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Earlier studies of 239Pu(n,f ) have been extended to incident neutron energies up to 20 MeV within the
framework of the event-by-event fission model FREYA, into which we have incorporated multichance fission
and pre-equilibrium neutron emission. The main parameters controlling prompt fission neutron evaporation have
been identified and the prompt fission neutron spectrum has been analyzed by fitting those parameters to the
average neutron multiplicity ν from ENDF-B/VII.0, including the energy-energy correlations in the covariance
of ν(E) obtained by fitting to the experimental ν data used in the ENDF-B/VII.0 evaluation. We present our
results, discuss relevant tests of this new evaluation, and describe possible further improvements.
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I. INTRODUCTION

Nuclear fission forms a central topic in nuclear physics,
presenting many interesting issues for both experimental and
theoretical research, and it has numerous practical applications
as well, including energy production and security. Never-
theless, a quantitative theory of fission is not yet available.
While there has been considerable progress in the last few
years, both in liquid-drop model-type calculations [1,2] and
in microscopic treatments [3–5], these treatments primarily
address “cold” fission, induced by thermal neutrons, and
cannot yet describe “hot fission,” induced by more energetic
neutrons. To perform new evaluations of observables important
for applications over the full relevant energy range, it is
therefore necessary to rely on a considerable degree of
phenomenological modeling.

One of the most important quantities for applications is
the prompt fission neutron spectrum (PFNS). As discussed
earlier [6], the experimental spectral data themselves are
neither sufficiently accurate nor of sufficiently consistent
quality to allow an improved PFNS evaluation. However, by
combining measured information about the nuclear fragment
yields and energies with the very precise evaluations of neutron
multiplicities, it is possible to constrain the neutron spectrum
rather tightly without having to rely on the spectral data
themselves.

Our approach employs the fission model FREYA (Fission
Reaction Event Yield Algorithm) which incorporates the
relevant physics and contains a few key parameters that are
determined by comparison to pertinent data through statistical
analysis [6,7]. It simulates the entire fission process, starting
from the possible emission of pre-equilibrium neutrons, and
it generates a large sample of complete fission events with
full kinematic information on the emerging fission products
and the emitted neutrons and photons. FREYA provides a
means of using readily measured observables to improve our
understanding of the fission process and it is, therefore, a
potentially powerful tool for bridging the gap between current
microscopic models and important fission observables and for

improving estimates of the fission characteristics important for
applications.

In the following, we briefly describe the employed version
of FREYA and the fitting procedure used to obtain our extended
evaluation of the 239Pu(n,f ) prompt fission neutron spectrum.
We then compare our results to the ENDF-B/VII.0 [8]
evaluation of the PFNS and some benchmark criticality tests.
Finally, we discuss the energy and model dependence of
several relevant observables.

II. GENERATION OF FISSION EVENTS

We have adapted the recently developed fission model
FREYA [7] for the present purpose of calculating the neutron
spectrum in terms of a set of well-defined model parameters.
We describe its main physics ingredients below, with an
emphasis on the new features added for the present study,
particularly multichance fission and pre-equilibrium emission.
Being a simulation model, FREYA follows the temporal
sequence of individual fission events from the initial agitated
fissionable nucleus, 240Pu∗ in the present case, through possi-
ble pre-fission emissions to a split into two excited fragments
and their subsequent sequential emission of neutrons and
photons. The description below is similarly organized.

A. Pre-fission neutron emission

At low-incident neutron energies, below a few MeV, the
neutron is absorbed into the target nucleus resulting in an
equilibrated compound nucleus which may have a variety
of fates. Most frequently, in the present case, it will fission
directly. But, because the compound nucleus was formed by
neutron absorption, it is energetically possible for it to re-emit
a neutron. In that circumstance, the daughter nucleus cannot
fission and will de-excite by sequential photon emission.
FREYA generally discards such events because it is designed to
provide fission events (but their frequency is noted). Neutron
evaporation from a fissionable compound nucleus can be
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treated in the same manner as neutron evaporation from fission
fragments, as will be described later (Sec. II D1). In principle,
it is also possible that the compound nucleus will start by
radiating a photon but the likelihood for this is very small and
is ignored.

1. Multichance fission

As the energy of the incident neutron is raised, neutron
evaporation from the produced compound nucleus competes
ever more favorably with direct (first-chance) fission. The
associated probability is given by the ratio of the fission and
evaporation widths �f (E∗) and �n(E∗) for which we use the
transition-state estimate [9],

�n(E∗)

�f (E∗)
= 2gnμnσ

πh̄2

∫ Xn

0 (Xn − x)ρn(x)dx∫ Xf

0 ρf (x)dx
, (1)

where gs = 2 is the spin degeneracy of the neutron, μn is its
reduced mass, and σ = πR2 = πr2

0 A2/3. Furthermore, ρn(x)
is the level density in the evaporation daughter nucleus at the
excitation energy x, whose maximum value is given by Xn =
Qn = E∗ − Sn, where Qn is the Q value for neutron emission
and Sn is the neutron separation energy. Similarly, ρf (x) is the
level density of the transition configuration for the fissioning
nucleus (i.e., when its shape is that associated with the top
of the fission barrier); the excitation x is measured relative
to that barrier top, so its maximum value is Xf = E∗ − Bf ,
where Bf is the height of the fission barrier (the corresponding
quantity for neutron emission is the neutron separation
energy Sn).

Neutron evaporation is possible whenever the excitation en-
ergy of the compound nucleus exceeds the neutron separation
energy, E∗ > Sn. (Because it costs energy to remove a neutron
from the nucleus, Sn is positive.) The excitation energy of
the evaporation daughter nucleus is E∗

d = E∗ − Sn − E where
E is the kinetic energy of the relative motion between the
emitted neutron and the daughter nucleus. If this quantity
exceeds the fission barrier in the daughter nucleus, then
second-chance fission is possible. (We use the Hill-Wheeler
expression for the transmission probability, Pf = 1/[1 +
exp(2π (Bf − E∗

d )/h̄ω)] with h̄ω = 1 MeV, so there is an
exponentially small probability for sub-barrier fission.) The
procedure described above is then applied to the daughter
nucleus, thus making further pre-fission neutron emission
possible. Thus as the incident neutron energy is raised, the
emission of an ever-increasing number of pre-fission neutrons
becomes possible and the associated fission events may be
classified as first-chance fission (when there are no pre-fission
neutrons emitted), second-chance fission (when one neutron is
emitted prior to fission), and so on.

Figure 1 shows the probabilities for nth-chance fission
obtained with FREYA for incident neutron energies up to
20 MeV. Also shown are the GNASH results used in the
ENDF-B/VII.0 evaluation [8]. The two calculations give rather
similar results but, because these probabilities are not easy
to measure experimentally, it is not possible to ascertain the
accuracy of the calculations.
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FIG. 1. (Color online) The probability for first- (black circles),
second- (red squares), third- (green diamonds), and fourth- (blue
triangles) chance fission as a function of incident neutron energy.
The solid curves show the GNASH results used in the ENDF-B/VII.0
evaluation [8], while the dashed curves with symbols are the FREYA

results discussed in the text.

2. Pre-equilibrium neutron emission

At higher incident neutron energies, there is a growing
chance that complete equilibrium is not established before
the first neutron is emitted. Under such circumstances the
calculation of statistical neutron evaporation must be replaced
by a suitable nonequilibrium treatment. A variety of models
have been developed for this process (e.g., Ref. [10] which
combines pre-equilibrium emission with the Madland-Nix
model [11] of the prompt fission neutron spectrum). We
employ a practical application of the two-component exciton
model [12] (described in detail in Ref. [13]). It represents the
evolution of the nuclear reaction in terms of time-dependent
populations of ever more complex many-particle-many-hole
states.

A given many-exciton state consists of pν(π) neutron
(proton) particle excitons and hν(π) neutron (proton) hole
excitons. The total number of neutron (proton) excitons in the
state is nν(π) = pν(π) + hν(π). The incident neutron provides
the initial state consisting of a single exciton, namely a neutron
particle excitation: pν = 1 and pπ = hν = hπ = 0. In the
course of time, the number of excitons present may change
because of hard collisions or charge exchange, as governed
by the residual two-body interaction. We ignore the unlikely
accidental processes that reduce the number of excitons, so the
state grows ever more complex.

The temporal development of the associated probability
distribution P (pν, hν, pπ , hπ ) is described by a master equa-
tion that accounts for the transitions between different exciton
states. The pre-equilibrium neutron emission spectrum is then
given by

dσn

dE
= σCN

pmax
π∑

pπ =0

pmax
ν∑

pν=1

W (pπ, hπ , pν, hν, E)

× τ (pπ, hπ , pν, hν) P (pπ, hπ , pν, hν), (2)
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where σCN is the compound nuclear cross section (usually
obtained from an optical model calculation), W is the rate
for emitting a neutron with energy E from the exciton
state (pπ, hπ , pν, hν), τ is the lifetime of this state, and
P (pπ, hπ , pν, hν) is the (time-averaged) probability for the
system to survive the previous stages and arrive at the specified
exciton state. In the two-component model, contributions to
the survival probability from both particle creation and charge
exchange need to be accounted for. The survival probability
for the exciton state (pπ, hπ , pν, hν) can be obtained from
a recursion relation starting from the initial condition P (pν =
1, hν =0, pπ =0, hπ =0) = 1 and setting P =0 for terms with
negative exciton number. As in Ref. [13], particle emission is
assumed to occur only from states with at least three excitons,
nπ + nν � 3. We consider excitons up to pmax

ν = pmax
π = 6.

The emission rate, W (pπ, hπ , pν, hν, Ek), is largely gov-
erned by the particle-hole state density, ω(pπ, hπ , pν, hν, E

∗).
For a neutron ejectile of energy E the rate is given by Ref. [14]:

W (pπ, hπ , pν, hν, Ek)

= gn

π2h̄3 μnE σn,inv
ω(pπ, hπ , pν − 1, hν, E

∗ − E − Sn)

ω(pπ, hπ , pν, hν, E∗)
,

(3)

where σk,inv is the inverse reaction cross section (calculated
within the optical model framework) and E∗ is the total
excitation energy of the system.

The calculated probability for pre-equilibrium neutron
emission is shown in the upper panel of Fig. 2 as a function
of the incident neutron energy En, while Fig. 3 shows the
pre-equilibrium neutron spectrum obtained at En = 14 MeV.
After being practically negligible below a few MeV, the
probability for pre-equilibrium emission grows approximately
linearly to about 24% at 20 MeV. A careful inspection of
the calculated energy spectrum shows that neutrons emitted
from states with larger exciton number approach the statistical
emission expected from a compound nucleus, thus ensuring
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FIG. 2. (Color online) (Upper panel) The probability for pre-
equilibrium neutron emission as a function of the incident neutron
energy. (Lower panel) The corresponding average multiplicity of
neutrons emitted prior to fission calculated without (dashed) and
with (solid) the pre-equilibrium processes.
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FIG. 3. (Color online) The contributions to the pre-equilibrium
neutron spectrum from exciton states with the indicated values of
(pπ, hπ , pν, hν), obtained at En = 14 MeV.

our treatment has included sufficient complexity to exhaust
the pre-equilibrium mechanism. Because of the (desired)
insensitivity to the maximum specified exciton number, the
probability shown in Fig. 2 is not indicative of the importance
of the pre-equilibrium processes. Their quantitative signifi-
cance is better seen by comparing the neutron multiplicity
obtained with and without the pre-equilibrium treatment, as
shown in the lower panel of Fig. 2.

The reaction cross sections used in Eqs. (2) and (3)
define the overall magnitude of the cross sections for the
pre-equilibrium processes. The highest accuracy results are
best obtained from coupled-channels calculations with an
appropriately determined optical potential. However, since
FREYA principally deals with probabilities, the relative frac-
tion of pre-equilibrium neutrons may be computed with
sufficient accuracy employing a spherical optical potential
to calculate the relevant cross sections. Consequently, the
compound-nucleus cross sections and inverse cross sections
were computed using the optical-model program ECIS06 and
the global optical model potential of Koning and Delaroche
[15].

For each event generated, FREYA first considers the possi-
bility of pre-equilibrium neutron emission and, if it occurs, a
neutron is emitted with an energy selected from the calculated
pre-equilibrium spectrum (see Fig. 3). Subsequently, the
possibility of equilibrium neutron evaporation is considered,
starting either from the originally agitated compound nucleus,
240Pu∗, or the less excited nucleus, 239Pu∗, remaining after
pre-equilibrium emission has occurred. Neutron evaporation
is iterated until the excitation energy of a daughter nucleus is
below the fission barrier (in which case the event is abandoned
and a new event is generated) or the nucleus succeeds in
fissioning.

B. Mass and charge partition

After the possible pre-fission processes, we are presented
with a fission-ready compound nucleus A0Z0 having an
excitation energy E∗

0 . The first task is to divide it into a heavy
fragment AH ZH and a complementary light fragment ALZL.
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Since no quantitatively useful model is yet available for the
calculation of the fission fragment mass yields, we have to
invoke experimental data. We follow the procedure employed
in the original version of FREYA [7].

We thus assume that the mass yields Y (Af ) of the fission
fragments exhibit three distinct modes, each one being of
Gaussian form [16],

Y (Af ) = S1(Af ) + S2(Af ) + SL(Af ). (4)

The first two terms represent asymmetric fission modes
associated with the spherical shell closure at N = 82 and
the deformed shell closure at N = 88, respectively, while the
last term represents a broad symmetric mode, referred to as
superlong [17]. Although the symmetric mode is relatively
insignificant at low excitations, its importance increases with
the excitation energy and ultimately dominates the mass
distribution.

The asymmetric modes have a two-Gaussian form,

Si = Ni√
2πσi

[
e−(Af −A−Di )2/2σ 2

i + e−(Af −A+Di )2/2σ 2
i

]
, (5)

while the symmetric mode is given by a single Gaussian,

SL = NL√
2πσL

e−(Af −A)2/2σ 2
L, (6)

with A = 1
2A0. Because each event leads to two fragments,

the yields are normalized so that
∑

A Y (A) = 2. Thus,

2N1 + 2N2 + NL = 2, (7)

apart from a negligible correction because Af is discrete and
bounded from both below and above.

Most measurements are of fission product yields [18], the
yields after prompt neutron emission is complete. However,
FREYA requires fission fragment yields (i.e., the probability of
a given mass partition before neutron evaporation has begun).
While no such data are yet available for Pu, there exist more
detailed data for 235U(n,f ) that give the fragment yields as
functions of both mass and total kinetic energy, Y (Af , TKE)
for En � 6 MeV [19]. Guided by the energy dependence of
these data, together with other available data on the product
yields from 235U(n,f ) [20] and 239Pu(n,f ) [21] we derive an
approximate energy dependence of the fragment yields for
239Pu(n,f ) up to En = 20 MeV.

We now discuss how we obtained the values of the
parameters used in Eqs. (5) and (6). The displacements, Di ,
away from symmetric fission in Eq. (5) are anchored above the
symmetry point by the spherical and deformed shell closures
and, because these occur at specific neutron numbers, we
assume that the values of Di are energy independent. The fitted
values of the displacements for 235U(n,f ) are D1 = 23.05 and
D2 = 16.54. The values of Di should be smaller for 239Pu
than for 235U, DU

i − DPu
i ≈ 2, because the larger Pu mass is

closer to the shell closure locations. We take D1 = 20.05 and
D2 = 14.54 for first-chance fission (A0 = 240) and increase
those values by 1

2 for each pre-fission neutron emitted.
The widths of the asymmetric modes, σi , are expanded to

second order in energy: σi = σi0 + σi1En + σi2E
2
n. We fix the

energy dependence of σi from the 235U(n,f ) fragment yields
as a function of mass and total kinetic energy of Ref. [19]. To

adjust our results for 235U(n,f ) to 239Pu(n,f ), we assume that
the general energy dependence of the parameters is the same
even though the values at En = 0 are different. We find

σ1 = 5.6 + 0.0937 (En/MeV) + 0.034 (En/MeV)2, (8)

σ2 = 2.5 + 0.11060 (En/MeV) + 0.008 (En/MeV)2. (9)

When the fissioning nucleus is the original system, 240Pu, then
En is the value of the actual incident neutron energy. But
when the fissioning nucleus is lighter (i.e., when ν0 pre-fission
neutrons have been emitted), then En is the equivalent incident
neutron energy, that is, the incident energy that would generate
the given excitation energy E∗

0 when absorbed by the nucleus
239−ν0 Pu. The width of the superlong component, σL, is
assumed to be constant, independent of both the incident
energy and the fissioning isotope. We take σL = 12.

The normalizations Ni change only slowly with incident
energy until symmetric fission becomes more probable, after
which they decrease rapidly. We therefore model the energy
dependence of Ni by a Fermi distribution,

Ni = N0
i (1 + exp[(En − E1)/E2])−1. (10)

We assume that the midpoint and the width are the same for
both modes, E1 = 10.14 MeV and E2 = 1.15 MeV, so that
the relative normalizations for the asymmetric modes have the
same energy dependence. We have not assumed that E1 and
E2 are identical for U and Pu because the transition from
asymmetric to more symmetric fission is not as smooth a
function of energy in the few-MeV region for Pu as it is for
U [20,21]. We take N0

1 = 0.757 and N0
2 = 0.242. With N1 and

N2 given by Eq. (10), NL is determined from Eq. (7).
The resulting fragment yields for two representative inci-

dent neutron energies are shown in Fig. 4. The deep dip at
1
2A0 visible for the thermal yields has substantially filled in by
En =14 MeV. The fragment yield at 14 MeV is a composite
distribution because there are substantial contributions from
second- and third-chance fission for incident neutrons of such
high energy (see Fig. 1). The dashed curve in Fig. 4 includes
these contributions weighted with the appropriate probabilities
shown in Fig. 1.

The overall broadening of the yields is caused by a
combination of two effects: the larger widths of the S1 and
S2 modes at higher energies and the increased contribution of
the SL component. We note that while σL does not change, the
larger NL enhances the importance of this component.

Once the Gaussian fit has been performed, it is straight-
forward to make a statistical selection of the fragment mass
number Af . The mass number of the partner fragment is then
readily determined since AL + AH = A0 − ν0.

The fragment charge Zf is selected subsequently. For this
we follow Ref. [22] and employ a Gaussian form,

PAf
(Zf ) ∝ e−(Zf −Zf (Af ))2/2σ 2

Z , (11)

with the condition that |Zf − Zf (Af )| � 5σZ . The centroid is
determined by requiring that the fragments have, on average,
the same charge-to-mass ratio as the fissioning nucleus,
Zf (Af ) = Af Z0/A0. The dispersion is the measured value,
σZ = 0.5 [22]. The charge of the complementary fragment
then follows using ZL + ZH = Z0.
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FIG. 4. (Color online) Calculated fragment yields as a function of
fragment mass for thermal (solid) and 14 MeV (dashed) neutrons. The
14 MeV result also includes contributions from multichance fission
events.

C. Fragment energies

Once the partition of the total mass and charge between
the two fragments has been selected, the Q value associated
with that particular fission channel follows as the difference
between the total mass of the fissioning nucleus and the
ground-state masses of the two fragments,

QLH = M(240−ν0 Pu∗) − ML − MH. (12)

FREYA takes the required nuclear ground-state masses from
the compilation by Audi et al. [23], supplemented by the
calculated masses of Möller et al. [24] when no data are
available. The QLH value for the selected fission channel is
then divided up between the total kinetic energy (TKE) and
the total excitation energy (TXE) of the two fragments. The
specific procedure employed is described below.

Through energy conservation, the total fragment kinetic
energy TKE is intimately related to the resulting combined
multiplicity of evaporated neutrons, νL + νH , which needs to
be obtained very accurately.

Figure 5 shows the measured average TKE value as a
function of the mass number of the heavy fragment AH .
Near symmetry, the plutonium fission fragments are midshell
nuclei subject to strong deformations. Thus the scission
configuration will contain significant deformation energy and a
correspondingly low TKE. At AH = 132, the heavy fragment
is close to the doubly magic closed shell having ZH = 50
and NH = 82 and is therefore resistant to distortions away
from sphericity, as first discussed in Ref. [25]. Consequently,
the scission configuration is fairly compact, causing the TKE
to exhibit a maximum even though the complementary light
fragment is far from a closed shell and hence significantly
deformed.

The TKE values shown in Fig. 5 were obtained in
experiments using thermal neutrons [26–28]. Unfortunately,
there are no such data for higher incident energy. We therefore
assume the energy-dependent average TKE values take the
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FIG. 5. (Color online) The measured average TKE as a function
of the mass number of the heavy fragment [26–28] compared to
FREYA calculations at thermal energies. The FREYA result is shown
with the calculated dispersion around each AH .

form

TKE(AH,En) = TKEdata(AH ) + dTKE(En). (13)

The first term is extracted from the data shown in Fig. 5, while
the second term is a parameter adjusted to ensure reproduction
of the measured energy-dependent average neutron multiplic-
ity ν(En). In each particular event, the actual TKE value is then
obtained by adding a thermal fluctuation to the above average,
as explained later.

Figure 5 includes the average TKE values calculated
with FREYA at thermal energies, together with the associated
dispersions (these bars are not sampling errors but indicate the
actual width of the TKE distribution for each AH ).

Figure 6 shows the single-fragment kinetic energy obtained
with FREYA for incident thermal neutrons. Although FREYA
is not explicitly tuned to match the single-fragment kinetic
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FIG. 6. (Color online) The average fragment kinetic energy as a
function of fragment mass from Refs. [27,28] compared to FREYA

calculations at thermal energies. The FREYA result is shown with the
calculated dispersion around each Af .
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FIG. 7. (Color online) The measured average neutron multiplicity
as a function of the fragment mass [27–29] together with the FREYA
average and dispersions indicated for each Af fitting to ν only
(squares) and with the spectra included in the fit (circles).

energies, it does reproduce these data quite well, as would be
expected from momentum conservation. The light fragment
carries away significantly more kinetic energy than the heavy
fragment. Furthermore, the kinetic energy of the fragment is
nearly constant for Af < 106, but after the dip near symmetry
there is an approximately linear decrease in the fragment
kinetic energy. The figure also shows the calculated width in
the fragment energy distribution, together with a few typical
experimental widths provided by Ref. [27].

Of particular interest is the dependence of the average
neutron multiplicity on the fragment mass number Af , shown
in Fig. 7. It is seen that the FREYA calculations provide
a rather good representation of the “sawtooth” behavior of
ν(Af ), as shown in Fig. 7, even though FREYA is also not
tuned to these data. This is not particularly surprising because
we have adopted the shape of TKE(AH ) in Fig. 5. The
dip in the calculation and the data at A ∼ 132 is at the
same point as the peak of TKE(AH ) due to the shell-driven
fragment deformation pointed out in Ref. [25]. Although the
agreement is good, the observed behavior is not perfectly
reproduced. When Af > 150, a region where the fragment
yield is decreasing sharply, the data and the calculations appear
to diverge. We note that the uncertainties on the data in this
region, where reported, are rather large.

Once the average total fragment kinetic energy has been
obtained, the average combined excitation energy in the two
fragments follows by energy conservation,

TXE = E
∗
L + E

∗
H

.= QLH − TKE. (14)

The first relation indicates that the total excitation energy
is partitioned between the two fragments. As is common,
we assume that the fragment level densities are of the form
ρi(E∗

i ) ∼ exp(2
√

aiUi), where Ui is the effective statistical
energy in the fragment.

We have used a description of the level-density parameter
based on the back-shifted Fermi gas (BSFG) model [30],

ai(E
∗
i ) = Ai

e0

[
1 + δWi

Ui

(1 − e−γUi )

]
, (15)

where Ui = E∗
i − �i and γ = 0.05, also used in Ref. [31].

The pairing energy of the fragment �i and its shell correction
δWi are tabulated in Ref. [30] based on the mass formula of
Koura et al. [32]. If δWi is negligible or if U is large then
the renormalization of ai is immaterial and the BSFG level-
density parameter reverts to the simple form, ai ≈ Ai/e0.1

[Because the back shift causes Ui to become negative when
E∗

i is smaller than �i , we replace Ui(E∗
i ) by a quadratic spline

for E∗
i � 2�i while retaining the expressions Ti = √

Ui/ai for
the temperature and σ 2

Ei
= 2UiTi for the variance of the energy

distribution to ensure a physically reasonable behavior.] We
take e0 as an adjustable model parameter.

If the two fragments are in mutual thermal equilibrium,
TL =TH , the total excitation energy will, on average, be
partitioned in proportion to the respective heat capacities
which in turn are proportional to the level-density parameters
(i.e., E

∗
i ∼ ai). FREYA therefore first assigns tentative average

excitations based on such an equipartition,

É∗
i = ai(Ẽ∗

i )

aL(Ẽ∗
L) + aH (Ẽ∗

H )
TXE, (16)

where Ẽ∗
i = (Ai/A0)TXE. Subsequently, because the ob-

served neutron multiplicities suggest that the light fragments
tend to be disproportionately excited, the average values are
adjusted in favor of the light fragment,

E
∗
L = xÉ∗

L , E
∗
H = TKE − E

∗
L, (17)

where x is an adjustable model parameter expected to be larger
than unity, as suggested by measurements of 235U(n,f ) [33]
and 252Cf(sf) [34].

After the mean excitation energies have been assigned,
FREYA considers the effect of thermal fluctuations. The frag-
ment temperature Ti is obtained from Ui ≡ Ui(E

∗
i ) = aiT

2
i

and the associated variance in the excitation E∗
i is taken as

σ 2
i = 2U

∗
i Ti , where U (E∗) = E∗ in the simple (unshifted)

scenario.
Therefore, for each of the two fragments, we sample a

thermal energy fluctuation δE∗
i from a normal distribution of

variance σ 2
i and modify the fragment excitations accordingly,

arriving at

E∗
i = E

∗
i + δE∗

i , i = L,H. (18)

Energy conservation requires a compensating opposite fluctu-
ation in the total kinetic energy, so that

TKE = TKE − δE∗
L − δE∗

H . (19)

With both the excitations and the kinetic energies of the
two fragments fully determined, it is an elementary matter
to calculate the magnitude of the momenta with which they

1This form, used by Madland and Nix [11], is independent of
excitation energy.

024608-6



EVENT-BY-EVENT EVALUATION OF THE PROMPT . . . PHYSICAL REVIEW C 85, 024608 (2012)

emerge after having been fully accelerated by their mutual
Coulomb repulsion [7]. The fission direction is assumed to
be isotropic (i.e., directionally random) in the frame of the
fissioning nucleus and the resulting fragment velocities are
finally Lorentz boosted into the rest frame of the original 240Pu∗

system.

D. Fragment de-excitation

Usually both fully accelerated fission fragments are excited
sufficiently to permit the emission of one or more neutrons.
We simulate the evaporation chain in a manner conceptually
similar to the method of Lemaire et al. [31] for 252Cf(sf) and
235U(n,f ). After neutron emission is no longer energetically
possible, FREYA simulates the sequential emission of photons
by a similar method [7] (see also Ref. [35]).

1. Neutron evaporation

Neutron emission is treated by iterating a simple neutron
evaporation procedure for each of the two fragments sep-
arately. At each step in the evaporation chain, the excited
mother nucleus Ai Zi has a total mass equal to its ground-
state mass plus its excitation energy, M∗

i = M
gs
i + E∗

i . The
Q value for neutron emission from the fragment is then
Qn = M∗

i − Mf − mn, where Mf is the ground-state mass of
the daughter nucleus and mn is the mass of the neutron. (For
neutron emission we have Af = Ai − 1 and Zf = Zi .) The
Q value is equal to the maximum possible excitation energy
of the daughter nucleus, achieved if the final relative kinetic
energy vanishes. The temperature in the daughter fragment
is then maximized at T max

f . Thus, once Qn is known, the
kinetic energy of the evaporated neutron may be sampled.
FREYA assumes that the angular distribution is isotropic in the
rest frame of the mother nucleus and uses a standard spectral
shape [36],

fn(E) ≡ 1

Nn

dNn

dE
∼ E e−E/T max

f , (20)

which can be sampled efficiently [7].
Although relativistic effects are very small for neutron

evaporation, they are taken into account to ensure exact
conservation of energy and momentum, which is convenient
for code verification purposes. We therefore take the sampled
energy E to represent the total kinetic energy in the rest frame
of the mother nucleus (i.e., it is the kinetic energy of the emitted
neutron plus the recoil energy of the excited residual daughter
nucleus). The daughter excitation is then given by

E∗
d = Qn − E, (21)

and its total mass is thus M∗
d = M

gs
d + E∗

d . The magnitude of
the momenta of the excited daughter and the emitted neutron
can then be determined [7]. Sampling the direction of their
relative motion isotropically, we thus obtain the two final
momenta which are subsequently boosted into the overall
reference frame by the appropriate Lorentz transformation.

This procedure is repeated until no further neutron emission
is energetically possible (i.e., when E∗

d < Sn), where Sn is the

neutron separation energy in the prospective daughter nucleus,
Sn = M(Ad Zd ) − M(Ad−1Zd ) − mn.

2. Photon radiation

After the neutron evaporation has ceased, the excited
product nucleus may de-excite by sequential photon emission.
FREYA treats this process in a manner analogous to neutron
evaporation (i.e., as the statistical emission of massless
particles). While this simple treatment is expected to be fairly
reasonable at the early stage where the level density can be
regarded as continuous, it would obviously be inadequate for
late stages that involve transitions between specific levels.

There are two important technical differences relative to
the treatment of neutron emission. There is no separation
energy for photons and, because they are massless, there is
no natural end to the photon emission chain. We therefore
introduce an infrared cutoff of 200 keV. Whereas the neutrons
may be treated by nonrelativistic kinematics, the photons are
ultrarelativistic. As a consequence, their phase space has an
extra energy factor,

fγ (E) ≡ 1

Nγ

dNγ

dE
∼ E2 e−E/T max

f . (22)

The photons are assumed to be emitted isotropically and
their energy can be sampled very quickly from the above
photon energy spectrum [7]. The procedure is repeated until
the available energy is below the specified cutoff, yielding a
number of kinematically fully-characterized photons for each
of the product nuclei.

III. RESULTS

We now proceed to discuss our analysis of the prompt
fission neutron spectrum (PFNS). We first describe the
computational approach and then explain how the model
parameters are determined. The resulting prompt neutron
spectral evaluations are then discussed in detail. Finally, we
present some additional observables of particular relevance.

A. Computational approach

Here we briefly describe the statistical method used for
determining model parameters and reaction observables. Our
analysis uses the Monte Carlo approach to Bayesian inference
outlined in many books on general inverse problem theory
(e.g., Ref. [37]).

We have introduced several model parameters: e0, x, and
dTKE, which in principle may be adjusted for each incident
neutron energy En. However, because independent fits to the
experimental data tend to yield values of e0 and x that are
nearly independent of En [6], we shall assume that these
two parameters are energy independent. This simplification
will facilitate the optimization procedure. Thus a given model
realization is characterized by the two values e0 and x together
with the function dTKE(En) which, for practical purposes, will
be defined by its values at certain selected energies, {dTKE�}.
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For formal convenience, we denote the set of model parameter
values as m = {mk}.

When FREYA is used with any particular value set m,
it yields a sample of fission events from which we can
extract observables d(m) that can be directly compared to the
corresponding experimental values dexp. For example, we may
extract the energy-dependent mean neutron multiplicity ν(En),
and compare it with the values given in the ENDF/B-VII.0
evaluation [8].

We assume that the experiment provides not just the
values but also the entire associated covariance matrix 
exp.
(The square roots of the diagonal elements of 
exp are the
uncertainties on the individual observables.) The degree to
which the particular model realization defined by the parameter
values m describes the measured data dexp is then expressed
by

P (dexp|m) ∼ exp
( − 1

2χ2(m)
)
, (23)

where χ2(m) is the generalized least-squares deviation be-
tween the model m and experiment,

χ2 = (dexp − d(m)) · (
exp)−1 · (dexp − d(m))T . (24)

Employing merely the diagonal part of 
exp (i.e., the uncer-
tainties alone) ensures that well-measured observables carry
more weight than poorly measured ones. This approach was
used in the previous PFNS evaluation [6], which was restricted
to lower energy (En < 5.5 MeV). Here we now employ the full
covariance matrix, thereby ensuring that correlations between
measured observables are also taken into account. As we shall
see, these correlations do impact the results.

Using the above framework, we may now compute the
weighted averages of arbitrary observables O = {Oi}. We
assume that the physically reasonable values of the model
parameters m are uniformly distributed within a hypercube in
parameter space. This defines the a priori model probability
distribution P (m). The best estimate of the observable Oi is
then given by

≺Oi 	 =
∫

dm P (m) P (dexp|m)Oi(m). (25)

The best estimate for the covariance between two such
observables can be obtained similarly,

Oij ≡ ≺OiOj 	 − ≺Oi 	 ≺Oj 	
= ≺Oi− ≺Oi 		≺Oj− ≺Oj 		 . (26)

In particular, we may compute the best estimate of ν,

≺ν 	 =
∫

dm P (m) P (dexp|m) ν(m), (27)

and the prompt neutron spectrum, as well as the covariances
between those quantities.

In practice, we average over parameter space employing a
Monte Carlo approach, thereby reducing the integral over all
possible parameter values m to a sum over N sampled model
realizations, {m(n)},

≺Oi 	 ≈ 1

N

N∑
n=1

P (m(n)) P (dexp|m(n))Oi(m(n)). (28)

The joint probability wn ≡ P (m(n))P (dexp|m(n)) may be
viewed as the likelihood that the particular model realization
m(n) is “correct.” Because it depends exponentially on χ2

n , the
likelihood tends to be strongly peaked around the favored set. It
is important that the parameter sample be sufficiently dense in
the peak region to ensure that many sets have non-negligible
weights. We use Latin Hypercube sampling (LHS) [38,39],
which samples a function of K variables with the range of
each variable divided into M equally spaced intervals. Each
combination of M and K is sampled at most once, with a
maximum number of combinations being (M!)K−1. The LHS
method generates samples that better reflect the distribution
than a purely random sampling would. Consequently, relative
to a simple Monte Carlo sampling, the employed sampling
method requires fewer realizations to determine the optimal
parameter set. We used 5000 realizations of the parameter
space to obtain the optimal parameter values.

Even though both ν and the neutron spectrum are important
observables, the small uncertainties on the evaluated ν drive
the results. Indeed, for our primary result, we use only the
evaluated ν to constrain our new evaluation of the PFNS, as
in Ref. [6]. Thus, in this treatment, the spectra is an outcome
rather than a comparative observable. We use the evaluated
ν in the ENDF/B-VII.0 database [8] with the covariance
resulting from the least-squares fit to the available 239Pu(n,f )
data described in Ref. [40]. The energy-dependent neutron
multiplicity, ν(En) is represented as a locally linear fit to the
experimental data. Because the nodes in this fit do not align
with fitted data, the fit introduces energy correlations that are
encoded into the covariance matrix.

To show the difference in the resulting evaluation when
the spectral data are included, we also present a fit to ν and
spectral data themselves. Because the data are often given with
an arbitrary normalization, we normalize them to unity while
preserving their spectral shapes, following the prescription of
Ref. [6]. We note that this procedure could introduce some bias
into the result because a particular functional form has been
assumed to obtain the integral normalization. In addition, these
data are primarily for incident neutrons from thermal energies
up to 0.5 MeV [41–49] although one group reported results
for incident neutron energies up to 3.5 MeV [49]. Because the
shape of the data reported in Ref. [48] is significantly different
from the other data, they were not included in the fit.

For each model realization, FREYA is used to generate a
large sample of fission events (typically one million events
for each parameter set) for each of the selected incident
neutron energies and the resulting average multiplicity ν(En)
is extracted from the generated event sample.

B. Fit results

Given the tendency of e0 to be larger than 8 MeV, we let e0

vary between 8 and 12 MeV. In addition, recalling our previous
results [6] and the experimental indications that the light
fragment is hotter than the heavy fragment, we have assumed
1 � x � 1.4. The resulting optimal values of these parameters
are e0 = 9.2648 ± 0.0453 MeV and x = 1.2449 ± 0.0066
when fitting to ν only and e0 = 9.6905 ± 0.3441 MeV and
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FIG. 8. (Color online) The values of dTKE and the associated
fit uncertainty as a function of incident neutron energy obtained
when fitting to ν alone (squares) and to ν and the spectral data
(circles). The locations of the node points are indicated by diamonds at
dTKE = 1 MeV.

x = 1.0536 ± 0.0445 when the spectra are included. These
values of e0 are consistent with the calculation of a in Eq. (15)
which does not include collective effects. If collective behavior
is included, then we expect e0 ∼ 13 MeV based on the RIPL-3
systematics [50]. Previously, we obtained e0 ∼ 8 MeV and
x ∼ 1.1 with a slightly different TKE prescription and using
only the diagonal elements of the ν covariance matrix [6].

We have fitted dTKE at six values of incident neutron
energy, En = 10−11, 0.25, 1, 5, 14, and 20 MeV, to keep
the parameter space manageable. These points are chosen to
reflect the physics of the fission process: The region between
0.25 and 1 MeV is where ν(En) changes slope while the
second-chance fission threshold is just above 5 MeV. The
full 20-point grid of the FREYA evaluation is then covered by
means of a linear interpolation between these node points.
The resulting values of dTKE for both fits are shown in
Fig. 8. The locations of the node points are indicated by
diamonds at dTKE = 1 MeV. The error bars on dTKE
at the node points are the standard deviations obtained from
the averaging over the range of parameter values while
the error bars on dTKE between two node points are the
interpolated dispersions between those two points. Note the
large uncertainties associated with including the spectra in
the fit relative to those obtained by fitting to ν alone. A similar
difference in the uncertainties on e0 and x can also be observed.

Because dTKE represents the shift in the total fragment
kinetic energy from the value obtained for incident thermal
neutron energies, dTKE should depend on the incident neutron
energy, as suggested in Eq. (13). The value of dTKE is positive,
indicating that using the thermal average value of TKE leads
to too many neutrons. The positive dTKE is then required to
reduce the excitation energy sufficiently to give a good fit to ν.
For example, reducing dTKE at En = 0.5 MeV from 1.1 MeV
to zero while retaining the same values of e0 and x, reduces
the peak value of TKE(AH ) by about 0.6% while increasing ν

by ∼5%.
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FIG. 9. (Color online) The residual differences between the
ENDF-B/VII.0 evaluation and our fits for ν only (squares) and ν

with the spectral data (circles) using FREYA. The locations of the
node points are indicated by diamonds at 〈ν〉ENDF − 〈ν〉FREYA = 0.
The uncertainty on the residual only reflects the uncertainty on ν

from the ENDF-B/VII.0 evaluation.

We can test the sensitivity of ν to changes in the parameter
values by changing one parameter while keeping the other two
fixed. For example, reducing dTKE by 10% increases ν by
0.55% while decreasing x by 10% decreases ν by 0.1%. The
largest change in ν arises when e0 drops by 10%. In this case,
ν is 0.86% larger.

Above 14 MeV, the ENDF/B-VII.0 ν evaluation is not based
on data but on a linear extrapolation of measurements taken at
lower incident energies. Thus, ν is not well constrained near
the high end of the energy range.

A direct comparison of our fitted values of ν with those
in the ENDF-B/VII.0 evaluation is less revealing than fit
residuals, the difference νENDF − νFREYA. The residual values
are shown in Fig. 9. The standard deviation on each point
reflects only the uncertainty on the ENDF-B/VII.0 evaluation
and not the uncertainty on the fitted ν. The large uncertainties
at 16 and 20 MeV arise from the lack of experimental data at
these values of En.

We note that the ENDF-B/VII.0 ν evaluation lies more than
one standard deviation above the evaluated ν data extracted in
the ENDF-B/VII.0 covariance analysis in the region 0.1 <

En < 1 MeV [40]. Our results agree rather well with the
evaluated data in this region. Here, where ν is smallest, the
relative difference is less than 0.5%, even when the spectra
are included in the fit. The residual difference is largest when
En > 12 MeV. When we fit to ν alone, the differences are much
smaller. Note that the finite residuals arise because we have
taken the energy-energy correlations in the ν evaluation into
account. If we would assume, as in our previous work [6], that
the value of ν at each energy point is independent of all others
(e.g., the errors are uncorrelated and the covariance matrix is
diagonal), then the fit residuals can be very small.

Examples of the resulting prompt fission neutron spectrum
are shown in Fig. 10. We present dν/dE for four representative
energies: En = 0.5 MeV (thermal neutrons), 4 MeV (below the
second-chance fission threshold), 9 MeV (below the threshold
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FIG. 10. (Color online) The prompt neutron spectra resulting
from our fits, at selected values of En. The inset emphasizes the
change in slope due to pre-fission neutron emission at 8.4 MeV for
En = 14 MeV.

for third-chance fission), and 14 MeV (relevant for certain
experimental tests). We note that the integral of dν/dE

over outgoing neutron energies gives the average neutron
multiplicity, ν, obtained from the fitting procedure. In addition
to the increase in the peak of the spectrum, we note that
the average outgoing neutron energy appears to increase with
incident energy.

A close inspection of the spectra obtained for 9 and
14 MeV will reveal abrupt drops in value at the energies
corresponding to the threshold for emission of a second
pre-fission neutron, namely, at Ê2 = En − Sn(239Pu), 3.4 and
8.4 MeV, respectively. The inset of Fig. 10 emphasizes the
threshold at 8.4 MeV. When the energy of the first pre-fission
neutron is below Ê2, the daughter nucleus is sufficiently
excited to make secondary emission possible. (These threshold
discontinuities are also visible in the spectral differences
shown in Figs. 12 and 13.) This effect, noted already by
Kawano et al. [10], grows larger at higher incident energies
where multichance fission is more probable. Furthermore,
when the combined energy of the first two pre-fission neutrons
is below Ê3 = En − Sn(239Pu) − Sn(238Pu) the emission of a
third pre-fission neutron is energetically possible. In principle,
these onset effects can be measured experimentally which
could thus provide novel quantitative information on the degree
of multichance fission.

Figure 11 compares the spectral results from the two fits at
En = 0.5 and 14 MeV. Because the differences are largest in
the high-energy tail, we have placed the curves on a semilog
scale to demonstrate the differences more clearly. It is clear
that the spectra fit to ν alone are hotter.

Our final evaluation is based on our fits to ν and its energy-
energy covariance, either with or without fitting the spectra
also, as described above. The resulting spectral evaluations are
incorporated in different ENDF-type files with their spectral
shapes alone.

To produce the spectral evaluation, requiring fine energy
spacings over the range 10−5 � E � 20 MeV, from our FREYA
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FIG. 11. (Color online) Comparison of the prompt neutron
spectra at incident neutron energies of 0.5 and 14 MeV resulting
from the fits to ν alone and including the spectral data. The results
are shown on a semilog scale to emphasize the high-energy tails of
the spectra.

results, we fit the FREYA PFNS in the regions where either
the employed bin widths are not sufficiently small (in the
region below 0.1 MeV) or the statistics are limited (above
6–8 MeV). In between, we interpolate the FREYA spectra.
We also interpolate the spectra around the multichance fission
thresholds where smooth fitting would not be appropriate.

Figures 12 and 13 give the difference between the present
evaluations and the ENDF/B-VII.0 evaluation. The spectra
are all normalized to unity at each value of En. In both
cases, for incident neutron energies below the threshold for
multichance fission, the difference between ENDF-B/VII.0
and our evaluations is around 1% for E < 0.1 MeV, fluctuating
to ±10% between 0.1 and 10 MeV. In most cases, the percent
difference between the two evaluations is rather small, less
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FIG. 12. (Color online) The percent difference between the
ENDF-B/VII.0 evaluation of the PFNS and our resulting fit to ν

only at several representative incident neutron energies. Results are
shown for 0.5 (solid black), 4 (short dashed red), 6 (dot-dashed blue),
10 (dot-dot-dashed green), 14 (dot-dash-dashed violet), and 20 (long
dashed magenta) MeV.
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FIG. 13. (Color online) The percent difference between the
ENDF-B/VII.0 evaluation of the PFNS and our result when the PFNS
data are included in the fit. Results are shown for 0.5 (solid black),
4 (short dashed red), 6 (dot-dashed blue), 10 (dot-dot-dashed green),
14 (dot-dash-dashed violet), and 20 (long dashed magenta) MeV.

than 1% below outgoing energies of 0.1 MeV. There is a
transition region between 0.1 and 3 MeV where the percent
difference changes sign before the tail region begins. The
minimum of the dip at ∼−10% for En < 4 MeV indicates that
the FREYA spectra have slightly lower average energies. The
FREYA evaluation has a higher energy tail than ENDF/B-VII.0
for all En. As already noted, the difference is larger for the fit
to ν alone, as shown in Fig. 12 for E > 4 MeV. The difference
is largest for En � 4 MeV where there are spectral data.

As noted in the discussion of Fig. 10, contributions from
pre-fission neutron emission change the calculated spectral
slope at E = En − Sn. Although the Madland-Nix (Los
Alamos model) evaluation [11] includes an average result for
multichance fission, the spectral shape for pre-fission emission
is assumed to be the same as that of prompt neutron emission
(evaporation) postfission. Thus the ENDF/B-VII.0 evaluations
are always smooth over the entire outgoing energy regime,
regardless of incident energy, while the FREYA evaluations
reflect the changes due to pre-fission emission. The slope
changes at the multichance fission thresholds in the FREYA
spectra are evident for the En = 6, 10, and 14 MeV difference
curves at 0.35, 4.35, and 8.35 MeV, respectively. We note that
the threshold at 0.35 MeV is exaggerated because the FREYA
spectrum is ∼20% higher than ENDF-B/VII.0 in this region.
Indeed, the difference is larger here than for all other incident
energies below 20 MeV.

Figure 14 shows the ratio of our 0.5 MeV results to a
Maxwell distribution with T = 1.42 MeV. The ENDF-B/VII.0
ratio is also shown, along with data from Refs. [41–49]. As
expected from the comparison in Figs. 12 and 13, the FREYA
ratio peaks at a lower energy than the ENDF-B/VII.0 ratio.
Because there is a great deal of scatter in the data over the
entire energy range, any strong conclusion about the quality
of the fits with respect to the spectral data is difficult. We do
note, however, that the resulting fit to ν only exhibits a smaller
deviation from a Maxwellian for E > 4 MeV
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FIG. 14. (Color online) The ratios of ENDF-B/VII.0 (solid) and
FREYA fit to ν only (dot-dashed) and including the spectral data
(long dashed) relative to a Maxwell distribution with T = 1.42 MeV.
The data from Refs. [41–49] are also shown relative to the same
Maxwellian.

C. Covariances

We can calculate covariances and correlation coefficients
between the optimal model parameter values as well as
between the various output quantities using Eq. (26). The
covariance between two parameters mk and mk′ is


kk′ ≡ ≺ (mk− ≺mk 	)(mk′− ≺mk′ 	)	 . (29)

The diagonal elements, 
kk are the variances (�mk)2, repre-
senting the squares of the uncertainty on the optimal value
of the individual model parameter mk , while the off-diagonal
elements give the covariances between two different model pa-
rameters. It is often more instructive to employ the associated
correlation coefficients, Ckk′ ≡ 
kk′/[
mk


mk′ ], which is plus
(minus) one for fully (anti)correlated variables and vanishes
for entirely independent variables.

When only ν is included in the fit, the dTKE correlations,
CdTKE(En), dTKE(En), are fairly large except for those with En =
20 MeV where ν is not well known. In this case, they are
weakly anticorrelated. The e0-dTKE coefficients, Ce0, dTKE(En),
exhibit a relatively strong anticorrelation except at 20 MeV
where there is a weak correlation. The x-dTKE coefficients,
Cx, dTKE(En), show a moderate correlation, ∼0.35 − 0.5, in-
creasing to ∼0.9 at En = 14 MeV and becoming weakly
anticorrelated at En = 20 MeV. The correlation coefficient
between the energy-independent parameters e0 and x, Ce0,x ,
is ≈−0.6, a rather significant anticorrelation. These results
show that similar fits can be obtained by increasing e0 while
decreasing dTKE (or vice versa); changing x and dTKE up
and/or down together; or increasing e0 while decreasing x (or
vice versa).

On the other hand, when the spectra are included in the fits,
the correlation coefficients are all small and alternating in sign
from positive to negative except for Ce0,x which is equivalent
to the value for the fit to ν alone. These results suggest that, in
this case, the inputs are essentially uncorrelated.

We may also compute the covariance between the spectral
strength at different outgoing energies E using Eq. (26). The
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FIG. 15. (Color online) Contour plot of the correlation coefficient
[see Eq. (26)] between the spectral strengths at two different energies,
CE1,E2 , as obtained for En = 0.5 MeV when fitting to ν only. The
correlation changes from values near +1 in the reddish regions (lower
left and central regions) to values near −1 in the bluish regions (near
the two axes). Each of the three straight lines connects points at which
the two neutrons have the same combined energy, E1 + E2 = 5, 10,
and 15 MeV.

resulting correlation coefficients CE1,E2 are shown in Figs. 15
and 16 for En = 0.5 MeV when fitting to ν alone and including
the spectra, respectively. We see that CE1,E2 ≈ 1 (gray areas)
when the two specified energies lie on the same side of
the crossover region, while CE1,E2 ≈ −1 (dark blue areas)
when they lie on opposite sides. The crossover region around
2.5 MeV indicates that the spectrum tends to pivot around this
point when the parameter space is explored, similar to Ref. [6].

The correlation in Fig. 15 is somewhat noisy, especially
near the region where CE1,E2 changes from positive to
negative and also where E1 or E2 is large and the spectral
statistics is poorer. On the other hand, when the spectra are
included, CE1,E2 > 0, ∼0.8 when E1 and E2 are similar,
gradually decreasing to a very weak anticorrelation when the
two energies are very different.

The choice of a BSFG level density parametrization causes
larger fluctuations in CE1,E2 than an energy-independent level
density, a = A/e0, as in an average fission model. In this case
the temperature is also independent of En. Strong correlations
are also observed in other calculations based on average fission
models such as Madland-Nix [51]. Introducing the BSFG
parametrization [Eq. (15)], at fixed U , ignoring the pairing
energy, as in our previous paper, introduces fluctuations in
a which soften the linear rise of a with A and reduce the
sharpness of the correlations. Including the back shift due to
the pairing energy further reduces the correlations, narrowing
the peak in the spectra. Thus the back shift interferes with the

FIG. 16. (Color online) Contour plot of the correlation coefficient
[see Eq. (26)] between the spectral strengths at two different energies,
CE1,E2 , as obtained for En = 0.5 MeV when the spectra are included
in the fitting procedure. The correlation changes from values near
+1 in the reddish regions (lower left and central regions) to values
near −1 in the bluish regions (near the two axes). Each of the three
straight lines connects points at which the two neutrons have the same
combined energy, E1 + E2 = 5, 10, and 15 MeV.

correlations, introducing the noise shown in Fig. 15. Including
the spectra in the fits tends to wash out this effect by weakening
the overall correlation.

Different correlation matrices are obtained in the two fits.
The ν only fits exhibit increased fluctuations at higher En

with a wider crossover region between positive and negative
CE1,E2 . In addition, the pivot point moves to slightly higher
energies. In the case when the spectra are included in the fits,
E1 and E2 are correlated over a wider range of �E, becoming
uncorrelated when E1 and E2 are both large.

Figures 17 and 18 show cuts at constant total neutron
energy, E1 + E2. Similar results are found for all other
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FIG. 17. (Color online) The spectral correlation coefficients,
CE1,E2 , along the three lines of constant combined energy indicated
in Fig. 15 for the fit to ν only at En = 0.5 MeV.
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FIG. 18. (Color online) The spectral correlation coefficients,
CE1,E2 , along the three lines of constant combined energy indicated
in Fig. 16 for the fit to ν and the spectral data at En = 0.5 MeV.

incident energies considered. The trends are the same for both
scenarios, large positive correlations at low �E, becoming
negative at larger �E. However, the fits with spectra included
show almost no correlation, CE1,E2 ∼ 0 for large �E. When
the model parameters are varied in both cases, the spectral
shapes pivot about a single energy, Epivot ∼ 2.5 MeV in these
calculations. Thus when both E1 and E2 are less than Epivot,
the differential changes are in phase and CE1,E2 ∼ 1. If, for
example, E1 < Epivot and E2 > Epivot, differential changes in
the spectra give an anticorrelation.

IV. BENCHMARK TESTS

There are several standard validation calculations that
can be used to test our PFNS evaluations. They are critical
assemblies which test conditions under which a fission chain
reaction remains stationary, that is, exactly critical; activation
ratios which can be used to test the modeling of the flux in a
critical assembly; and pulsed sphere measurements which test
the spectra for incident neutron energies of ∼14 MeV.

To perform these tests, we replace the 239Pu(n,f ) PFNS in
the ENDL2011.0 database, identical to that in ENDF-B/VII.0,
with our evaluated spectra. Our evaluation thus has the same
format as the ENDF-B/VII.0 evaluation and represents the
spectra averaged over all neutron multiplicities. In this section,
we describe these tests and the FREYA results.

A. Validation against critical assemblies

Critical assemblies, which are designed to determine the
conditions under which a fission chain reaction is stationary,
provide an important quality check on the spectral evaluations.
The key measure of a critical assembly is the neutron multi-
plication factor keff . When this quantity is unity, the assembly
is exactly critical, that is, the net number of neutrons does not
change so that for every neutron generated, another is either
absorbed or leaks out of the system. For a given assembly,
the degree of criticality depends on the multiplicity of prompt
neutrons, their spectral shape, and the energy-dependent cross
section for neutron-induced fission.

Plutonium criticality is especially sensitive to the prompt
neutron spectrum because the 239Pu(n,f ) cross section rises
sharply between En = 1.5 and 2 MeV, near the peak of the
fission spectrum. As a result, increasing the relative number
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FIG. 19. (Color online) Calculated values of keff for several 239Pu
critical assemblies obtained using our fits to ν only (solid violet
squares) and fits to ν and the spectra (solid green circles) in the
Mercury code. The results are compared to calculations using the
ENDF-B/VII.0 (blue diamonds) and proposed ENDF/B-VII.1 (open
red squares) databases.

of low-energy neutrons tends to decrease criticality, lowering
keff , while increasing the number of higher energy neutrons
increases criticality.

Figure 19 shows calculations of keff for four different
plutonium assemblies from the criticality safety benchmark
handbook [52]. Apart from the spectra, all data used in these
calculations were taken from ENDF/B-VII.0 [8]. We show the
keff for the two fits with our evaluated spectra and ν from the
ENDF-B/VII.0 evaluation. The value of keff is significantly
below the reported uncertainties on the assemblies while the
fit to ν alone is typically within one standard deviation of the
measured value.

The energy-independent result of Ref. [6] led to values
of keff that were ≈1.5 standard deviations away from the
measured value for the Jezebel assembly which is sensitive
to fission induced by fast (En ≈ 1 MeV) neutrons. By
contrast, our results fitting to ν alone thus represent some
improvement.

We note that the other inputs to the Jezebel assembly test
were highly tuned to match the keff . The fact that replacing
only the PFNS without a full reevaluation of all the inputs to
the criticality tests leads to a result that is inconsistent with
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keff ≡ 1 should therefore not be surprising. For example, if
the average energy of the ENDF-B/VII.0 PFNS is high, the ν

evaluation would be forced higher to counter the effect on keff .
In addition, the inelastic (n, n′) cross section is not well known
and could require compensating changes that affect keff [53].

To make further improvements in the evaluations with
respect to assemblies, it would be useful to have an inline
version of FREYA for use in the simulations.

B. Validation against activation ratios

In the 1970s and 1980s, LANL performed a series of
experiments using the spectra from the critical assemblies
Jezebel (mainly 239Pu), Godiva, BigTen, and Flattop25 (all
primarily enriched uranium) to activate foils of various
materials [54]. The isotopic content of the foils can be
radiochemically assessed both before and after irradiation.
Thus these measurements of the numbers of atoms produced
per fission neutron are an integral test of specific reaction cross
sections in the foil material. Conversely, a well-characterized
material can also be used to test the critical assembly flux
modeling. We have simulated several foils (239Pu, 233U, 235U,
238U, 237Np, 51V, 55Mn, 63Cu, 93Nb, 107Ag, 121Sb, 139La, 193Ir,
and 197Au) which are tests of the (n,f ) and (n,γ ) reactions
in the Jezebel assembly. In all cases, our simulated values
of the activation rates in these foils are either consistent
with measured values or previous modeling using a modified
version of the ENDF/B-VII.0 nuclear data library [55]. As
the fission cross sections for 233U, 235U, 238U, and 237Np
are accurately known and span all incident neutron energies,
these tests merely confirm our earlier modeling of plutonium
critical assemblies. The neutron capture cross sections of the
other foils are important for incident neutron energies less then
1 MeV but they are not known nearly as well as the fission
cross sections. Thus our Calculated/Experiment ratios scatter
around unity in these cases.

Because both the Jezebel and Godiva critical assemblies test
the fast-neutron spectrum, with a significant portion of their
neutron fluxes above 5 MeV, either might be used to test the
high-energy portion of the 239Pu(n,f ) PFNS. Unfortunately,
none of the tests that have been performed to date are useful
for testing our FREYA PFNS evaluation. While many of the
studied materials have high (�10 MeV) (n,2n) thresholds,
the only (n,2n) threshold material tested in Jezebel is 169Tm.
Unfortunately, the 169Tm (n,2n) cross section is poorly known.
There were also experiments with plutonium foils placed in
uranium assemblies, but these tests are not useful for testing the
239Pu(n,f ) PFNS because the foils are too thin for secondary
scatterings to play a significant role. It would be particularly
interesting to carry out a new set of (n,2n) foil measurements
using well-characterized materials in a primarily plutonium
critical assembly to specifically test the high-energy portion of
the spectrum.

C. Validation with LLNL pulsed spheres

The ENDL2011.0 database [56], including our FREYA
evaluation, was tested against LLNL pulsed-sphere data, a
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FIG. 20. (Color online) The measured LLNL pulsed-sphere test
data [58] (points) compared to calculations using either ENDF/B-
VII.0 or ENDL2011.0 with the present FREYA evaluation included.

set of fusion-shielding benchmarks [57]. The pulsed-sphere
program, which ran from the 1970s to the early 1990s,
measured neutron time-of-flight (TOF) and gamma spectra
resulting from emission of a 14 MeV neutron pulse produced
by d + t reactions occurring inside spheres composed of a
variety of materials [58]. Models of the LLNL pulsed-sphere
experiments using the Mercury Monte Carlo were developed
for the materials reported in Goldberg et al. [59,60].

Figure 20 compares results of our evaluation with the
experimental data [58] and calculations based on ENDF/B-
VII.0. The only difference between the Pu evaluations in
these two calculations is the PFNS and associated ν, all other
quantities remain the same. Relative to the ENDF/B-VII.0
calculation, in both cases the FREYA spectra yields better
agreement with the data in the region around the minimum
of the time-of-flight curve at ≈ 210 ns and up to ≈ 300 ns.
However, it lies somewhat lower than the ENDF/B-VII.0 curve
and the data over the plateau region for time of flight longer
than 300 ns.

Such pulsed-sphere experiments test the PFNS at incident
energies higher than those probed in critical assembly tests.
The measured outgoing neutrons have a characteristic time-of-
flight curve (see Fig. 20). The sharp peak at early times is due to
14 MeV neutrons going straight through the material without
significant interaction. The dip at around 200 ns and the rise
immediately afterward is caused by secondary scattering in
the material as the neutrons travel out from the center. The
location and depth of the dip is due to inelastic direct reactions,
the high-energy tail of the prompt fission neutron spectrum,
and pre-equilibrium neutron emission. The last two items are
directly addressed by the present evaluation. A large part of the
secondary interactions are due to neutrons that have interacted
in the material and are thus less energetic than those from the
initial 14 MeV pulse. At late times, where the results from both
evaluations deviate from the data, the time-of-flight spectrum
is dominated by scattering in surrounding material such as
detector components and concrete shielding.
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D. Additional observables

The mass-averaged fragment kinetic energies obtained with
FREYA are almost independent of the incident neutron energy
En. This feature is consistent with measurements made with
235U and 238U targets over similar ranges of incident neutron
energy, 0.5�En �6 MeV [19] and 1.2�En �5.8 MeV [61],
respectively. In both cases, the average TKE changes less than
1 MeV over the entire energy range.

However, Ref. [61] also showed that, while the mass-
averaged TKE is consistent with near energy independence,
higher energy incident neutrons typically give less TKE to
masses close to symmetric fission and somewhat more TKE
for AH > 140. Such detailed information is not available for
neutrons on 239Pu. We have therefore chosen to use a constant
value of dTKE at each energy.

Neutron observables are perhaps more useful for model
validation. The near independence of TKE(AH ) on incident
energy implies that the additional energy brought into the
system by a more energetic neutron will be primarily converted
into internal excitation energy. This is illustrated in the top
panel of Fig. 21 which shows the fragment excitation E∗(Af )
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FIG. 21. (Color online) The total average excitation energy
available for neutron emission (top), the average neutron kinetic
energy (middle), and the average neutron multiplicity (bottom) as
a function of fragment mass number Af for thermal neutrons (black
circles), En = 4 (red squares), 9 (green diamonds), and 14 (blue
triangles) MeV. Here the FREYA dispersion on each Af is only shown
for En = 4 MeV to simplify the plots.

for the representative incident energies considered in Fig. 10
(thermal, 4, 9, and 14 MeV): E∗(Af ) increases linearly with
incident energy. We note that the form of TKE(AH ) (see Fig. 5)
leads to the familiar sawtooth form of E∗(Af ).

The average kinetic energy of the evaporated neutrons
is given by Ē = 2T for a single emission, where T is the
maximum temperature in the daughter nucleus, so T 2 ∝
E∗ − Sn for the first emission. Consequently, Ē should vary
relatively little with Af , as is indeed borne out by the results
for Ē(Af ) shown in the middle panel of Fig. 21. The average
outgoing neutron kinetic energy increases slowly with the
incident neutron energy, with a total increase of ≈20% through
the energy range shown. While the ratio σE/E is 1/

√
2 for

a single neutron emission, the ratio grows with En due to
multiple neutron emission and the consequent appearance of
spectral components with differing degrees of hardness.

The relatively flat behavior of E(Af ) implies that the neu-
tron multiplicity ν(Af ) will resemble the fragment excitation
energy E∗(Af ), as is seen to be the case in the bottom panel
of Fig. 21 where the characteristic sawtooth shape of ν(Af )
is apparent. The number of neutrons from the heavy fragment
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FIG. 22. (Color online) The total average excitation energy
available for neutron emission (top), the average neutron kinetic
energy (middle), and the average neutron multiplicity (bottom) as
a function of fragment mass number Af for En = 0.5 MeV. The fit
results are shown for ν only (circles) and with the spectra included
(squares). The calculated dispersion for each value of Af is also
shown.
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increases somewhat faster with En than the number from the
light fragment.

Figure 22 shows the fragment excitation energy E∗, the
kinetic energy of the emitted neutron and the neutron multi-
plicity, all as a function of Af for the two fits at En = 0.5 MeV.
The larger x of the ν only fit gives both a stronger depen-
dence of E∗ on Af and a sharper “sawtooth” shape. The
neutron kinetic energy is not strongly affected by the value
of x.

New measurements with the fission TPC [62] over a range
of incident neutron energies could provide a wealth of data that
could lead to improved modeling. In addition, calculations of
“hot” fission that includes temperature-dependent shell effects
could enhance modeling efforts by predicting trends that could
be input into FREYA and thus test the effects on the PFNS and
related quantities.

For reasons of computational simplicity, we have chosen to
use the same value of x over the entire energy range considered.
There are some limited data on thermal neutron-induced
fission of 235U [33] and spontaneous fission of 252Cf [34]
that suggest the light fragment emits more neutrons than the
heavy fragment, 40% more for 235U [33] and 20% more for
252Cf [34]. Our fit to ν only, x ∼ 1.24, is consistent with
these results. However, “hotter” fission could equilibrate the
excitation energies of the light and heavy fragments which
may result in more neutron emission from the heavy fragment,
also reducing the sharpness of the sawtooth pattern.

Figure 23 shows the neutron multiplicity distribution P (ν)
for the selected values of En. As expected, ν increases with En

and the distribution broadens. However, each neutron reduces
the excitation energy in the residue by not only its kinetic
energy (recall E = 2T ) but also by the separation energy
Sn (which is generally significantly larger). Therefore the
resulting P (ν) is narrower than a Poisson distribution with
the same average multiplicity.

The combined kinetic energy of the two resulting (postevap-
oration) product nuclei is shown as a function of the neutron
multiplicity ν in the top panel of Fig. 24. It decreases with
increasing multiplicity, as one might expect on the grounds
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FIG. 23. (Color online) The neutron multiplicity distribution
obtained for thermal neutrons (black circles), En = 4 (red squares),
9 (green diamonds), and 14 (blue triangles) MeV.
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FIG. 24. (Color online) The combined kinetic energy of the two
product nuclei (top) and their residual excitation prior to photon
emission (bottom) as functions of the neutron multiplicity ν for
thermal neutrons and En = 4, 9, and 14 MeV. The symbols are at
the mean values and the vertical bars show the dispersions of the
respective distributions for each value of the multiplicity.

that the emission of more neutrons tends to require more initial
excitation energy, thus leaving less available for fragment
kinetic energy.

The bottom panel of Fig. 24 shows the mass dependence of
the average residual excitation energy in those postevaporation
product nuclei. Because energy is available for the subsequent
photon emission, one may expect that the resulting photon
multiplicity would display a qualitatively similar behavior
and thus, in particular, be anticorrelated with the neutron
multiplicity. These results show little sensitivity to the fit
method.

V. CONCLUSION

We have included both multichance fission and pre-
equilibrium neutron emission into FREYA [6,7], a Monte Carlo
model that simulates fission on an event-by-event basis. This
has enabled us to perform an extended evaluation of the prompt
fission neutron spectrum from 239Pu(n,f ) up to En = 20 MeV.
Several physics-motivated model parameters have been fitted
to the ENDF-B/VII.0 evaluation of ν and the associated
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covariance matrix in two alternate scenarios for the level-
density parametrization.

The tests of our evaluation were inconclusive. Our evalua-
tion did not perform as well as the ENDF/B-VII.0 evaluation in
critical assembly benchmarks. However, we found improved
agreement with the LLNL pulsed sphere tests, especially just
below the 14 MeV peak in the neutron leakage spectrum.
Although these mixed results may limit the utility of our
evaluation in applications, they do give us hope that further
improvements to the evaluation will either tighten up agree-
ment with the critical assemblies or point to other deficiencies
in the ENDF-B/VII.0 239Pu evaluation.

Further investigations will require fitting to other data
less sensitive to the ν data employed in this work including
the albeit low-quality PFNS data and ν(A) data. Such data
may be obtained from new fragment mass, charge, and

TKE measurements with the fission TPC [62] or high-
quality neutron spectral data to augment or replace older
measurements.
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