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Residual interactions and the K-mixing-induced fast decay of the three-quasiparticle
isomer in 171Tm
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The anomalously fast decay of a 19/2+ three-quasiparticle isomer in 171Tm was interpreted recently as an
example of K mixing induced by a very small mixing matrix element but a (random) close proximity to a
collective state. To understand the source of the residual interaction we have generalized the projected shell
model by introducing two-body octupole and hexadecupole forces into the Hamiltonian and expanding the model
space with inclusion of specific three-quasiparticle configurations. It is found that the K mixing is built up from
small interactions transferred through numerous highly excited configurations that contain high-j orbitals. While
the chance near-degeneracy enhances the transition strength, the octupole correlation and Coriolis coupling
produce the mixing matrix element.
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I. INTRODUCTION

An interesting and important research area in nuclear
physics has been the study of high-K isomers, both for
understanding their structure and for evaluating their potential
for applications [1,2]. High-K isomers are known specially
in the mass A = 170–180 region of the nuclear chart because
of the existence of the high-j Nilsson orbitals near the Fermi
surface. A challenging problem is to understand the strength
of electromagnetic transitions connecting high-K isomers to
low-K states, when there is a large change in K , transitions
which are, in principle, forbidden [3].

These rates are usually classified in terms of the reduced
hindrance factor fv , where the forbiddenness ν = �K − λ

measures the shortfall between the change in K and the
multipolarity λ. These reduced hindrances typically fall in
the range 30 < fv < 300. Transitions with fv < 20 need to be
understood [4]. Different mechanisms have been proposed to
explain the observed K-forbidden transitions, such as Coriolis
mixing [5,6] based on the particle-rotor model, random
mixings [6,7] due to large level densities for states significantly
above the yrast line, and γ tunnelings through a barrier
separating different shapes [8–12]. Specific transitions can also
be enhanced in isolated cases by mixing of the initial or final
states due to accidental degeneracies (or near-degeneracies)
[5,13–16].

Although a unified view of the problem is difficult [17],
cases of accidental degeneracies between high-K states and
collective states provide a sensitive probe of K mixing and the
residual interactions [5]. In a recent example, a Kπ = 19/2+,
three-quasiparticle (qp) isomer was identified in 171Tm [13]
with a strong E2 decay branch to the Iπ = 15/2+ member
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of the Kπ = 7/2+ 1-qp band (π7/2+[404]), nominally a
transition with �K = 6 and ν = 4. Its reduced hindrance
factor fv is 7.6 [13], which is very low. The reason for this
fast decay was attributed [13] to the chance near-degeneracy
between the isomeric state and the Iπ = 19/2+ member of the
π7/2+[404] band. The mixing matrix element extracted using
a two-level-mixing model [5] is small (12 eV), consistent with
the systematics as a function of �K in Ref. [5].

While such a chance degeneracy with a collective state
provides a way of measuring (very small) interactions, their
magnitudes and sources remain to be explained. That is the
focus of the present study: to find out the type(s) of interaction
that induce the K mixing and the configurations involved in the
mixed wave functions. The dominant structure of the isomer
was suggested [13,18] to be the ν5/2−[512]7/2+[633] ⊗
π7/2−[523] 3-qp configuration. This isomeric state decays
to states that are band members based on the π7/2+[404]
1-qp configuration. We note that the four quasiparticles that
are involved originate from four different orbits; namely,
they are from opposite parity orbits for both neutrons and
protons. As is shown below, in order for the matrix elements
to be nonvanishing, correlations must include the type that act
between quasiparticle states of opposite parities.

To proceed in a quantitative way, we have performed
projected shell model (PSM) calculations [19]. It will be shown
that, with a few suitably chosen parameters in the model, we
are able to achieve a precise description of the energy spectrum
including the near-degeneracy of the 19/2+ 3-qp isomer and
the 19/2+ member of the π7/2+[404] band. We then build
a microscopic “two-level model” with the two states, respec-
tively, having the 3-qp ν5/2−[512]7/2+[633] ⊗ π7/2−[523]
and the 1-qp π7/2+[404] as the major components, and
mix them by a residual octupole-octupole interaction. Only
by including a large number of configurations (with a qp
excitation energy up to 4 MeV) into the mixing can we

024324-10556-2813/2012/85(2)/024324(5) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.85.024324


CHEN, LIU, SUN, WALKER, AND DRACOULIS PHYSICAL REVIEW C 85, 024324 (2012)

obtain a mixing matrix element with a value (∼8 eV) that
is comparable to the value of 12 eV extracted from experiment
[13]. Further analysis of the components in the wave functions
reveals that (relatively) strong mixing occurs with those 3-qp
configurations that involve the high-j orbitals νi13/2 and
πh11/2. This suggests that the forces, which scatter the high-j
particles in the mixing states up to high excitation energies,
are probably of the Coriolis type.

II. OUTLINE OF THE MODEL

The projected shell model is a shell-model configuration-
mixing method that builds its basis from (angular-momentum)
projected multi-quasiparticle states

P̂ I
MK |�〉, (1)

with P̂ I
MK being the angular-momentum projection operator

and |�〉 multi-qp states. The qp states are constructed from
the solution of the deformed Nilsson model [20] followed by
a BCS calculation. To describe qp excitations of odd-proton
nuclei, the qp basis states |�〉 are taken to be [19]

{a+
π |0〉, a†

πa†
νa

†
ν |0〉}, (2)

where a† is the qp creation operator. In the early treatment
of 3-qp states in odd-proton nuclei [21,22] and in the original
PSM code [23], the two quasineutrons in a 3-qp state were
restricted to those from the same major shell. Although the
choice of this configuration space is suitable for a description
of the rotational alignment of a pair of high-j neutrons [19], it is
not general enough to allow two quasineutrons from different
major shells. In the present work, the restriction has been
relaxed for the 3-qp configuration part in Eq. (2) to include
two quasineutrons selected either from the same major shell
(with a total positive parity) or from two adjacent major shells
(with a total negative parity).

The Hamiltonian is diagonalized in the projected basis (1)
and the wave functions can be written as

|�IM〉 =
∑

κ

fκ P̂
I
MK |�κ〉. (3)

In Eq. (3), κ labels the basis states. If the deformed Nilsson
states are created with axial symmetry, as for the present case,
the summation over κ may be replaced by K because each
basis state |�κ〉 has a definite K quantum number. Then Eq. (3)
implies explicitly a K-mixed wave function.

The rotational invariant Hamiltonian consists of the single-
particle term h0 and a sum of separable two-body forces,

Ĥ = ĥ0 −
4∑

λ=2

χλ

2

λ∑
μ=−λ

Q̂+
λμQ̂λμ

−GMP̂ +P̂ − GQ

2∑
μ=−2

P̂ +
μ P̂μ, (4)

in which h0 is the spherical mean field. The strengths of the
quadrupole and hexadecupole force (χ2 ≡ χQ and χ4 ≡ χH )
are determined by the self-consistent relation [24] respectively
with the deformation parameters ε2 and ε4 that define the

Nilsson states. For the present calculation for 171Tm, we use
ε2 = 0.263 and ε4 = 0.058, which are very close to those used
in Ref. [18] and also to the values given by Möller et al. [25].
These deformation parameters are appropriate to reproduce
the basic properties of this nucleus such as its rotational
features and the bandhead energies of quasiparticle excitations.
The strength of the octupole force (χ3 ≡ χO) is treated as
a free parameter, adjusted to reproduce the observed isomer
transitions (see discussions below). For the pairing terms in
the Hamiltonian, we adopt the same force strengths as for
the previous PSM calculations [19]. The monopole pairing
strength takes the form

GM =
(

20.12 ∓ 13.13
N − Z

A

)/
A(MeV),

with “−” for neutrons and “+” for protons. The quadrupole-
pairing strength GQ is assumed to be proportional to GM , with
the proportionality constant 0.20.

III. RESULTS AND DISCUSSION

The calculated level scheme is shown in Fig. 1 and com-
pared with the known experimental data [13,18]. The overall
agreement is excellent. In particular, the near-degeneracy
between the 19/2+ 3-qp isomer and the Iπ = 19/2+ member
of the π7/2+[404] band is reproduced. In the PSM, the
quadrupole force and (monopole and quadrupole) pairing
forces have been well determined and tested in many previous
calculations [19]. These guarantee a correct description of
the rotational feature of deformed nuclei including electro-
magnetic transitions within each rotational band. Here we
acknowledge the role of the two additional terms in the
Hamiltonian (4), which, with the chosen strengths, are needed
for reproducing the fine structure in the current problem.
First, we note that the hexadecupole deformation ε4 helps
to provide the correct deformed single-particle energies, and
the self-consistent relation of the corresponding two-body
force strength χH with ε4 ensures the precise positions of the
calculated bandhead energy of the side bands. The calculated

FIG. 1. Comparison of calculated 171Tm levels with available data
[13,18].
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energies of the two 19/2+ states are then 11 keV apart,
correctly reproducing the experimental measurement.

Next, we discuss the role of the octupole term in the
Hamiltonian (4). As implied earlier, a near-degeneracy con-
dition is not sufficient to induce mixing, the key factor is
the residual interaction. One needs small (eV scale) but
nonzero matrix elements to link the initial and final states
of the decay. The main configuration of the initial state is
ν5/2−[512]7/2+[633] ⊗ π7/2−[523], and that of the final
state is π7/2+[404]. In order to have an overlap between these
two configurations, correlations that act between quasiparticle
states of opposite parities are necessary. The quadrupole and
hexadecupole interactions in the original PSM [19,23] have
“basic contractions” only between orbitals of the same parity,
so that they are unable to give the desired coupling matrix
elements. That is the rationale for including a two-body
octupole force in the Hamiltonian:

Ĥoct = −χO

2

3∑
μ=−3

∑
ττ ′

Q̂+
3μ(τ )Q̂3μ(τ ′), (5)

where τ and τ ′ label isospin in the summation running over
protons and neutrons. The strength χO is assumed to be
independent of τ or τ ′ for simplicity. The one-body operator
Q3μ is defined by

Q̂3μ =
∑
αβ

c+
α Qμαβcβ, (6)

where c+ and c are spherical single-particle operators, and

Qμαα′ =
√

4π

7
〈Njm|

(
r

b

)3

Y3μ|N ′j ′m′〉. (7)

We stress that the octupole effect is introduced into the model
as a residual interaction. We have not spontaneously broken
the parity symmetry by introducing octupole deformations in
the deformed mean field, as was done in early works [26,27].
It has indeed been found that with the strength χO = 5.46 ×
10−3 MeV, we are able to reproduce the observed isomer decay
rates. The octupole strength is of the same order of magnitude
as that used in other work [28–31], suggesting that our octupole
strength, although allowed as a freely adjustable parameter in
our model, is a reasonable one. The calculated 19/2+ 3-qp
isomer decay rates to the states of the π7/2+[404] 1-qp band
are B(E2, 19

2
+

(3qp) → 15
2

+
(1qp)) = 1.14 × 10−4 W.u. and

B(M1, 19
2

+
(3qp) → 17

2
+

(1qp)) = 3.93 × 10−8 W.u., which
are comparable to the measured values 2.99 × 10−4 W.u. and
1.14 × 10−7 W.u., respectively.

To get insight from the theoretical results, it is important to
study the effective mixing matrix element between the two
near-degenerate levels, in the way introduced in Ref. [5].
In Ref. [13], the mixing matrix element V was extracted
from the experimental ratio between the inter- and intraband
B(E2) values as well as the energy separation between the
two levels. The value so-obtained of |V | is 12 eV [13].
Now we use the corresponding theoretical values obtained
from the calculation and follow the same procedure as in
Ref. [13] to evaluate |V |. By using the theoretical values of
interband B(E2, 19

2
+

(3qp) → 15
2

+
(1qp)) = 1.14 × 10−4 W.u.

and the collective transition of the π7/2+[404] 1-qp band
B(E2, 19

2
+

(1qp) → 15
2

+
(1qp)) = 223.52 W.u., we obtain the

mixing coefficient β = 7.14 × 10−4. Applying this β value
(see Ref. [5] for calculation details), we get |V | = 7.9 eV.
Though the theoretical matrix element remains smaller than
experiment, the agreement can be considered reasonable given
that very small interactions are being dealt with, that only the
residual octupole force can generate the mixing, and that the
3-qp configuration space is truncated.

To understand these results and further study details of the
K mixing, now we treat the octupole term as a perturbation
and compute directly the mixing matrix element V . Suppose
that the total Hamiltonian Ĥ in Eq. (4) can be separated into
two parts:

Ĥ = Ĥ0 + Ĥoct, (8)

where Ĥoct is the two-body octupole-octupole interaction and
Ĥ0 contains all the remaining terms. We first diagonalize Ĥ0 to
obtain energies and wave functions for the two near-degenerate
states with Iπ = 19/2+, hereafter denoted as |K = 7/2〉 and
|K = 19/2〉, respectively,

Ĥ0|K = 19/2〉 = E1|K = 19/2〉,
(9)

Ĥ0|K = 7/2〉 = E2|K = 7/2〉,
with energies E1 and E2. Here, |K = 19/2〉 and |K = 7/2〉 are
nonperturbed states (i.e., no octupole correlation) having the
main component ν5/2−[512]7/2+[633] ⊗ π7/2−[523] and
π7/2+[404], respectively. Using these two states, we can
construct a two-dimensional matrix, in which the expectation
values of H0 are diagonal, and the off-diagonal elements (the
mixing matrix element V ) are given by

V = 〈K = 19/2|Ĥoct|K = 7/2〉. (10)

From this perturbation treatment we get V = 6.45 eV, which
is close to the previous result of 7.9 eV.

Thus we have found a possible source of the (tiny)
interaction. This can be an intrinsic property of the nucleus,
largely independent of the detailed structure variations that
may produce, for example, the accidental degeneracy of
particular states. To see this, we further perform calculations
for |V | with different hexadecapole deformations ε4 (with
all other calculation conditions fixed as before). The change
of hexadecapole deformation in the deformed basis modifies
the single-particle energies, which can cause a change in the
energy separation �E of the two 19/2+ states. The results
are shown in the left plot of Fig. 2. It can be seen that the
change of |V | is very small. In the simple two-level model as
proposed in Ref. [5], |V | should be independent of �E, as the
off-diagonal elements of the Hamiltonian matrix do not have an
explicit dependence on the diagonal elements. In the right plot
of Fig. 2, we show the calculated values of |V | as the strength
of octupole correlation χO in Eq. (5) changes. It can be clearly
seen that |V | increases nearly linearly with χO . This can be
easily understood from the perturbation treatment in which the
linear dependence of the two quantities should be strict. In the
limit of vanishing octupole correlation, |V | naturally becomes
zero. This confirms our claim that the octupole correlation is
the source of the mixing.
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FIG. 2. (Left) The values of |V | as functions of the hexadecapole
deformation ε4 (bottom scale). The corresponding energy separation
of the two 19/2+ states �E (top scale) is also given. Note that the top
scale is not linear because the relation of �E with ε4 is not strictly
linear. (Right) The values of |V | for different octupole strengths.

The central point is that |K = 19/2〉 and |K = 7/2〉 in
Eqs. (9) and (10) are not pure configurations, but linear
superpositions of many projected qp configurations expressed
as [see Eq. (3)]

|K = 19/2〉 =
∑

κ

f 19/2
κ P̂ I |�κ〉,

(11)
|K = 7/2〉 =

∑
κ

f 7/2
κ P̂ I |�κ〉.

The mixing matrix element (10) is a complex composition of
octupole matrix elements between different sets of configura-
tions, explicitly expressed as

V =
∑
κ,μ

f 19/2
κ f 7/2

μ 〈�κ |P̂ I+ĤoctP̂
I |�μ〉. (12)

The significance of the configuration mixing in |K = 19/2〉
and |K = 7/2〉 lies in the fact that, among the terms
in the summation in Eq. (12), the largest contribution
to V does not come from the specific term bracketed
by |�κ〉 = ν5/2−[512]7/2+[633] ⊗ π7/2−[523] and |�μ〉 =
π7/2+[404]. The contribution of this specific set is very small,
there being many other configuration sets with much larger
contributions. Those having the largest contribution to V are

|�κ〉 = ν5/2−[512]1/2+[660] ⊗ π9/2−[514],
(13)

|�μ〉 = ν5/2+[642]7/2+[633] ⊗ π7/2+[404],

|�κ〉 = ν5/2−[512]3/2+[651] ⊗ π9/2−[514],
(14)

|�μ〉 = ν5/2+[642]7/2+[633] ⊗ π7/2+[404],

|�κ〉 = ν5/2−[512]5/2+[642] ⊗ π9/2−[514],
(15)

|�μ〉 = ν5/2+[642]7/2+[633] ⊗ π7/2+[404].

FIG. 3. (Color online) Contributions of excited qp configurations
to the mixing matrix element V . Eκ and Eμ are, respectively, qp
energies of bra and ket configurations in Eq. (12).

It has numerically been seen that the contribution from the
above three sets exhausts nearly 75% of the total V .

Figure 3 illustrates contributions to V as a function of
excitation energy of the bra and ket states in Eq. (12). The
three curves represent different qp energies truncated for the
ket states labeled by μ. In our calculation, the 3-qp ket state in-
volved in Eqs. (13)–(15) has an excitation energy of 2.93 MeV.
From Fig. 3, it can be clearly seen that without this special
configuration, contributions to V are always negligible (curve
with black squares). The three bra states labeled by κ in
Eqs. (13)–(15) have excitation energies of 3.35, 3.22, and
2.86 MeV, respectively. It is noticed that these three con-
figurations differ only in K components of the neutron i13/2

orbit, with the K = 5/2 one being the closest to the Fermi
level. With inclusion of contributions of more bra states, we
find a jump in V after Eκ = 3.22 MeV and another one after
3.35 MeV (see curves with red dots or blue triangles). This is
clearly attributed to the inclusion of the important bra states
that contain the i13/2 neutrons. Especially, the large jump after
3.35 MeV corresponds to the participation of the state with the
smallest K component, K = 1/2.

The 3-qp bra configurations |�κ〉 in Eqs. (13)–(15) are
mixed with the |K = 19/2〉 3-qp isomer ν5/2−[512]7/

2+[633] ⊗ π7/2−[523]. The mixing is associated with cou-
plings among the Nilsson states from the neutron i13/2 or
proton h11/2 orbits. The correlations can be thought of as
being of the Coriolis type, which mix Nilsson states within
the same high-j set of orbitals. On the other hand, the 3-qp
ket configurations |�μ〉 in Eqs. (13)–(15) act as an “s-band”
configuration of the π7/2+[404] band. The mixing of the
|K = 7/2〉 state with |�μ〉 is due to the rotational alignment
of a pair of quasineutrons ν5/2+[642] and ν7/2+[633],
which come from the i13/2 neutron orbit. Therefore, we may
conclude that the K-mixing pattern results from propagation
of the interaction through many high-lying states. [With the
qp truncation energy of 4 MeV in our calculation, there
are approximately 95 bra states and 120 ket states in the
summation of Eq. (12).] The octupole-mixing matrix element
between the two near-degenerate Iπ = 19/2+ states have
large contributions from the highly excited 3-qp states which
connect the two lower-lying Iπ = 19/2+ states through the
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Coriolis coupling. Thus both octupole correlations and the
indirect Coriolis coupling produce the residual interaction that
eventually induces the anomalously fast decay of the 171Tm
isomer.

IV. SUMMARY

In summary, the small residual interaction that results,
because of a near-degeneracy, in low reduced hindrances in
the decay of the Kπ = 19/2+ 3-qp isomer in 171Tm has been
studied by using the projected shell model. The octupole corre-
lation plays an important role in the mixing matrix element V ,
which is estimated at about 8 eV, compared to the experimental
value of 12 eV. The largest theoretical contributions come
indirectly from high-lying 3-qp configurations that are affected
by Coriolis interactions. This theoretical development may
be a step toward a quantitative understanding of interactions
between states of different K , which although very small, will

be important for the limits to, and the consequences of, mixing
effects in nuclei [5].
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