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Mean-field calculations of the ground states of exotic nuclei
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We study the predictions of three mean-field theoretical approaches in the description of the ground state
properties of some spherical nuclei far from the stability line. We compare binding energies, single particle
spectra, density distributions, charge and neutron radii obtained with nonrelativistic Hartree-Fock calculations
carried out with both zero and finite-range interactions, and with a relativistic Hartree approach which uses
a finite-range interaction. The agreement between the results obtained with the three different approaches
indicates that these results are more related to the basic hypotheses of the mean-field approach rather than to its
implementation in actual calculations.
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I. INTRODUCTION

The study of the properties of nuclei far from the stability
valley is one of the major topics of interest of modern nuclear
physics. Wide experimental programs of investigation are
planned at nuclear facilities now under construction [1–5] and
we expect that, in the next few years, a large amount of data
regarding these nuclei will be available. From the theoretical
point of view, the main question is whether the theories and
the models which have been developed, and tested, to describe
stable nuclei will be able to perform well also in the description
of these exotic nuclei.

We classify the nuclear theories as ab initio and effective
ones. In the first case, nucleon-nucleon interactions built to
describe observed quantities of two-body, and eventually also
of three-body, nuclear systems are employed. These theories
solve the many-body Schrödinger equation exactly or by
making a few and well controlled approximations. In these
last years, thanks to the advances of the computing facilities,
these theories have been applied to the description of finite
nuclear systems [6–13]. Their success in the description of
light nuclei reinforces the validity of the basic hypotheses of
the nonrelativistic description of the nuclear systems. Despite
the great progress in the field, the use of these theories for the
description of medium and heavy nuclei is still limited because
of the complexity of the calculations.

Effective theories are less ambitious. Their approach to
the many-body problem is based on the mean-field (MF)
assumptions. Effects beyond MF are taken into account in an
effective manner by the nucleon-nucleon interaction, whose

parameters are chosen to reproduce the values of some basic
observables of a wide set of nuclei. Effective theories are
used to describe, and predict, nuclear properties different from
those chosen to determine the force, as well as the properties
of nuclei not included in the fit procedure. The calculations
of observables within effective theories are much simpler,
and numerically less involved, than those of the microscopic
theories. For these reasons effective theories are widely used
in the description of medium and heavy nuclei.

Effective nuclear theories can be classified in two groups:
phenomenological and microscopic ones. We call phenomeno-
logical those theories, and models, where the MF is globally
parametrized with a simple potential ansatz, for example, a
harmonic oscillator or a Woods-Saxon well. The parameters
of these wells are determined to reproduce the experimental
values of some ground state properties and, therefore, they
change for each nucleus considered. These approaches are
extremely useful and powerful if one considers each nucleus
individually, as, for example, in the case of the Landau-Migdal
theory of finite Fermi systems [14–16]. Unfortunately, the
requirement of the experimental knowledge of some ground-
state properties of the nuclei under investigation, strongly
hinders the use of these phenomenological theories to explore
experimentally unknown regions of the nuclear chart.

For this purpose, the microscopic MF theories [17–19]
are more promising. In these theories, the only input is the
effective nucleon-nucleon interaction, and the MF potential
is constructed by using minimization procedures which lead
to the Hartree, or to the Hartree-Fock equations when the
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Pauli principle is explicitly considered. In these approaches the
parameters of the effective interaction are chosen by making a
global fit of some properties of a large set of nuclei. Since the
effective interaction is unique for all the nuclei, microscopic
MF approaches are suitable to make predictions for nuclei not
yet experimentally identified.

Nonrelativistic Hartree-Fock (HF) calculations have a long
history and tradition in nuclear physics. One of the approaches
of major success uses the zero-range Skyrme interaction
[20,21]. Since the original formulation of Skyrme, and the
seminal paper of Vautherin and Brink [22], many differ-
ent parametrizations of the interaction have been proposed.
Always in a HF framework, a finite-range interaction was
proposed by Gogny and collaborators in the beginning of the
1980s [23]. In this case HF calculations are more involved and,
consequently, also the procedure to select the values of the
parameters. For these reasons the number of parametrizations
of this interaction available in the literature is much smaller
than that of the Skyrme interaction.

The most recent microscopic MF approach appearing in the
literature describes the nucleonic motions by using the Dirac,
rather than the Schrödinger, equation [24]. In this relativistic
approach the nucleon-nucleon interaction is written in terms
of an effective Lagrangian which describes the exchange of
some mesons whose values of masses and coupling constants
are determined to fit some global properties of stable nuclei.
Usually, in this approach only the direct interaction matrix
elements are considered, and this leads to a set of Dirac-Hartree
equations.

A short description of the three different approaches,
the details of the interactions used in the calculations, the
presentation of the observables we have investigated and of
the nuclei we have considered are given in Sec. II. Our results
are presented and discussed in Sec. III. Here we first discuss in
Sec. III A the results of the infinite asymmetric nuclear matter
system. After that, we show how the three approaches behave
when they are applied to describe nuclei out of the stability
valley, in an experimentally unexplored region of the nuclear
chart. We wanted to identify those features of the results
depending on the MF basic assumptions and disentangle them
from those related to the specific implementation of the MF
model. Specifically, we have investigated the properties of
a set of 16 nuclei, selected for their specific characteristics.
These nuclei can be grouped in four isotopic chains, oxygen,
calcium, nickel, and tin; therefore our study covers a relatively
wide range of masses in the nuclear isotope chart. Since in our
calculations we assume spherical symmetry, we have selected
the spherical nuclei of each isotope chain, these are the nuclei
where the single particle (s.p.) levels are fully occupied. In
Sec. III B, we show the results concerning binding and s.p.
energies of the nuclei we have considered. The most severe
test on the predictions of the three different MF models
is done in Sec. III C, where we discuss quantities directly
connected to the wave functions, i.e., density distributions
and response functions. Finally, in Sec. III D, we present
some results regarding nuclear radii and neutron skins. After
having summarized the main results, we present in Sec. IV our
conclusions.

II. THE MODELS

The details of the MF approaches we have adopted in
our investigations are presented in various publications, for
example in Refs. [22,23,25,26], therefore we do not repeat
here the derivation of the various expressions used in our
HF and Dirac-Hartree calculations. In this section we give
information about the inputs of our calculations, essentially
about the effective interactions we have used.

We start with the older, and more exploited, approach: the
HF calculations done with the Skyrme interaction. This inter-
action contains a central, a spin-orbit and a density-dependent
term and some velocity-dependent nonlocal components. All
of them have zero range, though the last ones can be viewed as
an approximation of finite range. Several parametrization have
been introduced in the past decades, many of them presented
and discussed in the review of Ref. [27].

In our work we have employed the SLy5 parametrization
which was introduced by the Saclay-Lyon collaboration in
the 1990s [28–30]. As for the SLy4 interaction, the SLy5
parametrization has been adjusted to reproduce binding en-
ergies and root mean square (rms) radii of several nuclei,
and, in addition, some symmetric nuclear matter and neutron
matter properties. With respect to the SLy4 force, in the fitting
procedure of the SLy5 parameters the terms of the Hamiltonian
density depending on the square of the spin-orbit density J

(the so-called J 2 terms) have not been neglected. The strength
of these new terms is determined by the parameters of the
velocity-dependent terms. Henceforth, we shall indicate as
SLy5 the results obtained with this HF approach.

Also the second MF approach we have adopted is based
on nonrelativistic HF calculations, but now finite-range inter-
actions are used. The motivations for using interactions with
finite range in HF calculations are well discussed in the original
paper of Dechargè and Gogny [23], where a new type of
effective interaction has been proposed. This interaction, called
Gogny force, has finite range in the traditional four central
channels and two zero-range terms which are the spin-orbit
and the density dependent term.

The original parametrization of the interaction given in
Ref. [23], and called D1, was improved with a new one,
called D1S [31], which was built to reproduce a larger set
of data. This parametrization is the most widely used, but it
has the annoying feature to produce a neutron matter equation
of state whose energy per nucleon becomes negative at large
values of the neutron density. This indicates a problem in the
isospin dependent terms of the force. To fix this problem a large
fitting project has been developed to reproduce more than two
thousand nuclear masses, hundreds of rms charge radii, and
also energy gaps [32,33]. This procedure has produced a new
set of parameter values, the D1M force [34] which we have
used in our calculations. In the following, we shall indicate as
D1M the results obtained with the finite-range HF approach.

The third approach we have used is based on the relativistic
mean-field theory, the traditional relativistic field theory
where nucleons are treated as Dirac particles moving in
several classical meson fields. These fields describe in an
average way the interaction produced by the exchange of the
corresponding mesons. The theory considers a defined number
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TABLE I. Nuclei investigated in this work and last occupied
proton and neutron s.p. levels, the Fermi levels, for each of them.

Nucleus Fermi level

proton neutron

16O 1p1/2 1p1/2
22O 1p1/2 1d5/2
24O 1p1/2 2s1/2
28O 1p1/2 1d3/2
40Ca 1d3/2 1d3/2
48Ca 1d3/2 1f7/2
52Ca 1d3/2 2p3/2
60Ca 1d3/2 2p1/2
48Ni 1f7/2 1d3/2
56Ni 1f7/2 1f7/2
68Ni 1f7/2 2p1/2
78Ni 1f7/2 1g9/2
100Sn 1g9/2 1g9/2
114Sn 1g9/2 1g7/2
116Sn 1g9/2 3s1/2
132Sn 1g9/2 1h11/2

of mesons whose corresponding parameters, the meson masses
and the meson-nucleon coupling constants, are chosen to
reproduce empirical data. Conventional relativistic mean-field
calculations usually include nonlinear self-interaction meson
couplings, for the scalar and vector mesons, but, more recently,
a new class of relativistic functionals containing density
dependent meson-nucleon vertex functions has been intro-
duced. In principle, the functional form of the meson-nucleon
vertexes can be deduced from Dirac-Brueckner calculations
with realistic free-space nucleon-nucleon interactions [26]
but, to have a better agreement with experimental data,
in this work we used a phenomenological parametrization
of the meson-nucleon coupling called DDME2 [35]. This
parametrization has a density dependence for the σ , ω, and
ρ meson-nucleon couplings adjusted to reproduce properties
of symmetric nuclear matter, neutron matter, and a limited
set of spherical nuclei. More details on the Dirac-Hartree
approach can be found in Ref. [35]. In the following, we
shall indicate as DDME2 the results obtained with this
approach.

We conclude this section by presenting the set of isotopes
we have chosen to investigate. We list these nuclei in Table I
and, for each of them, we indicate the last occupied level, the
Fermi level. As already mentioned in the Introduction, we have
chosen four isotopic chains, and within each chain we have
selected those nuclei where the number of nucleons completely
fills the s.p. levels. The deformed Hartree-Fock-Bogoliubov
calculations of Refs. [36,37] confirm the spherical shape of
these nuclei, therefore our approaches based on spherical
symmetry are adequate to describe them. In these nuclei
also the pairing effects are minimized. None of the nuclei
considered shows pairing effects in the proton sector. The
situation for neutrons is more complicated, since in some of the
isotopes considered the pairing is different from zero. We have
investigated the relevance of these pairing effects by carrying
on Bardeen-Cooper-Schriefer, Hartree-Fock Bogoliubov, and

relativistic Hartree-Bogoliubov calculations with the three
interactions presented above. We found that the effects of the
neutron pairing on binding energies, rms charge and matter
radii are at most of a few parts in a thousand. These results
induced us to neglect the pairing in our study.

All the nuclei we have investigated resulted to be bound,
except 48Ni in DDME2 calculations, where the energy of the
proton 1f7/2 level is positive. From the experimental point of
view, it seems rather well established that the neutron drip line
for the oxygen isotopes starts with 26O [38] and, therefore, 28O
should not be bound.

III. RESULTS

A. Infinite matter

The first step of our investigation consists in comparing the
predictions of the three MF models for the equation of state
(EOS) of infinite nuclear matter. In this study we are interested
in comparing the different results at the saturation densities,
and how they evolve with increasing densities.

The systems we are studying have translational invariance
and constant nucleonic density defined as the sum ρ = ρp + ρn

of the proton, ρp, and neutron, ρn densities, both of them also
constant. The energy per nucleon e = E/A for asymmetric
matter is usually written as a function of even powers of the
asymmetry parameter δ = (ρn − ρp)/ρ,

e(ρ, δ) = e(ρ, 0) + esym(ρ) δ2 + O(δ4) . (1)

Around the stability minimum of symmetric nuclear matter, at
density ρ0, the two coefficients of this equation are expanded in
powers of the parameter ε = (ρ − ρ0)/(3 ρ0). For symmetric
nuclear matter we have

e(ρ, 0) = aV + 1
2KV ε2 + · · · , (2)

where the term of first order in ε, related to the first derivative,
is zero because e(ρ, 0) has a minimum in ρ0. In the quadratic
term, related to the second derivative, the coefficient defined
as

KV = 9ρ2
0

∂2e(ρ, 0)

∂ρ2

∣
∣
∣
∣
ρ=ρ0

(3)

is called volume compression modulus. The second coefficient
in Eq. (1), i.e., the symmetry energy, is expanded as

esym(ρ) = asym + L ε + · · · . (4)

The coefficient

L = 3ρ0
∂esym(ρ)

∂ρ

∣
∣
∣
∣
ρ=ρ0

(5)

has recently attracted great attention since it is closely related
to some neutron stars properties and to the size of the nuclear
neutron skin [39].

We show in Table II the values of some nuclear matter
quantities calculated at the saturation density ρ0, and we
compare them with the empirical values and with those
obtained in auxiliary field diffusion Monte Carlo (AFDMC)
[40] and correlated basis function (CBF) [41] calculations by
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TABLE II. Infinite nuclear matter properties for various calcu-
lations. The saturation density ρ0 is expressed in fm−3. All the
other quantities in MeV. The auxiliary field diffusion Monte Carlo
(AFDMC) results are from Ref. [40], and those of the correlated basis
function (CBF) theory from Ref. [41].

exp AFDMC CBF D1M SLy5 DDME2

ρ0 0.16 ± 0.01 0.16 0.16 0.16 0.16 0.15
e(ρ0, 0) −16.0 ± 0.1 −16.00 −16.00 −16.01 −15.98 −16.13
KV 220 ± 30 276 269 217 228 278
esym(ρ0) 30–35 31.3 33.94 29.45 32.66 33.20
L 88 ± 25 60.10 58.08 25.41 48.38 54.74

using microscopic nucleon-nucleon interactions of Argonne-
Urbana type.

We observe that all the values of the saturation densities
and of the energies per nucleon agree within 2 and 0.4%,
respectively. The values of KV are very similar in the two
HF calculations (D1M and SLy5), being also close to the
commonly accepted empirical value. The value obtained with
DDME2 is slightly larger, but in agreement with the result of
the microscopic calculations. Also the MF esym(ρ0) are rather
similar, within 6%, while we observe large differences in the
L values.

In Fig. 1 we show the EOS of pure neutron matter
(upper panel), of symmetric nuclear matter (medium panel),
and the symmetry energy esym (lower panel). The three MF
calculations produce very different results at large densities.
The EOS generated by the SLy5 calculations has a behavior
very similar to that of the microscopic ones. The DDME2
calculations produce stiffer EOS in both symmetric nuclear
matter and pure neutron matter. The situation for the D1M
results is more complicated. In symmetric nuclear matter there
is a good agreement with the microscopic EOS, while in pure
neutron matter the D1M EOS is the lowest one. The almost flat
behavior of the D1M symmetry energy at saturation density
produces the low value of L given in Table II.

In the following section, we investigate if the differences
we have pointed out in the nuclear matter results have
consequences on finite nuclei observables.

B. Binding and single particle energies

In the application of the three MF models to the description
of finite nuclear systems we first investigate binding and
s.p. energies. Binding energies are some of the observables
used to chose the values of the interaction parameters in
the three models. For this reason, we do not expect large
differences between the results obtained for this observable,
even though the binding energies of neutron rich nuclei are
genuine predictions. The situation is different for the s.p.
energies which are not used to determine the force parameters.

In Fig. 2 we compare the binding energies per nucleon given
by the various models with the experimental data of Ref. [42].
As expected, the three calculations describe reasonably well
these data. We observe that the SLy5 results are systematically
higher than those obtained with the other interactions. The
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FIG. 1. (Color online) Equation of state for pure neutron mat-
ter (a) and symmetric nuclear matter (b), and symmetry energy
(c) calculated with different theories. The solid circles represent the
correlated basis function results of Ref. [41]. The full black lines show
the auxiliary field diffusion Monte Carlo results of Ref. [40]. The other
lines show the results of the D1M (dashed red lines), SLy5 (dotted
blue lines), and DDME2 (dashed-dotted green lines) calculations.
The dotted vertical lines indicate the value of the empirical saturation
density ρ0 = 0.16 fm−3.

D1M results are the most bound, and the DDME2 results are
between the two. In any case, the largest relative difference
with respect to the experimental data is 0.6%. It is worth
pointing out that the three models produce similar binding
energies for 28O and 60Ca, that are bound in all our calculations
and for which this quantity has not been measured.

In Fig. 3 we show the values of the s.p. energies of the proton
levels around the Fermi surface. Specifically, the energies, εh,
of the last occupied hole level of each nucleus indicated in
Table I are plotted. In our model, these energies correspond to
the proton separation energies Sp [43], and, in the figure, we
compare them with the experimental values [42]. The results
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FIG. 2. (Color online) Binding energies per nucleon calculated
with the three different MF models and compared with the experi-
mental values [42]. The lines are drawn to guide the eyes.

of all the calculations show the same trend in each isotope
chain, the protons become more bound as the neutron number
increases. The scale of the figure does not show well the
previously remarked fact that the energy of the proton 1f7/2

level in 48Ni is slightly positive in the DDME2 calculation. The
detailed comparison between the various calculations indicates
that the SLy5 results are less bound than the other ones. This
effect is more evident in the oxygen isotopes, and disappears
in heavier nuclei.

In Fig. 3 we also show the s.p. energies of the proton particle
levels, εp, just above the Fermi surface. They are 1d5/2, 1f7/2,
2p3/2, and 1g7/2 for oxygen, calcium, nickel, and tin isotopes,
respectively. Also in this case we observe a similar trend in the
results of all the calculations. In each isotope chain, the values
of εp decrease with increasing neutron number. The results
obtained with the SLy5 interaction are more bound than those
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FIG. 3. (Color online) Energies of the s.p. proton levels just below
and above the Fermi surface, εh and εp , respectively. The experimental
separation energies [42] are also shown.
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FIG. 4. (Color online) In (a) we show the proton energy gap,
εp − εh. In (b) the energy differences, εh − ε1s1/2 , between the s.p.
energy of the least bound proton level and that of the 1s1/2 level,
calculated with the three different MF models.

obtained with the other calculations. Also in this case, the effect
is more evident in the oxygen isotopes than in heavier nuclei.

The results shown in Fig. 4 emphasize the differences be-
tween the three MF calculations. In panel (a), we show the en-
ergy gap εp − εh. In general, SLy5 produces the smallest gaps
and DDME2 the largest ones, with few exceptions. The differ-
ences between the three calculations become smaller as nuclei
become heavier and all of them show a minimum for 48Ni.

In panel (b) of Fig. 4 we show the differences between the
s.p. energy of the least, εh, and most, ε1s1/2 , bound proton hole
levels. As expected, this quantity increases with the number of
protons since more s.p. levels must to be arranged in the bound
system. It is interesting the fact that, within the same isotope
chain, the increase of the neutron number reduces the value of
this energy difference and, consequently, increases the density
of proton states. The general behavior of the three calculations
is the same, but the DDME2 results are consistently larger than
those obtained in the nonrelativistic calculations.

C. Proton, neutron, and matter distributions and
electron scattering

We have seen in the previous sections that the three models
produce remarkably different results only in infinite systems
at densities much larger than those of the saturation point.
The results of the binding and s.p. energies for the isotopes we
have investigated are very similar. We want now to investigate
the differences between the wave functions generated by the
three models. We have conducted this study by calculating
matter distributions, radii, and electron scattering cross sec-
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FIG. 5. (Color online) Proton distributions for the various calcium
isotopes we have considered. Full, dotted, and dashed lines indicate,
respectively, the D1M, Sly5, and DDME2 results.

tions. These observables are more sensitive to the details of
the wave functions than the energies.

The results we have obtained for proton, neutron, and matter
distributions show the same general features in all isotope
chains. As an example of these results, we present here the
distributions of the calcium isotopes, where the effects we
want to discuss are more extreme with respect to those found
in the other nuclei.

We show in Fig. 5 the proton distributions, ρp, of the four
calcium isotopes we have considered. There is an excellent
agreement between the results of the three calculations at the
nuclear surface.

In the center of the nucleus, the three calculations produce
similar results for 40Ca and 48Ca, but the D1M densities are
larger than the other ones in 52Ca and 60Ca nuclei. This
behavior is a peculiarity of the D1M parametrization of the
Gogny interaction. The results obtained with the D1S force,
for example, do not show this feature [44]. The differences with
respect to the D1M results shown in Ref. [44] are due to an
improvement of the numerical accuracy of the HF calculations.

To investigate this behavior we have analyzed the s wave
functions, which, in MF models are the only s.p. wave
functions contributing to the density at the nuclear center. In
calcium isotopes, the differences in the density distributions
are mainly due to the 2s1/2 s.p. wave functions which we show
in Fig. 6. Remarkable differences are obtained between D1M
waves and those obtained with the other MF approaches for
52Ca and 60Ca, at r ∼ 0 fm. On the other hand, it is interesting
to observe the similarity of these wave functions in the surface
region. For the DDME2 calculations, we present in the figure
also the lower components of the wave functions.
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FIG. 6. (Color online) Wave functions of the proton 2s1/2 levels
for the calcium isotopes. Full and dotted lines represent the D1M and
SLy5 results, respectively. For the relativistic DDME2 calculation we
show both the upper (u) and lower (l) components with dashed and
dashed-dotted lines.

A possibility of studying details of the s.p. wave functions
is offered by (e, e ′p) experiments. A long series of high-
precision measurements on a wide range of nuclei [45–52]
singled out exclusive (e, e ′p) knockout reactions, where the
emitted proton is measured in coincidence with the scattered
electron, as the primary tool to explore the s.p. aspects of the
nuclear structure. The theoretical description of the (e, e ′p)
reaction has been developed within the framework of the
nonrelativistic distorted-wave impulse approximation (DWIA)
[47,50,52–54] and relativistic distorted-wave impulse approx-
imation (RDWIA) [55–64], including the distortion produced
by the final-state interaction between the outgoing proton and
the residual nucleus, which is described in the calculations
with nonrelativistic or relativistic phenomenological optical
potentials, as well as the distortion of the electron wave
functions due to the presence of the nuclear Coulomb field.
Both DWIA and RDWIA approaches were able to describe to
a high degree of accuracy (e, e ′p) data on several nuclei in a
wide range of different kinematics.

We have calculated (e, e ′p) cross sections, for the emission
of a proton from the 2s1/2 s.p. level of the calcium isotopes
we have considered, under the so-called parallel kinematics
of the NIKHEF experiments [65]. In the parallel kinematics
the momentum of the emitted proton is kept fixed and taken
parallel, or antiparallel, to the direction of the momentum
transfer q. Different values of the missing momentum pm,
which is the recoil momentum of the residual nucleus, are
obtained by varying the electron scattering angle and, as
a consequence, q. Calculations have been carried out in
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FIG. 7. (Color online) Reduced cross sections for the (e, e ′p)
process for various calcium isotopes, in parallel kinematics. The
proton is emitted from the 2s1/2 state. The value of the energy of the
incident electron is 483.2 MeV, the electron scattering angle 61.52◦,
the momentum transfer 450 MeV/c and the energy of the emitted
proton 100 MeV. The experimental data (solid circles) of the 40Ca
and 48Ca isotopes have been taken from Ref. [65]. The meaning of
the lines is the same as in Fig. 5.

DWIA and RDWIA, using the s.p. bound-state wave functions
obtained in the three MF approaches considered. Details of the
calculations are described in Ref. [66]. We notice that RDWIA
calculations require four-vector relativistic wave functions for
both the initial bound and the final scattering state, as well as a
relativistic nuclear current operator. The results of the DWIA
and RDWIA calculations are compared in Fig. 7, where the
reduced cross sections for the calcium isotopes are drawn as a
function of the missing momentum. The reduced cross section
is the cross section divided by a suitable kinematic factor [52]
and by the elementary electron-proton cross section [67]. In
order to reproduce the magnitude of the experimental data,
a reduction factor is usually applied to the calculated cross
sections. For the results shown in Fig. 7 the reduction factors
are 0.57 for 40Ca and 0.58 for 48Ca. No reduction factors have
been applied for the other isotopes, where experimental data
are not available.

The differences between the various wave functions do not
produce relevant changes of the (e, e ′p) cross sections in the
kinematics considered in Fig. 7. We also remark the excellent
agreement between the results of all our calculations and the
shape of the experimental reduced cross sections on 40Ca and
48Ca target nuclei. Similar results are also obtained in [66],
where DWIA and RDWIA calculations are performed with
different s.p. bound-state wave functions.
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FIG. 8. (Color online) Elastic electron scattering cross sections
calculated by using the charge distributions obtained with the three
MF approaches we have considered. The experimental data (solid
circles) are from Refs. [70–72], for 40Ca, and Ref. [73], for 48Ca. All
the data have been rescaled to match an unique electron energy of
400 MeV. The meaning of the lines is the same as in Fig. 5.

Experimental information about proton distributions is
obtained by the elastic electron scattering off nuclei. In this
case, the tool is more sensitive to the global charge distribution
of the nucleus than to that of specific s.p. wave functions. We
have calculated elastic electron scattering cross sections in
the distorted-wave Born approximation [68,69] by using the
proton density distributions of Fig. 5. The charge densities
have been obtained by folding the proton densities with an
electromagnetic nucleon form factor of dipole form. We have
verified that there are not significant differences if other, and
more sophisticated, nucleon form factors are used.

In Fig. 8 we show the elastic electron scattering cross
sections, calculated for an electron energy of 400 MeV, as a
function of the scattering angle. We compare our calculations
with the experimental data of Refs. [70–72] for the 40Ca
nucleus and of Refs. [73,74] for the 48Ca nucleus. It is
interesting to notice that, for the calcium isotopes considered,
the cross sections calculated with the different models start
to differ at about 60◦, which, in the actual kinematics,
corresponds to a momentum transfer value of 400 MeV/c.

These results indicate that transferred momenta larger than
400 MeV/c are necessary to produce phenomena able to
disentangle the differences between the s.p. wave functions.
The (e, e ′p) cross sections in the NIKHEF kinematics [65] just
reach this value and are not sensitive to the differences in the
2s1/2 wave functions.

We have addressed great attention to the proton distributions
because of their connection with observables quantities, and
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FIG. 9. (Color online) Neutron distributions for the various
calcium isotopes we have considered. The meaning of the lines is
the same as in Fig. 5.

also because they contain information on the effective proton-
neutron interaction. Without this part of the interaction all the
proton densities of an isotope chain should be the same. We
discuss now the neutron distributions of the nuclei we have
chosen to study.

In Fig. 9 we show these distributions, ρn, for the calcium
isotopes we have studied. Obviously, the densities become
more extended with increasing neutron number. Also in this
case, we observe that, for each nucleus, the densities obtained
with the different calculations have very similar surface
behaviors. As in the proton case, the differences between the
various results are remarkable in the center of the nuclei. The
major fluctuations of the densities are shown by the D1M
results and mainly in the two isotopes, 52Ca and 60Ca, where
also the proton distributions have shown large differences with
respect to the results of the other calculations. While in the
proton case the distributions presented a peak in the nuclear
center, in the neutron case we observe a hole.

We show in Fig. 10 the matter distributions, ρm, for the
four calcium isotopes obtained as a sum of proton and neutron
distributions. In this case, the agreement between the results
of all the calculations is much better than that obtained by
considering separately proton and neutron distributions. This
similarity is due to the fact that all the interactions used in the
three calculations depend on the total matter density, and not
separately on the proton or neutron densities.

The general features of the proton and neutron distributions
we have presented for the calcium isotopes are similar to
those obtained in the other isotope chains. There is excellent
agreement at the surface while differences are obtained in the
nuclear interior. These differences are larger for the separated
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FIG. 10. (Color online) Matter distributions for the various
calcium isotopes we have considered. The meaning of the lines is
the same as in Fig. 5.

proton and neutron densities than in the case of the total matter
density.

D. Nuclear radii and neutron skin

The matter distribution results discussed in the previous
sections show differences between the various calculations in
the nuclear interior, while there is an excellent agreement at
the surface. As a consequence, the values of the rms radii
calculated with the three approaches are very similar as we
show in Fig. 11. In panel (a) the rms charge radii, Rch, are
compared with the available experimental values [75]. In panel
(b) the rms neutron radii, Rn, are shown.

The agreement between the results of the various calcula-
tions is remarkable. The maximum relative differences appear
between DDME2 and SLy5 calculations in 24O for Rch (2.8%)
and 16O for Rn (3.0%). The maximum absolute difference is
0.1 fm (in 132Sn for Rn). We observe a general trend of the
SLy5 calculations to produce radii slightly larger than those
obtained by the other calculations, these are, however, small
differences as we have already pointed out.

The behavior of the rms neutron radii is rather obvious. The
increasing number of neutrons increases the radius values. It is
interesting to notice that these values are almost the same for
40Ca and 48Ni which have same number of neutrons. The D1M
rms neutron radii are slightly smaller than the other ones. This
tendency is more evident for the Sn isotopes.

The charge radii agree very well with the available exper-
imental values [75]. We have compared our results with the
values obtained by using the semiempirical expression given
by Eq. (4) of Ref. [76], and also found excellent agreement. In

024322-8



MEAN-FIELD CALCULATIONS OF THE GROUND STATES . . . PHYSICAL REVIEW C 85, 024322 (2012)

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

16 24 40 52 48 68 100 116

22 28 48 60 56 78 114 132

R
ch

(f
m

)
R

n
(f

m
)

A

DDME2

D1M

SLy5

exp

SnNiCaO

(a)

(b)

FIG. 11. (Color online) In (a–d) we show the rms charge radii
compared with the empirical values of Ref. [75]. In (e–f) we show
the rms neutron radii.

this case, the largest difference is of about 1.9% with the SLy5
results in the 16O nucleus.

The behavior of the charge radii is not as obvious as that of
the neutron radii, since here the number of particles, protons,
remains the same in each isotope chain. In all the isotope
chains we have investigated, we observe a small increase with
increasing neutron number. This effect is due to the proton-
neutron interaction which rearranges the proton distributions
to optimize the global matter distribution with respect to the
energy minimum.

In Fig. 12 we show the neutron skins, defined as difference
between rms neutron and proton radii Rn − Rp [76,77], as
a function of the relative neutron excess, (N − Z)/A. The
various symbols identify the different isotope chains.

We found negative values for the neutron skins of the four
self-conjugate nuclei, i.e., those with N = Z, and for the 48Ni
nucleus, where the number of neutrons is smaller than that
of the protons. The effect in the self-conjugate nuclei is a
clear evidence of the Coulomb repulsion, as it is shown by the
increase of the phenomenon with increasing proton number,
from −0.02 fm in 16O to −0.08 fm in 100Sn. For these self-
conjugate nuclei, the three MF calculations produce neutron
skin values which differ for less than 0.01 fm.

In each isotope chain, the value of the neutron skins
increases with increasing neutron number, as expected. The
results of the three MF calculations slightly differ with
increasing neutron number. The three types of calculations
show an almost linear correlation between neutron skins and
the relative neutron excess. The full lines show the linear fits
to the results of our calculations. The three models produce
different values on the slopes of the line, specifically 1.31 fm
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FIG. 12. (Color online) Neutron skins calculated with the three
different approaches as a function of the relative neutron excess.
The full lines show a linear fit to the data and the dashed lines the
predictions of the model proposed in Ref. [77].

for D1M, 1.46 fm for SLy5 and 1.63 fm for DDME2. Since
for N = Z the three models give essentially the same values,
this indicates that, for nuclei with neutron excess, the neutron
skins obtained with the DDME2 interaction are larger than
those obtained with Sly5, and these last ones are larger
than those obtained with D1M. The nuclear matter properties
given in Table II show a direct link between these results
and esym and L, as pointed out in the literature (see, e.g.,
Refs. [17,39,78,79]).

In Fig. 12, the dashed lines show the predictions of the
model proposed in Ref. [77] where the neutron skins are
described as

Rn − Rp = 1.28
N − Z

A
. (6)

The model has a reasonable agreement with our linear fits,
especially with that of the D1M results.
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Another interesting fact emerging from the results of
Fig. 12, is that, for similar values of the relative neutron excess,
lighter nuclei have larger neutron skins than heavier nuclei.
This is evident in the case of self-conjugate nuclei, where
the sequence O, Ca, Ni, Sn is exactly reproduced by all the
calculations. The behavior of the neutron skins is an interesting
topic which deserves further investigation.

IV. CONCLUSIONS

In this work, we have compared the results of three different
implementations of the nuclear MF model in a region of
the nuclear chart which has not been yet experimentally
explored. We have investigated whether the three different MF
approaches provide different results, as it happens in infinite
nuclear matter at high density values. We have studied the
ground state properties of 16 spherical nuclei. Specifically, we
have calculated binding and s.p. energies, and also quantities
more sensitive to the details of the wave functions, such
as density distributions and elastic and inelastic electron
scattering cross sections. The general good agreement between
the results of the three models indicates that these results are
more related to the basic hypotheses of the MF model rather
than to the details of their implementation, such as the type of
interaction or the relativistic, or nonrelativistic, approach.

More specifically, some of the relevant results common to
all the calculations we have presented are listed here below.

(i) The properties of infinite nuclear matter at the saturation
density in the three approaches are very similar and
reproduce rather well the empirical values. The only
exception is L, related to the first derivative of the
symmetry energy as defined in Eq. (5). Above the sat-
uration point, the behaviors of the EOS are remarkably
different, especially in the case of pure neutron matter.

(ii) In our calculations, all the 16 nuclei investigated are
bound. This MF prediction could be in contrast with
the experimental evidence. We have already mentioned
the fact that, experimentally, the neutron drip line for the
oxygen isotopes starts with the 26O nucleus, therefore
28O is an unstable system that decays by means of the
strong interaction.

(iii) The proton s.p. energies around the Fermi surface have
similar values for all the three calculations. For each
isotope chain considered, the protons are more bound
when the neutron number increases.

(iv) In each isotope chain, the energy available to arrange
the proton s.p. levels decreases with increasing neu-
tron number. As a consequence the density of states
increases. We found larger density of states in non-
relativistic results than in the relativistic ones.

(v) The study of the density distributions indicates a good
agreement at the nuclear surface for all the three types

of calculations. In some isotopes, we have observed
very different behaviors in the nuclear interior when the
proton and neutron densities are separately considered.
These differences in the nuclear center are much smaller
when the total matter distribution is considered.

(vi) The large differences of the proton distributions in the
nuclear interior are due to the s proton waves. For
the calcium isotopes, we have calculated (e, e ′p) cross
sections for the knockout of a proton from the 2s1/2 level
in the kinematics of NIKHEF experiments [65]. Despite
the remarkable differences in the wave functions de-
scribing the 2s1/2 levels, the three calculations produce
very similar (e, e ′p) cross sections. The comparison
with the 40Ca and 48Ca experimental data indicates
that all the results require the same quenching factor
to reproduce them. Calculations of elastic electron
scattering cross sections show significant differences
between the various results for momentum transfer
values larger than 400 MeV/c. Since the NIKHEF
kinematics barely reach this value, the differences
between the various s.p. wave functions used in our
calculations do not produce detectable effects.

(vii) The values of the rms charge radii are very similar in
all the three calculations and agree very well with the
available experimental data and with their empirical
extrapolations. Our results show a small increase of
these radii with the neutron numbers.

(viii) We found an almost linear dependence of the neutron
skins on the relative neutron excess. The relativistic
calculations generated slightly larger skins than the
other approaches. For comparable values of the relative
neutron excess, we found larger neutron skins in lighter
than in heavier nuclei. This is not a trivial geometrical
effect.

Our investigation has been conducted for a specific set of
nuclei where deformations are absent and pairing effects neg-
ligible. In this case, we have found a large convergence of the
results of the three MF models for all the nuclei investigated,
also for those nuclei not yet experimentally explored. For this
reason we think that producing and investigating this type of
exotic nuclei is important also from the theoretical point of
view. The comparison between the observed properties and
the MF predictions can confirm, or invalidate, the MF model
itself, and not a specific implementation of it.
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[79] M. Warda, X. Viñas, X. Roca-Maza, and M. Centelles, Phys.

Rev. C 80, 024316 (2009).

024322-11

http://dx.doi.org/10.1103/PhysRevC.64.044001
http://dx.doi.org/10.1103/PhysRevC.69.054320
http://dx.doi.org/10.1103/PhysRevC.69.054320
http://dx.doi.org/10.1103/PhysRevC.73.044304
http://dx.doi.org/10.1103/PhysRevC.73.044304
http://dx.doi.org/10.1016/j.physrep.2007.06.001
http://dx.doi.org/10.1103/PhysRevLett.101.092502
http://dx.doi.org/10.1103/PhysRevC.79.044606
http://dx.doi.org/10.1016/j.ppnp.2010.02.003
http://dx.doi.org/10.1016/j.ppnp.2010.02.003
http://dx.doi.org/10.1016/0370-1573(77)90042-4
http://dx.doi.org/10.1016/j.physrep.2003.11.001
http://dx.doi.org/10.1016/j.physrep.2003.11.001
http://dx.doi.org/10.1088/0954-3899/32/7/R01
http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1016/j.physrep.2004.10.001
http://dx.doi.org/10.1016/j.ppnp.2006.07.001
http://dx.doi.org/10.1016/j.ppnp.2006.07.001
http://dx.doi.org/10.1080/14786435608238186
http://dx.doi.org/10.1016/0029-5582(58)90345-6
http://dx.doi.org/10.1103/PhysRevC.5.626
http://dx.doi.org/10.1103/PhysRevC.21.1568
http://dx.doi.org/10.1103/PhysRevC.57.145
http://dx.doi.org/10.1016/S0375-9474(99)00310-3
http://dx.doi.org/10.1051/anphys:2003006
http://dx.doi.org/10.1016/S0375-9474(97)00596-4
http://dx.doi.org/10.1016/S0375-9474(98)00180-8
http://dx.doi.org/10.1016/S0375-9474(98)00570-3
http://dx.doi.org/10.1016/0010-4655(91)90263-K
http://dx.doi.org/10.1016/0010-4655(91)90263-K
http://tel.archives-ouvertes.fr/tel-001777379/en/
http://dx.doi.org/10.1016/j.physletb.2008.09.017
http://dx.doi.org/10.1016/j.physletb.2008.09.017
http://dx.doi.org/10.1103/PhysRevLett.102.242501
http://dx.doi.org/10.1103/PhysRevLett.102.242501
http://dx.doi.org/10.1103/PhysRevC.71.024312
http://dx.doi.org/10.1103/PhysRevC.71.024312
http://dx.doi.org/10.1140/epja/i2007-10450-2
http://dx.doi.org/10.1103/PhysRevC.81.014303
http://dx.doi.org/10.1103/PhysRevC.81.014303
http://dx.doi.org/10.1103/PhysRevC.72.037601
http://dx.doi.org/10.1103/PhysRevLett.85.5296
http://dx.doi.org/10.1111/j.1745-3933.2010.00829.x
http://dx.doi.org/10.1103/PhysRevC.58.1804
http://dx.doi.org/10.1103/PhysRevC.58.1804
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.003
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.003
http://dx.doi.org/10.1103/PhysRevC.83.044324
http://dx.doi.org/10.1103/PhysRevC.83.044324
http://dx.doi.org/10.1016/0375-9474(76)90510-8
http://dx.doi.org/10.1016/0375-9474(82)90020-3
http://dx.doi.org/10.1088/0954-3899/16/4/004
http://dx.doi.org/10.1016/0375-9474(93)90630-G
http://dx.doi.org/10.1016/0370-1573(93)90132-W
http://dx.doi.org/10.1016/0370-1573(93)90132-W
http://dx.doi.org/10.1016/0370-2693(94)01540-S
http://dx.doi.org/10.1016/0375-9474(87)90276-4
http://dx.doi.org/10.1016/0375-9474(88)90548-9
http://dx.doi.org/10.1103/PhysRevC.32.1312
http://dx.doi.org/10.1103/PhysRevC.32.1312
http://dx.doi.org/10.1103/PhysRevC.48.2731
http://dx.doi.org/10.1103/PhysRevC.53.R1488
http://dx.doi.org/10.1103/PhysRevC.56.2672
http://dx.doi.org/10.1103/PhysRevLett.83.5451
http://dx.doi.org/10.1103/PhysRevC.64.014604
http://dx.doi.org/10.1103/PhysRevC.64.014604
http://dx.doi.org/10.1103/PhysRevC.64.064615
http://dx.doi.org/10.1103/PhysRevC.64.064615
http://dx.doi.org/10.1103/PhysRevC.65.044601
http://dx.doi.org/10.1103/PhysRevC.66.034610
http://dx.doi.org/10.1103/PhysRevC.66.034610
http://dx.doi.org/10.1140/epja/i2002-10137-2
http://dx.doi.org/10.1140/epja/i2002-10137-2
http://dx.doi.org/10.1103/PhysRevC.84.024615
http://dx.doi.org/10.1016/0375-9474(83)90124-0
http://dx.doi.org/10.1016/0375-9474(94)00508-K
http://dx.doi.org/10.1016/0375-9474(94)00508-K
http://dx.doi.org/10.1016/0375-9474(95)00067-B
http://dx.doi.org/10.1103/PhysRevC.7.1930
http://dx.doi.org/10.1016/0370-2693(79)90458-1
http://dx.doi.org/10.1016/j.adt.2004.04.002
http://dx.doi.org/10.1140/epja/i2010-11051-8
http://dx.doi.org/10.1140/epja/i2010-11051-8
http://dx.doi.org/10.1016/0375-9474(96)00216-3
http://dx.doi.org/10.1016/0375-9474(96)00216-3
http://dx.doi.org/10.1103/PhysRevC.84.034316
http://dx.doi.org/10.1103/PhysRevC.80.024316
http://dx.doi.org/10.1103/PhysRevC.80.024316

