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Magnetic rotations in 198Pb and 199Pb within covariant density functional theory
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Well-known examples of shears bands in the nuclei 198Pb and 199Pb are investigated within tilted axis cranking
relativistic mean-field theory. Energy spectra, the relation between spin and rotational frequency, deformation
parameters and reduced M1 and E2 transition probabilities are calculated. The results are in good agreement
with available data and with calculations based on the phenomenological pairing plus-quadrupole-quadrupole
tilted-axis cranking model. It is shown that covariant density functional theory provides a successful microscopic
and fully self-consistent description of magnetic rotation in the Pb region showing the characteristic properties
as the shears mechanism and relatively large B(M1) transitions decreasing with increasing spin.
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I. INTRODUCTION

Magnetic rotation has become one of the most important
high-spin phenomena in atomic nuclei during the past two
decades. The special interest in magnetic rotational bands
arises mainly from their unusual properties that differ from
conventional collective rotational bands in well-deformed
nuclei. Magnetic rotational bands observed in nearly spherical
or only weakly deformed nuclei have very weak and sometimes
unobservable electric E2 transitions but rather strong magnetic
M1 transitions. The explanation of such bands was given
in Ref. [1] in terms of the shears mechanism. In a classical
picture, in these bands the magnetic dipole vector arising from
proton particles (holes) and neutron holes (particles) in high-j
orbitals rotates around the total angular-momentum vector.
The name “magnetic rotation” was introduced [2,3] to account
for such a kind of rotation and was discussed in detail on the
general basis of spontaneous symmetry breaking in Refs. [4,5].
Meanwhile, with increasing spin, the particles and holes in the
high-j orbitals align along the total angular momentum and
this alignment reduces the perpendicular component of the
magnetic dipole moment. As a result, a typical property of
these shears bands is the decreasing of the B(M1) values with
increasing spin.

Magnetic rotational bands have been observed in several
mass regions with the mass numbers A ∼ 60, A ∼ 80, A ∼
110, A ∼ 140, and A ∼ 190 [6,7], but the richest information
exists for neutron-deficient Pb isotopes where the coupling
between the proton 1h9/2 and 1i13/2 particles and the neutron
1i−n

13/2 holes provides the necessary particle-hole configura-
tions. In particular, long cascades of M1 transitions were
observed first in neutron deficient Pb nuclei in the early
1990s [8–10]. Later, in 1997, the lifetime measurements based
on the Doppler-shift attenuation method (DSAM) for four M1
bands in the nuclei 198Pb and 199Pb provided a clear evidence
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for magnetic rotation [11]. Subsequently, another experiment
using the recoil distance method (RDM) in 198Pb together with
the results of the DSAM experiment provided further support
to the shears mechanism [12]. Naturally, magnetic rotation in
the Pb region deserves great theoretical efforts.

On the theoretical side, tilted axis cranking (TAC) mean-
field models [1,5,13] have been the main tools for studying the
magnetic dipole bands. In addition, the shell model [14] and the
many-particles-plus-rotor model [15] have also been applied
to investigate magnetic rotation in the Pb region. So far, the
TAC models have turned out to be powerful tools to describe
magnetic rotational bands, because these models are based on
a classical picture of rotation and here it is relatively easy
to construct vector diagrams showing the angular-momentum
composition. This method is of great help to visualize the
structure of magnetic rotation in these bands. In Ref. [16]
the quality of the TAC approximation has been discussed
and tested in comparison with the particle rotor model.
Similar investigations along this line have been extended
for three-dimensional cranking and the nuclear chirality is
proposed [17]. Because of the high numerical complexity
of the TAC model, even today most of the applications are
based on simple phenomenological Hamiltonians, such as
the pairing plus-quadrupole-quadrupole tilted-axis cranking
(PQTAC) model [18]. Only recently nonrelativistic [19] and
relativistic [20–22] codes have been developed for microscopic
investigations of magnetic rotation in the framework of
density functional theory. By obvious reasons they have first
been applied in lighter nuclei with smaller model spaces.
So far there exists no microscopic investigation in the
Pb region.

During the past several decades, covariant density func-
tional theory (CDFT) has attracted wide attention due to its
success in describing many phenomena in stable as well as
exotic nuclei [23–25]. It exploits Lorentz invariance, one of
the underlying symmetries of QCD. This symmetry allows to
describe in a consistent way the spin-orbit coupling having an
essential influence on the underlying shell structure in finite
nuclei. It also puts stringent restrictions on the number of
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parameters in the corresponding functionals without reducing
the quality of the agreement with experimental data. CDFT
with meson exchange presents a microscopic treatment of the
nuclear many-body problem in terms of nucleons and mesons
carrying the effective interaction between nucleons. Moreover,
since the theory is relativistically invariant and the field
and nucleon equations of motion are solved self-consistently,
such models preserve causality and provide a self-consistent
description of the spin-orbit term of the nuclear effective force
and of the bulk and surface parts of the interaction. For the
description of magnetic rotations it is of particular importance
that these functionals include nuclear magnetism [26], i.e.,
a consistent description of currents and time-odd fields.
This plays a role for odd-mass nuclei [27], excitations with
unsaturated spins, magnetic moments [28,29], and nuclear
rotations [30]. As a consequence of Lorentz invariance no
new parameters are required for the time-odd parts of the
mean fields. In nonrelativistic functionals the corresponding
time-odd parts are usually difficult to adjust to experimental
data and even if there are additional constraints derived from
Galilean invariance and gauge symmetry [31] these constraints
are usually not taken into account in the successful functionals
commonly used in the literature.

The earlier versions of CDFT were based on the Walecka
model [32–35] with phenomenological nonlinear meson-
interactions proposed by Boguta and Bodmer [36] introducing
in this way a phenomenological density dependence [37–39].
The nonlinear models have been replaced by an explicit
density dependence of the meson-nucleon vertices [40]. For
successful functionals of this type this density dependence
has been determined in a phenomenological way [41–43] and
such models have shown considerable improvements with
respect to previous relativistic mean-field (RMF) models in
the description of asymmetric nuclear matter, neutron matter,
and nuclei far from the valley of stability. On the other hand,
on a more microscopic way, one has tried to derive the density
dependence from Brueckner calculations in nuclear matter at
various densities [40,44–46]. An example is density dependent
relativistic hadron field theory [44] where the specific density
dependence of the meson-nucleon vertices is mapped from
Dirac-Brueckner calculations where the in-medium interaction
is obtained from nucleon-nucleon potentials consistent with
scattering experiments. Therefore, if this ansatz is adopted, the
effective theory is derived fully from ab initio calculations. Of
course, the accuracy of the results obtained in this way is by no
means satisfactory for modern nuclear structure calculations
and a fine tuning of additional free parameters is still needed.
This fact allows us to constrain the different possibilities
and keeps the compatibility, at least theoretically, with more
fundamental calculations of infinite nuclear matter.

As Inglis [47] has shown already in the 1950s, rotational
excitations in nuclei can be described in the framework of the
cranking model, i.e., in a uniformly rotating mean field, where
the rotational frequency � is determined in a semiclassical
way by the condition 〈Jx〉 = √

I (I + 1). This model has been
extended to a very successful self-consistent description of
rotational nuclei all over the periodic table; first, with simple
phenomenological quadrupole-pairing forces [48,49] and later
with interactions derived from nonrelativistic [50–53] and

relativistic [26,54] density functionals. It also has been shown
that the cranking wave functions correspond to intrinsic wave
functions obtained by a variation after projection onto good
angular momentum [55]. Most of these calculations have
been carried out for collective rotations with a rotational axis
perpendicular to the symmetry axis. This method is called prin-
cipal axis cranking (PAC) and also one-dimensional cranking,
because there is only one component of the angular velocity
of importance. The model has been extended to rotations
around an arbitrary axis tilted against the principal axis of
the density distribution [17,20,56,57], i.e., three-dimensional
cranking. In the framework of CDFT, a code for the solution
of these equations has been developed in Ref. [20]. However,
because of the numerical complexity, it has only been applied
for the magnetic rotation in 84Rb a relatively light nucleus.
Later on, focusing on magnetic rotation, a two-dimensional
cranking version of RMF model based on the nonlinear
meson-exchange interaction has been established in Ref. [21].
It has been applied to the medium heavy nucleus 142Gd.
Recently, a two-dimensional tilted axis cranking relativistic
mean-field (TAC-RMF) version based on the point-coupling
interaction [58,59] has been developed. The zero range of
the corresponding effective interaction simplifies the code
considerably allowing systematic investigations [22,60].

In the present work, this self-consistent TAC-RMF model
based on a point-coupling interaction is applied to the
A ∼ 190 region for the first time. The magnetic rotational
bands in 198,199Pb are investigated. The energy spectra, the
relation between spin and rotational frequency, deformation
parameters and reduced M1 and E2 transition probabilities are
calculated and compared with the available data [11,12,61,62]
and those obtained from the PQTAC model [18].

The paper is organized as follows: after establishing the ba-
sics of relativistic point-coupling models in Sec. II, we discuss
in Sec. III numerical details of the method. In Sec. IV we com-
pare the results of these calculations with experimental data.
Section V contains conclusions and an outlook for future work.

II. THEORETICAL FRAMEWORK

The starting point of CDFT is an effective Lagrangian
density from which the equations of motion can be obtained.
For a nucleus with D2 symmetry, the TAC-RMF model
assumes that the nucleus rotates around an axis in the xz plane
of the body-fixed system. Assuming a rotation with constant
velocity around a fixed axis in space the effective Lagrangian
is transformed into the rotating frame [26]. In this system one
is confronted with a quasistationary problem and one obtains
the following equations of motion:

[α · (−i∇ − V ) + β(m + S)+V − � · Ĵ]|ψi〉=εi |ψi〉, (1)

where � = (�x, 0,�z) = (� cos θ�, 0,� sin θ�) is the rota-
tional frequency with the tilted angle θ� := �(�, ex) between
the cranking axis and the x axis, Ĵ = L̂ + 1

2 �̂, is the total
angular momentum of the nucleus, the sum of all the single-
particle angular momenta. Using the point-coupling model
discussed in Ref. [59] the relativistic fields have the form

S(r) = αSρS + βSρ
2
S + γSρ

3
S + δS�ρS, (2)
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FIG. 1. (Color online) Single-particle Routhians for the neutrons in 198Pb as a function of the rotational frequency based on the configurations
AE11 and ABCE11. The blue dots indicate the occupied levels at � = 0 and the green dots indicate the occupied levels at the band heads with
the configuration AE11 (left panel) and ABCE11 (right panel). Further details are given in the text.

V μ(r) = αV j
μ

V + γV

(
j

μ

V

)3 + δV �j
μ

V

+ τ3αT V j
μ

T V + τ3δT V �j
μ

T V + e
1 − τ3

2
Aμ, (3)

where αS, βS, γS, δS, αV , γV , δV , αT V , and δT V are the cou-
pling constants. α refers to the four-fermion term, β and γ

to the third and the four-order terms, and δ to the derivative
couplings. The subscripts S, V , and T stand for scalar, vector,
and isovector couplings, respectively. The iterative solution
of the equations of motion yields single-particle energies,
energy, quadrupole moments, magnetic moment, and so on.
More details can be found in Refs. [21,22].

The size of the rotational frequency � is connected to the to-
tal angular-momentum quantum number I by the semiclassical
relation J 2 = 〈Ĵx〉2 + 〈Ĵz〉2 = I (I + 1), and the orientation of
rotational frequency vector � is determined by minimizing
the total Routhian 〈Ĥ − � · Ĵ〉 for fixed orientation of the
angular momentum J and for a fixed absolute value of the
angular velocity |�|. It turns out that this requirement leads to
a parallel alignment of the two vectors � and J [21].

The nuclear magnetic moment is derived as an expectation
value of the relativistic form of the effective current operator

μ =
A∑

i=1

〈ψi |mc2

h̄c
q r × α + κ β �|ψi〉, (4)

where q is the charge (qp = 1 for protons and qn = 0 for
neutrons), m the nucleon mass, and κ the free anomalous
gyromagnetic ratio of the nucleon (κp = 1.793 and κn =
−1.913). In a semiclassical approximation, the B(M1) values
are [1,17]

B(M1) = 3

8π
μ2

⊥ = 3

8π
(μx sin θ� − μz cos θ�)2. (5)

III. NUMERICAL DETAILS

The magnetic rotational bands investigated in the present
work include bands 1 and 3 in the nucleus 198Pb [63] and
bands 1 and 2 in 199Pb [64]. In both nuclei we have the same
proton configurations for these bands, i.e., π [s−2

1/2h9/2i13/2]11−.
In Fig. 1 we show the single-particle Routhians for the
neutrons in the nucleus 198Pb as a function of the rotational
frequency � for the two configurations AE11 (left panel) and
ABCE11 (right panel). The blue dots indicate the occupied
levels at � = 0 and the green dots indicate the occupied
levels at the band head of the bands with the configurations
AE11 (left panel) and ABCE11 (right panel). The positive
parity levels belonging to the νi13/2 orbit are given by full
black curves and the neutron levels with negative parity
(pf ) are indicated by dashed red curves. In these bands, a
backbending phenomenon has been observed caused by the
alignment of a pair of i13/2 neutrons. Before the backbending,
the neutron configurations ν[i−1

13/2(fp)−1], νi−2
13/2, νi−1

13/2, and

ν[i−2
13/2(fp)−1] have been assigned to bands 1 and 3 in

198Pb and to bands 1 and 2 in 199Pb, respectively. After the
backbending, they become ν[i−3

13/2(fp)−1], νi−4
13/2, νi−3

13/2, and

ν[i−4
13/2(fp)−1] [6,61]. As in Ref. [64] a short-hand notation is

used for these configurations: A, B, C, and D denote νi13/2

holes with positive parity and E denotes a neutron hole with
negative parity (mainly of f5/2 and p3/2 origin). The proton
configuration π [s−2

1/2h9/2i13/2]11− is abbreviated by its spin
number 11. Therefore, the configurations presented above are
referred as AE11, AB11, A11, and ABE11 for the bands
before the backbending and as ABCE11, ABCD11, ABC11,
and ABCDE11 after the backbending.

The calculations of this work have been carried out with
the covariant point-coupling density functional PC-PK1 [59],
while pairing correlations are neglected. The Dirac equation
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FIG. 2. (Color online) Energy spectra in the TAC-RMF calculations compared with the data [61,62] for bands 1 and 3 in 198Pb (upper
panels) and bands 1 and 2 in 199Pb (lower panels). The energies at I = 15h̄, 17h̄, 33/2h̄, and 39/2h̄ are taken as references for the bands 1 and
3 in 198Pb and bands 1 and 2 in 199Pb, respectively. Energies for the configurations ABCE11* and ABCD11* in 198Pb as well as ABC11* and
ABCDE11* in 199Pb are renormalized to the energies at I = 22h̄, 30h̄, 51/2h̄, and 61/2h̄, respectively.

[Eq. (1)] of the nucleons is solved in a three-dimensional
harmonic oscillator basis in Cartesian coordinates, introduced
in Ref. [65] and discussed in detail in Ref. [21]. In the present
calculations, Nf = 12 major oscillator shells are used. This
provides a satisfactory accuracy of the results. By increasing
Nf from 12 to 14, we find for the ground state of the nucleus
198Pb changes of less than 0.04% for the total energies and
less than 5% for the mass quadrupole moments. It has also
been checked that in the solutions of the present cranking
calculations the direction of the cranking axis � and the
direction of angular-momentum axis J are identical, which
means that self-consistency has been achieved.

IV. RESULTS AND DISCUSSION

In Fig. 2 we show the calculated energy spectra for the
bands 1 and 3 in 198Pb and for the bands 1 and 2 in 199Pb in
comparison with the experimental data of Refs. [61,62]. For
certain regions of angular momenta, the calculated values are
missing, as, for instance, I = 19 − 21h̄ in band 1 of 198Pb. This
is because, as discussed in Ref. [21], due to the level crossing
connected with the backbending phenomenon, we could not
find converged solutions for these angular-momentum values.
It can be seen that the present TAC-RMF calculations repro-
duce well the experimental energies for all the four bands but

underestimate the particle-hole excitation energies at the band
head of the configurations ABCE11 and ABCD11 in 198Pb as
well as ABC11 and ABCDE11 in 199Pb. In comparison with
the PQTAC calculations [1,18], these underestimations can
be explained by the pairing correlations and will be further
investigated in the future. At the moment, we compensate for
these underestimations by choosing different references for
the configurations involved.

In Fig. 3 we show the calculated total Routhians for the
bands 1 and 3 in 198Pb and for the bands 1 and 2 in 199Pb as
functions of the rotational frequency in comparison with the
data of Refs. [61,62]. It can be seen that the present TAC-RMF
calculations reproduce well the experimental total Routhians
for all the four bands before band crossing. However, one could
see that the band crossings appear at too low frequency due
to the neglect of pairing. In the PQTAC results, which include
pairing, it could get proper band crossing frequency [1]. This
is achieved in the present work by renormalizing the total
Routhians after band crossing.

The experimental rotational frequency �exp is extracted
from the energy spectra by the relation

h̄�exp = 1

2
[Eγ (I + 1 → I ) + Eγ (I → I − 1)] ≈ dE

dI
. (6)

In Fig. 4, the calculated total angular momenta of the bands
1 and 3 in 198Pb and the bands 1 and 2 in 199Pb as functions
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FIG. 3. (Color online) Calculated total Routhians as functions of the rotational frequency in compared with the data [61,62] for bands 1 and
3 in 198Pb (upper panels) and bands 1 and 2 in 199Pb (lower panels). The values at h̄� = 0.1, 0.15, 0.25, and 0.1 MeV are taken as references
for the bands 1 and 3 in 198Pb and bands 1 and 2 in 199Pb, respectively. Routhians for the configurations ABCE11*, ABCD11*, ABC11*, and
ABCDE11* are renormalized to the values at h̄� = 0.2, 0.4, 0.25, and 0.4 MeV, respectively.

of the rotational frequency are shown in comparison with the
experimental data [61,62] and the PQTAC results [18]. It is
found that both the TAC-RMF and the PQTAC results agree
well with the experimental data. This shows that the TAC
calculations can reproduce the relative changes of moment of
inertia within the different bands rather well. In both nuclei
the TAC calculations support that the backbendings arise
through an excitation of a neutron-hole pair in the i13/2 shell,
i.e., by the transitions in the configurations AE11→ABCE11
in band 1 of 198Pb, AB11→ABCD11 in band 3 of 198Pb,
A11→ABC11 in band 1 of 199Pb, and ABE11→ABCDE11
in band 2 of 199Pb. In detail, before the backbending the spins
values found in the TAC-RMF and PQTAC models differ
from experimental values up to 2h̄. After the backbending,
the phenomenological PQTAC results for the bands 1 and 3 in
198Pb are nearly 3h̄ larger than the experimental values and the
TAC-RMF results. Comparing with the experimental values in
Fig. 4, the appearance of backbending is clearly seen for each
band.

In Fig. 5, the deformation parameters β and γ obtained
in the self-consistent TAC-RMF calculations are compared
with the phenomenological PQTAC results [18]. In the TAC-
RMF calculations, the quadrupole deformations are small and
remain almost constant, mainly lying around β = 0.15 for
each configuration. The PQTAC calculations produce the same
tendency but smaller deformations, typically around β = 0.11.

Meanwhile, the γ values vary between 47◦ and 59◦ which
means small triaxiality close to oblate axial symmetry in the
TAC-RMF calculations. This is consistent with the PQTAC
results of Ref. [18].

In order to examine the shears mechanism for the magnetic
rotational bands in the nuclei 198Pb and 199Pb, we show in Fig. 6
the proton and the neutron angular-momentum vectors Jπ

and Jν as well as the total angular-momentum vectors J tot =
Jπ + Jν at both the minimum and the maximum rotational
frequencies in TAC-RMF calculations for the bands 1 and 3
in 198Pb and for the bands 1 and 2 in 199Pb. The proton and
neutron angular momenta Jπ and Jν are defined as

Jπ=〈 Ĵπ 〉=
Z∑

p=1

〈p|Ĵ |p〉, Jν=〈 Ĵν〉=
N∑

n=1

〈n|Ĵ |n〉, (7)

where the sum runs over all the proton (or neutron) levels
occupied in the cranking wave function in the intrinsic
system.

For the magnetic dipole bands in 198Pb and 199Pb, the
contributions to the angular momenta come mainly from the
high j orbitals, i.e., the i13/2 neutron (s) as well as h9/2 and i13/2

protons. At the band head, the proton particles excited across
the closed Z = 82 shell gap into the h9/2 and i13/2 orbitals
contribute to the proton angular momentum along the short
axis, and the neutron hole(s) at the upper end of the i13/2 shell
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FIG. 4. (Color online) Angular momenta as functions of the rotational frequency in the TAC-RMF calculations compared with the
data [61,62] and the PQTAC results [18] for bands 1 and 3 in 198Pb (upper panels) and bands 1 and 2 in 199Pb (lower panels). The configurations
with “(PQ)” denote the corresponding results of PQTAC calculations.

FIG. 5. (Color online) Deformation parameters β (upper panels) and γ (lower panels) as functions of the rotational frequency in the
TAC-RMF calculations compared with the PQTAC results [18] for bands 1 and 3 in 198Pb and bands 1 and 2 in 199Pb.

024318-6



MAGNETIC ROTATIONS IN 198Pb AND 199Pb . . . PHYSICAL REVIEW C 85, 024318 (2012)

FIG. 6. (Color online) Composition of the total angular momentum at both the minimum and the maximum rotational frequencies in
TAC-RMF calculations for bands 1 and 3 in 198Pb and bands 1 and 2 in 199Pb. Upper (lower) panels are results for the rotation before (after)
backbending.

FIG. 7. (Color online) B(M1) values as functions of the total angular momentum in the TAC-RMF calculations compared with the data
and the PQTAC results [18] for bands 1 and 3 in 198Pb (upper panels) and bands 1 and 2 in 199Pb (lower panels). Circles and squares denote
experimental data from DSAM [11] and RDM [12], respectively.
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FIG. 8. (Color online) B(E2) values as functions of the total angular momentum in the TAC-RMF calculations compared with the data
from DSAM [11] and the PQTAC results [18] for bands 1 and 3 in 198Pb (upper panels) and bands 1 and 2 in 199Pb (lower panels).

contribute to the neutron angular momentum along the long
axis. By comparing the upper panels (before backbending)
with the lower ones (after backbending) in Fig. 6, one finds that
after the backbending the neutron angular-momentum vectors
are considerably larger, because they contain the contributions
of an aligned pair of i13/2 neutron holes. For all the cases,
the proton and neutron angular-momentum vectors form the
two blades of the shears. As the frequency increases, the two
blades move toward each other increase the larger angular
momentum, while the direction of the total angular momentum
stays nearly unchanged. In this way, the shears mechanism is
clearly presented.

A typical characteristic of magnetic rotation are strongly
enhanced M1 transitions at low spins as well their decrease
with increasing spin. In Fig. 7 we show the calculated B(M1)
values as functions of the total angular momentum for the
bands 1 and 3 in 198Pb and for the bands 1 and 2 in 199Pb in
comparison with the data [11,12] and the PQTAC results [18].
The TAC-RMF calculations reproduce the decrease of the
observed B(M1) values with increasing spin. However, as it
has been observed already in earlier calculations [20,22] the
absolute values show discrepancies. As shown in Fig. 7, one
has to attenuate the results by a factor 0.3 in order to reproduce
the absolute B(M1) values. The same factor has been used
in Refs. [20,22]. So far the origin of this attenuation factor
is not understood in detail. As discussed in Ref. [22], there
are, however, several reasons: (a) Pairing correlations strongly
affect the levels in the neighborhood of the Fermi surface.

This causes a strong reduction for the B(M1) values with
major contributions from the valence particles or holes. (b) The
coupling to complex configurations such as particle vibrational
coupling (Arima Horie effect [66,67]) leads in all cases to a
quenching of the B(M1) values for neutron configurations
[68,69]. (c) Meson exchange currents and higher corrections
also cause a reduction of the effective g factors for the neutrons
[70–72]. However, it is not the absolute B(M1) values, which
characterize the shear bands, but rather the behavior of these
values with increasing angular momentum. On the other side,
the absolute values of phenomenological PQTAC results agree
with the observed B(M1) data and the attenuated TAC-RMF
results. However, they show a sharper decreasing trend as
compared with the TAC-RMF calculations. The agreement
between the calculated and experimental B(M1) values and
their trend shows a convincing confirmation of the shears
mechanism.

In contrast to the enhanced M1 transitions, the E2 transi-
tions are very weak for magnetic rotational bands. In Fig. 8
we show the calculated B(E2) values as functions of the total
angular momentum and compare them with the DSAM-data
of Ref. [11] and the theoretical PQTAC results of Ref. [18]
for bands 1 and 3 in 198Pb and bands 1 and 2 in 199Pb. The
B(E2) values in the TAC-RMF calculations are in reason-
able agreement with the data and show a roughly constant
trend. This is consistent with the calculated nearly constant
quadrupole deformation in each configuration. Compared to
the PQTAC results, the TAC-RMF calculations predict larger
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B(E2) values, in accordance with the larger deformations
shown in Fig. 4. For band 3 in 198Pb, both the TAC-RMF
and the PQTAC calculations give nearly constant or even
slightly increasing B(E2) values, which differs from the results
obtained within the framework of a geometrical approach [73].
More accurate experimental values are expected to clarify the
spin dependence of the B(E2) values.

V. CONCLUSION

The fully microscopic and self-consistent TAC-RMF model
based on the point-coupling density functional PC-PK1 has
been applied to investigate the shears bands in the nuclei 198Pb
and 199Pb. This is the first fully microscopic investigation of
magnetic dipole bands in this region. The energy spectra, the
relation between spin and rotational frequency, deformation
parameters, and reduced M1 and E2 transition probabilities
have been calculated and compared with data and with the
results obtained from phenomenological PQTAC models.
So far, pairing correlations are neglected in the TAC-RMF
model and, therefore, the band head had to be renormalized.
The remaining energy spectra are well reproduced in the
TAC-RMF calculations. Both the TAC-RMF and the PQTAC
calculated angular momenta agree well with the experimental
data for various configurations, showing that the TAC cal-
culations can reproduce the moments of inertia rather well.
Considering the transitions in configurations it is shown that
the occurrence of the backbending is accompanied with the
alignment of an i13/2 neutron-hole pair. The decrease in
the B(M1) values calculated by the two TAC models is in
good agreement with the experimental values. The fact that
the B(M1) values decrease with the increasing frequency
indicates the appearance of the shears mechanism in 198,199Pb.
This mechanism can be also clearly seen in our calculations
by decomposing the total angular momenta at different

frequencies into contributions of protons and neutrons. The
roughly constant trends of the calculated B(E2) values and the
quadrupole deformations for different rotational frequency are
consistent with the PQTAC calculations but the self-consistent
values are larger than the those deduced from the PQTAC
calculations.

It should be mentioned that the time-odd terms play
important roles in the description of magnetic rotation which
has been discussed in details for the band based on the
configuration πh2

11/2 ⊗ νh−2
11/2 in 142Gd [74]. The present

calculations give similar conclusions that the time-odd terms
will lower the total Routhians and their influence is negligible
for the B(E2) values but appreciable for the B(M1) values.

Following these first self-consistent calculations of mag-
netic dipole bands in the Pb region, further works are planed or
in progress, e.g., the pairing correlations and their contribution
to the excitation energies at the various band heads, systematic
calculations with other covariant density functionals to clarify
details of the deformation parameters and the transition
probabilities, and more investigations of other nuclei in this
area to understand the large variety of experimental data in
this area.
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[33] H. P. Dürr, Phys. Rev. 103, 469 (1956).
[34] J. D. Walecka, Ann. Phys. (NY) 83, 491 (1974).
[35] B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16, 1

(1986).
[36] J. Boguta and A. R. Bodmer, Nucl. Phys. A 292, 413 (1977).
[37] G. A. Lalazissis, J. König, and P. Ring, Phys. Rev. C 55, 540

(1997).
[38] B. G. Todd-Rutel and J. Piekarewicz, Phys. Rev. Lett. 95, 122501

(2005).
[39] W. H. Long, J. Meng, N. Van Giai, and S.-G. Zhou, Phys. Rev.

C 69, 034319 (2004).
[40] R. Brockmann and H. Toki, Phys. Rev. Lett. 68, 3408 (1992).
[41] S. Typel and H. H. Wolter, Nucl. Phys. A 656, 331 (1999).
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