
all four interactions considered. The preformation factors for
GSkI (solid line with star) and SSk (solid line with hollow
triangle) forces are overlapping with each other, indicating the
preformation of the same (asymmetric and symmetric) frag-
ments for the two forces. Interestingly, for all the interactions,
the AF component is nearly the same. The calculations are
made within the fitting of one parameter, the “neck length”
parameter 
R, for each chosen force, given in Table I and
Fig. 3 for all the three processes of ER, fission, and qf.

Figure 4 shows the comparison of experimental data [1]
on σER and σfiss with DCM-based calculations for the three
Skyrme forces (a) GSkI, (b) SSk, and (c) SIII, for the neck
length parameter 
R obtained in each case as plotted in Fig. 3.
Apparently the fits obtained are good for σER, but the fission

FIG. 3. The neck-length parameter 
R plotted as a function of Ec.m. for (a) ER, (b) fission, and (c) qf processes, using the Skyrme forces
SSk (solid line with hollow circle), GSkI (solid line with rectangle) and SIII (solid line with hollow triangle).
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FIG. 4. Comparison of experimental evaporation residue σER and fission cross section σfiss for the 132Sn + 64Ni reaction [1], with calculations
made in the DCM, using the three Skyrme forces (a) GSkI, (b) SSk, and (c) SIII.

data at the highest two or three center-of-mass energies Ec.m.

did not fit for either of the Skyrme forces. At these higher Ec.m.

values, the qf process seems to compete with the fission, and
the sum of these two, i.e., σfiss + σqf , fits the available data
nicely. We notice that, for GSkI and SSk forces, qf content
appears at the highest three Ec.m. values, whereas, similar to
the potential of Blocki et al. [5], for the SIII force it comes
into the picture only at the two highest energies. In other

FIG. 5. Barrier-lowering parameter 
VB as a function of Ec.m.

for the mass-1 particle at � = �max for SSk, GSkI, and SIII Skyrme
forces.

words, for each Skyrme force, the DCM stresses the presence
of noncompound qf content in fission cross sections at above-
barrier energies.

Figure 5 shows the variation of the barrier lowering
parameter 
VB as a function of Ec.m. for the three chosen
Skyrme forces, in the case of � = �max for the mass-1 particle.

FIG. 6. Interaction potentials V (R) of 132Sn + 64Ni for the three
Skyrme forces and the potential of Blocki et al. at fixed Ec.m. and θi

values for coplanar nuclei (� = 00).
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FIG. 7. Barrier height VB as a function of Ec.m. for 132Sn + 64Ni,
using the three Skyrme forces SIII (solid line), GSkI (dashed line)
and SSk (dotted line), and the potential of Blocki et al. (dashed-dot
line) at fixed θi values for coplanar nuclei (� = 00).

We notice that 
VB increases (i.e., becomes more negative)
for below-barrier energies, and its contribution increases for
the force with a higher barrier. Figure 6 shows that the barrier
is highest for the SIII force (solid line), and hence in Fig. 5
the barrier lowering 
VB at sub-barrier energies is largest for
the SIII force. In fact, 
VB is another representation of the
neck-length parameter 
R. It may be relevant to note that the

hump in the values of 
R for ER at Ec.m. = 167.2 MeV in
both Figs. 3(a) and 5 represents the absence of data points for
fission at this energy.

B. Fusion cross sections for 196Pt∗ using the �-summed
extended-Wong model

The fusion cross section is the sum of the ER and
fission cross sections, to which the extended-Wong model is
applicable for a best fit to determine the �max value. The barrier
characteristics (V �

B , R�
B , and h̄ω�), which are extracted from

the scattering potentials at all the angles (coplaner in present
study) and � values up to �max, are the main inputs in the
Wong model. Figure 6 shows the total interaction potential for
132Sn + 64Ni → 196Pt∗ at fixed Ec.m. and θi’s for the � = 0
case. Figure 7 shows the variation of barrier height VB with
Ec.m. for the � = 0 case of the same reaction, using all the
potentials calculated in Fig. 6. It is clear from Figs. 6 and 7
that the barrier characteristics of the SIII parametrization and
that of Blocki et al. are similar, and hence the results associated
with these interactions are also close to each other. Similarly,
the barrier characteristics of GSkI and SSk parametrizations
are also close to each other, and hence so also are their results.

Figure 8(a) shows the fusion excitation function, i.e., the
calculated fusion cross section as a function of center-of-
mass energy Ec.m. for the 132Sn + 64Ni reaction using the
three illustrated Skyrme forces in the extended-Wong model,
compared with the experimental data [1]. Apparently, the
extended-Wong model calculations for GSkI and SSk forces fit
the data nicely at both above- and below-barrier energies, but
the SIII force does not fit the data for below-barrier energies,
and hence needs barrier modifications to be included in order
to fit the data. The corresponding deduced �max values, for the
best possible fits of fusion cross sections with the three Skyrme
forces used in Fig. 8(a), are presented in Fig. 8(b). Notice that

FIG. 8. (a) Fusion excitation functions of 132Sn + 64Ni → 196Pt∗ using the extended-Wong model, and (b) deduced �max values vs. Ec.m.,
using the Skyrme forces SIII (dotted line), GSkI (solid line), and SSk (dashed line).
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�max as a function of Ec.m. varies smoothly for best-fit GSkI and
SSk forces, but for the SIII force where the fit is not so good at
sub-barrier energies, �max(Ec.m.) varies erratically, which could
certainly be smoothed by adding appropriate barrier lowering
or barrier narrowing empirically. This kind of empirical barrier
modification was attempted in one of our earlier works (see
Ref. [9] for details).

It may be noted that the significant difference between the
predications of the older (SIII) and the modern forces (GSkI
and SSk) arises due to the different barrier characteristics. As
shown in Fig. 7, the Ec.m. dependence of the barrier height VB

for recent forces is ∼7 MeV lower compared to the older SIII
force or the force of Blocki et al. Similar behavior is presented
by the other two barrier properties (RB and h̄ω) of these forces
(not shown here). Since these barrier properties are the main
ingredient of the Wong model, the comparison in the data is
better for the new Skyrme forces with lower barriers.

IV. SUMMARY

We have studied the decay of CN 196Pt∗, formed in the
132Sn + 64Ni reaction, within the framework of the DCM,
including the effects of deformation and orientation degrees
of freedom. The fusion cross sections are also calculated
independently by using the �-summed extended-Wong Model.
Both the model calculations use the nuclear proximity potential
derived from the SEDF-based semiclassical ETF method with
densities added under the frozen-density approximation.

Within the DCM, it is found that for the chosen three
Skyrme forces GSkI, SSk, and SIII, the decay process presents
the same pattern for the fragmentation potential as well as the
preformation probability, indicating that asymmetric fission
contributes more than symmetric fission. For all the Skyrme
forces, the ER process contributes more at lower � values,
whereas the fission fragments start competing with ER as the �

value increases. However, the predominantly asymmetric pat-
tern changes to an symmetric one with a decrease of the N/Z

ratio of the CN, leading to the possibility of addressing the
isospin effects in Pt∗ nuclei. The reversal of behavior of fission
fragments, i.e., from asymmetric to symmetric, with a decrease
in the N/Z ratio holds true for a variety of nuclear interaction

potentials used to study the reaction dynamics of Pt isotopes.
Another interesting result is that barrier lowering is required for
ER cross sections at sub-barrier energies, and the fission cross
sections show the necessity of qf contribution at the highest
two or three energies, depending on the Skyrme force used.

The �-summed extended-Wong model fits the total fusion
cross section (sum of ER and fission cross sections) for the
Skyrme forces GSkI and SSk, with proper dependence of
deduced �max on Ec.m., not requiring any additional barrier
lowering or barrier narrowing for a best fit to data. However, the
force SIII demands barrier modification, as the corresponding
deduced �max in this case varies erratically or unphysically with
Ec.m.. Interestingly, the �-summed extended-Wong model fits
the high-energy fusion cross section data nicely, without any
explicit knowledge of the qf component, whereas the same
can be worked out exactly in the framework of the DCM. Note
that qf component could not be separated out experimentally
in this reaction, and the prediction of qf at the highest two or
three energies calls for a further experimental verification.

Concluding, as the reaction under study involves the
neutron-rich radioactive 132Sn beam, the old Skyrme force SIII
and the potential of Blocki et al. require barrier modification,
because in the fitting of parameters of the SIII force the isospin
effect was not taken into account, and becuase the potential
of Blocki et al. is less sensitive toward the isospin. However,
the Skyrme forces GSkI and SSk are improved with respect
to the recent experimental data, and the parameters of these
forces are determined by fitting several properties of some
normal and isospin-rich nuclei. Therefore, the GSkI and SSk
forces are expected to perform better for isospin-rich colliding
nuclei, such as the one under investigation. In other words, the
dynamics of a system can be explained by using the appropriate
Skyrme force whose parameters are fitted for the region to
which it belongs.
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