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Systematic calculations of fission barriers allowing for triaxial deformation are performed for even-even
superheavy nuclei with charge number Z = 112–120 using three classes of covariant density functional models.
The softness of nuclei in the triaxial plane leads to an emergence of several competing fission paths in the
region of the inner fission barrier in some of these nuclei. The outer fission barriers are considerably affected
by triaxiality and octupole deformation. General trends of the evolution of the inner and the outer fission barrier
heights are discussed as a function of the particle numbers.
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I. INTRODUCTION

The ongoing search for new superheavy elements is moti-
vated by the attempts to provide theoretical and experimental
explanations for two open questions in nuclear structure. The
first question is related to the limits of the existence of atomic
nuclei at large values of proton number, while the second one
is related to the location of the island of stability of superheavy
nuclei and the next magic numbers (if any) beyond Z = 82 and
N = 126. Heavy and superheavy nuclei decay by spontaneous
fission and therefore their stability is defined essentially by
the size and the shape of the fission barriers. Thus, the inner
fission barrier is considered a fundamental characteristic of
these nuclei which is important in resolving the questions
mentioned above.

A systematic investigation of the properties of fission
barriers is the best way to address the stability of nuclei
against spontaneous fission since it eliminates the arbitrariness
of conclusions with respect to the choice of a specific nucleus.
Different models with triaxiality included have been used
for extensive theoretical investigations of the properties of
inner fission barriers in the actinides. It has been found
that the heights of inner fission barriers are reduced when
triaxial shapes are taken into account [1–3]. However, this
reduction has a strong dependence on the particle num-
ber in the proton and neutron subsystems as well as on
the applied model. These investigations were performed in
the following frameworks: microscopic + macroscopic (MM)
methods [4–9], the extended Thomas-Fermi plus Strutinsky
integral (ETFSI) method [10], nonrelativistic energy density
functionals (EDF) based on zero-range Skyrme [2,11–13] and
finite-range Gogny [3,14–16] forces, and recently in covariant
density functional theory (CDFT) [1,17,18].

These methods have also been used for the study of fission
barriers in superheavy nuclei (see Table IV below for a review).
However, only a few of them take into account triaxiality. For
example, within the framework of covariant density functional
theory, it has been considered only in the study of fission
barriers in a single nucleus (264Hs) in Ref. [11]. Thus, in
order to fill this gap in our knowledge, a systematic study of
fission barriers of even-even Z = 112–120 superheavy nuclei

with triaxiality included is performed in the current paper. We
use the same method that has been successfully employed in
Ref. [1] for the study of inner fission barriers in actinides,
where an average deviation from experiment of 0.76 MeV
has been found. When extrapolating to superheavy nuclei
we want to understand the impact of triaxiality on fission
barriers and how they evolve with the change of the particle
numbers. An additional goal is to see how the fission barriers
depend on the choice of the specific CDFT model. While the
systematic investigation of inner fission barriers of actinides in
Ref. [1] has been performed with the nonlinear meson-nucleon
coupling model represented by the NL3* parametrization of
the relativistic mean-field (RMF) Lagrangian, in the current
study we use in addition to the nonlinear coupling model also
density-dependent meson-nucleon and point coupling models.

Density functional theories are extremely useful for the
microscopic description of quantum mechanical many-body
systems. They have been applied with great success for
many years in Coulombic systems [19,20], where they are in
principle exact and where the functional can be derived without
any phenomenological adjustments directly from the Coulomb
interaction. In nuclear physics with spin and isospin degrees of
freedom, with strong nucleon-nucleon and three-body forces
the situation is much more complicated. However, covariant
density functionals exploit basic properties of QCD at low
energies, in particular symmetries and the separation of scales
[21]. They provide a consistent treatment of the spin degrees of
freedom, and they include the complicated interplay between
the large Lorentz scalar and vector self-energies induced on
the QCD level by the in-medium changes of the scalar and
vector quark condensates [22]. In addition, these functionals
include nuclear magnetism [23], i.e., a consistent description
of currents and time-odd mean fields important for odd-mass
nuclei [24], the excitations with unsaturated spins, magnetic
moments [25], and nuclear rotations [26,27]. Because of
Lorentz invariance no new adjustable parameters are required
for the time-odd parts of the mean fields. Of course, at
present, no attempts to derive these functionals directly from
the bare forces [28–31] have reached the required accuracy.
However, in recent years modern and very successful covariant
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density functionals have been derived [32–35]; these are based
on density-dependent vertices and one additional parameter
characterizing the range of the force. They provide an excellent
description of ground states and excited states over the entire
periodic table [36,37] with a high predictive power. Modern
versions of these forces derive the density dependence of
the vertices from state-of-the-art ab initio calculations and
use only the remaining few parameters for a fine tuning of
experimental masses in finite spherical [35] and deformed [34]
nuclei.

The paper is organized as follows. The theoretical frame-
work and the details of the numerical calculations are discussed
in Sec. II. The results of the investigations of the fission
barriers, the role of triaxiality, and the comparison with the
actinide region are presented in Sec. III. Finally, Sec. IV
summarizes the results of our work.

II. THEORETICAL FRAMEWORK AND THE DETAILS
OF THE NUMERICAL CALCULATIONS

Three classes of covariant density functional models are
used throughout this paper: the nonlinear meson-nucleon
coupling model (NL), the density-dependent meson-exchange
model (DD-ME), and a density-dependent point coupling
model (DD-PC). The main differences among them lay in the
treatment of the range of the interaction, the mesons, and the
density dependence. The interaction in the first two classes has
a finite range, while the third class uses a zero-range interaction
with one additional gradient term in the scalar-isoscalar
channel. The mesons are absent in the density-dependent point
coupling model. The density dependence is explicit in the last
two models, while it shows up via the nonlinearity in the σ

meson in the nonlinear meson-nucleon coupling model. Each
of these classes is represented here by a set of parameters that
is considered to be state of the art.

In the meson-exchange models [33,38,39], the nucleus is
described as a system of Dirac nucleons interacting via the
exchange of mesons with finite masses, leading to finite-range
interactions. The starting point of CDFT for these two models
is a standard Lagrangian density [40]

L = ψ̄[γ (i∂ − gωω − gρ �ρ �τ − eA) − m − gσσ ]ψ

+ 1
2 (∂σ )2 − 1

2m2
σ σ 2 − 1

4	μν	
μν + 1

2m2
ωω2

− 1
4

�Rμν
�Rμν + 1

2m2
ρ �ρ 2 − 1

4FμνF
μν, (1)

which contains nucleons described by the Dirac spinors ψ

with mass m and several effective mesons characterized by the
quantum numbers of spin, parity, and isospin. They create
effective fields in a Dirac equation, which corresponds to
the Kohn-Sham equation [19] in the nonrelativistic case. The
Lagrangian (1) contains as parameters the meson masses mσ ,
mω, and mρ and the coupling constants gσ , gω, and gρ . e is the
charge of the proton and it vanishes for neutrons. This linear
model has first been introduced by Walecka [41,42].

To treat the density dependence in this model Boguta and
Bodmer [43] introduced a density dependence via a nonlinear

TABLE I. The parameters of the NL3* and DD-ME2 parametriza-
tions of the Lagrangian. Note that gσ = gσ (ρsat), gω = gω(ρsat), and
gρ = gρ(ρsat) in the case of the DD-ME2 parametrization.

Parameter NL3* DD-ME2

m 939 939
mσ 502.5742 550.1238
mω 782.600 783.000
mρ 763.000 763.000
gσ 10.0944 10.5396
gω 12.8065 13.0189
gρ 4.5748 3.6836
g2 −10.8093
g3 −30.1486
aσ 1.3881
bσ 1.0943
cσ 1.7057
dσ 0.4421
aω 1.3892
bω 0.9240
cω 1.4620
dω 0.4775
aρ 0.5647

meson coupling replacing the term 1
2m2

σ σ 2 in Eq. (1) by

U (σ ) = 1
2m2

σ σ 2 + 1
3g2σ

3 + 1
4g3σ

4. (2)

The nonlinear meson-nucleon coupling is represented by the
parameter set NL3* [38] (see Table I), which is a modern
version of the widely used parameter set NL3 [44]. Apart
from the fixed values for the masses m, mω, and mρ , there
are six phenomenological parameters: mσ , gσ , gω, gρ , g2,
and g3.

The density-dependent meson-nucleon coupling model has
an explicit density dependence for the meson-nucleon vertices.
There are no nonlinear terms in the σ meson, i.e., g2 = g3 = 0.
The meson-nucleon vertices are defined as

gi(ρ) = gi(ρsat)fi(x) for i = σ, ω, ρ, (3)

where the density dependence is given by

fi(x) = ai

1 + bi(x + di)2

1 + ci(x + di)2
(4)

for σ and ω and by

fρ(x) = exp[−aρ(x − 1)] (5)

for the ρ meson. x is defined as the ratio between the baryonic
density ρ at a specific location and the baryonic density
at saturation, ρsat, in symmetric nuclear matter. The eight
parameters in Eq. (4) are not independent but constrained
as follows: fi(1) = 1, f

′′
σ (1) = f

′′
ω(1), and f

′′
i (0) = 0. These

constraints reduce the number of independent parameters for
density dependence to three. This model is represented in the
present investigations by the parameter set DD-ME2 [33] given
in Table I.
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TABLE II. The parameters of the DD-PC1
parametrization in the RMF Lagrangian.

Parameter DD-PC1

m 939
aσ −10.04616
bσ −9.15042
cσ −6.42729
dσ 1.37235
aω 5.91946
bω 8.86370
dω 0.65835
bρ 1.83595
dρ 0.64025

The Lagrangian for the density-dependent point coupling
model [34,45] is given by

L = ψ̄(iγ · ∂ − m)ψ

− 1

2
αS(ρ̂)(ψ̄ψ)(ψ̄ψ) − 1

2
αV (ρ̂)(ψ̄γ μψ)(ψ̄γμψ)

− 1

2
αT V (ρ̂)(ψ̄ �τγ μψ)(ψ̄ �τγμψ)

− 1

2
δS(∂vψ̄ψ)(∂vψ̄ψ) − eψ̄γ · A

(1 − τ3)

2
ψ. (6)

It contains the free-nucleon Lagrangian, the point coupling
interaction terms, and the coupling of the proton to the
electromagnetic field. The derivative terms in Eq. (6) account
for the leading effects of finite-range interaction, which
are important in nuclei. In analogy with meson-exchange
models, this model contains isoscalar-scalar, isoscalar-vector,
and isovector-vector interactions. In the present work it is
represented by the DD-PC1 parametrization [34] given in
Table II.

The triaxial relativistic mean-field (RMF) + BCS approach
[46] is used here for the description of fission barriers. This
approach has been very successfully applied to a systematic
description of the fission barriers in the actinides [1]. The RMF
equations are solved iteratively and at each iteration the BCS
occupation probabilities v2

k are determined. These quantities
are used in the calculation of densities, energies, and new fields
for the next iteration. We use a monopole pairing force [47]
with the strength parameters Gτ for neutrons (τ = n) and
protons (τ = p).

For each type of particle we start with a pairing strength
parameter G and solve at each iteration the gap equation [47]

1

G
=

∑
k>0

1

2Ek

(7)

with Ek =
√

(εk − λ)2 + �2, where εk are the eigenvalues
of the Dirac equation and the chemical potential λ is deter-
mined by the average particle number. Then the occupation
probabilities

v2
k = 1

2

(
1 − εk − λ

Ek

)
(8)

TABLE III. The Gn
1, Gn

2, G
p

1 , and G
p

2 parameters (in MeV) for
different parametrizations of the RMF Lagrangian.

Force Gn
1 Gn

2 G
p

1 G
p

2

NL3* 10.7 −10.4 7.40 18.9
DD-PC1 10.5 −7.38 7.5 19.2
DD-ME2 11.0 −10.3 7.9 17.0

and the gap parameters

� = G
∑
k>0

ukvk (9)

are determined in a self-consistent way. The pairing energy is
defined as

Epair = −�
∑
k>0

ukvk. (10)

The sum over k in Eqs. (7), (9), and (10) runs over all states in
the pairing window Ek < Ecutoff . In Ref. [48] empirical pairing
gap parameters

�emp
n = 4.8

N1/3
MeV, �emp

p = 4.8

Z1/3
MeV (11)

have been determined by a fit to experimental data on neutron
and proton gaps in the normal deformed minimum.

These empirical gap parameters form the basis for the
definition of the strength parameters Gτ in the current paper.
We use the following expressions [50] in the calculations:

A · Gn = Gn
1 − Gn

2
N − Z

A
MeV, (12)

A · Gp = G
p

1 + G
p

2

N − Z

A
MeV. (13)

First, by using empirical gap parameters of Eq. (11), the values
Gn(Z,N) and Gp(Z,N) are obtained for the ground states of
all even-even nuclei in the Z = 112–126, N − Z = 48–62
region. Then, the parameters Gn

1, Gn
2, G

p

1 , and G
p

2 are defined
by the least-squares fit to the set of the Gn(Z,N) and
Gp(Z,N ). Their values depend on the parameter set of the
Lagrangian and they are given in Table III. In this way we
have strength parameters for the effective pairing interaction
depending in a smooth way on the neutron and proton numbers
and, because of the changing level density, the gap parameters
derived from those values show fluctuations as a function of
the particle numbers. Note that, similarly to Ref. [1], the cutoff
energy for the pairing window is set to Ecutoff = 120 MeV.

The calculations are performed by successive diagonal-
izations using the Broyden method [58] and the method of
quadratic constraints [47]. We have also implemented the
augmented Lagrangian method [59] for constraints in our
computer codes, but we did not find any clear advantage of
this method over the method of quadratic constraints for the
type of potential energy surfaces (PES) we are dealing with.
Starting from the three multipole operators

Q̂20 = 2z2 − x2 − y2, (14)

Q̂22 = x2 − y2, (15)

Q̂30 = z(2z2 − 3x2 − 3y2), (16)
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FIG. 1. (Color online) Potential energy surface of the 240Pu
nucleus with the NL3* parametrization of the RMF Lagrangian.
The energy difference between two neighboring equipotential lines is
equal to 0.5 MeV. The pink dashed line with solid circles shows the
lowest-energy solution as a function of β2. Small red stars show the
positions of deformation points at which the numerical results were
obtained. The figure is based on the results of Ref. [1]. Further details
are given in the text.

we calculate in the following investigations three types
of potential energy surfaces, using three types of constraints.

First, we restrict ourselves to axially symmetric configu-
rations with reflection symmetry, abbreviated throughout the
paper by (A). Here we use the computer code DIZ [60] based
on an expansion of the Dirac spinors in terms of harmonic
oscillator wave functions with cylindrical symmetry and we
minimize

〈H 〉 + C20(〈Q̂20〉 − q20)2, (17)

where 〈H 〉 is the total energy, 〈Q̂20〉 denotes the expectation
values of the mass quadrupole operators, q20 is the constrained
value of the multipole moment, and C20 is the corresponding
stiffness constant [47].

In the next step, abbreviated throughout the paper by (T), we
use the triaxial computer code DIC [23] with the D2 symmetry
based on an expansion of the Dirac spinors in terms of a
Cartesian oscillator basis and by imposing constraints on axial
and triaxial mass quadrupole moments we minimize

〈H 〉 +
∑

μ=0,2

C2μ(〈Q̂2μ〉 − q2μ)2. (18)

In addition, starting from the axial reflection-symmetric
computer code DIZ of Ref. [60], we have developed an axial
reflection-asymmetric (octupole deformed) code DOZ. It is
used for a study of the impact of axial octupole deformation
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FIG. 2. (Color online) The difference between experimental and calculated heights of inner fission barriers as a function of neutron number
N . The results of the calculations are compared to estimated fission barrier heights given in the RIPL-3 database [49], which is used for this
purpose in the absolute majority of theoretical studies on fission barriers in actinides. The results of the calculations within the microscopic +
macroscopic method (MM(Dobrowolski) [6] and MM(Möller) [7]), covariant density functional theory (CDFT [1]), and density functional
theory based on the finite-range Gogny force (Gogny DFT [14]) are shown. Thick dashed lines are used to show the average trend of the
deviations between theory and experiment as a function of neutron number. The average deviation per barrier δ (in MeV) is defined as
δ = ∑N

i=1 |Bi
f (th) − Bi

f (exp)|/N , where N is the number of the barriers with known experimental heights, and Bi
f (th) [Bi

f (exp)] are calculated
(experimental) heights of the barriers. Long-dashed lines represent the trend of the deviations between theory and experiment as a function of
neutron number. They are obtained via linear regression based on a least-squares fit.
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TABLE IV. The definition of pairing in the studies of inner fission barriers within the last decade. The first column shows the first author
and the reference. The pairing model (BCS or HFB) and type of pairing (G: seniority pairing with fixed strength G, δ: zero-range δ force, and
Gogny: finite-range Gogny force) are shown in column 2. Column 3 shows either the region of the nuclear chart or the nucleus in which the
fitting of the parameters of the pairing force has been performed in the case of constant G and/or δ pairing. Column 4 shows whether particle
number projection (PNP) by means of the Lipkin-Nogami method has been used in the calculations. Column 5 indicates whether the systematic
calculations, covering all even-even actinide nuclei with measured inner fission barriers, have been performed (Yes) or not (No). In the case
of restricted calculations, the number of nuclei, for which the calculations have been performed is shown. Column 6 is similar to column 5
but for SHE. The calculations are considered to be systematic if they cover a significant range of proton and neutron numbers. The letter “T”
(“A”) in column 7 indicates that the triaxial deformation is (is not) included in the calculations. Column 8 shows the pairing window used in
the calculations with constant G and δ pairing; no pairing window is used in the calculations with the Gogny force. Note that it is not always
possible to extract these details from the original publications or references quoted therein. In these cases, the relevant box of the table is empty.

Author [reference] Pairing model Fitting region PNP Actinide SHE A/T Ecutoff

1 2 3 4 5 6 7 8

Macroscopic + microscopic method
Möller 2009 [7] BCS(G) [48] Yes Yes Yes T
Dobrowolski 2007 [6] BCS(G) No Yes 2 T
Kowal 2010 [9] BCS(G) Z � 84 [51] No Yes Yes T

Extended Thomas-Fermi plus Strutinsky integral
Dutta 2000 [10] BCS(δ) No 5 5 T

Skyrme density functional theory
Bonneau 2004 [12] BCS(G)/BCS(δ) 254No/A ∼ 178 No Yes No A/Ta 6 MeV
Bürvenich 2004 [52] BCS(δ) across nuclear No Yes Yes A [53]b

chart [53]
Samyn 2005 [54] HFB(δ) Z ∈ (92, 98)c Yes Yes Yes T different Ecutoff

d

Staszczak 2006 [13] BCS(G) 252Fm and Ref. [55] No Yes Yes T lowest Z (N ) statese

Staszczak 2007 [56] BCS(G)/BCS(δ) 252Fm No Yes Yes T lowest Z (N ) statese

Gogny density functional theory
Warda 2002 [3] HFB(Gogny) No No 5 No T No
Delaroche 2006 [14] HFB(Gogny) No No Yes No T No

Covariant density functional theory
Bender 1998 [11] BCS(δ) across nuclear No No 3f T [53]b

chart [53]
Bürvenich 2004 [52] BCS(δ) across nuclear No Yes Yes A [53]b

chart [53]
Karatzikos 2010 [57] RHB(Gogny)g No No Yes Yes A No
Abusara 2010 [1] BCS(G) Z ∈ (90, 100) No Yes No T 120 MeV

N − Z ∈ (42, 66)

aThe calculations with allowance for triaxial deformation have been performed only for four nuclei.
bThe pairing-active space 	q is chosen to include approximately one additional oscillator shell of states above the Fermi level.
cThe pairing force has been fitted to absolute masses. As a result, it is considerably stronger than the one fitted to even-odd mass differences [54].
dThe single-particle states in the pairing window εF ± Ecutoff are included. Ecutoff = 17 MeV for the BSk6, BSk7, and BSk8 Skyrme forces,
Ecutoff = 15 MeV for the BSk2 force, Ecutoff = 16.5 MeV for the BSk9 force, and Ecutoff = 5 MeV for the SLy6 force.
eThe pairing-active space consisted of the lowest Z (N ) proton (neutron) single-particle states.
fThe calculations with allowance for triaxial deformation have been performed only for a single nucleus.
gRHB is the relativistic Hartree-Bogoliubov approach.

on the inner and outer fission barriers. The calculations in this
axially symmetric octupole code, abbreviated throughout this
paper by (O), vary the function

〈H 〉 +
∑

μ=2,3

Cμ,0(〈Q̂μ,0〉 − qμ,0)2. (19)

It was checked that the numerical results obtained for
axially symmetric solutions in the A, T, and O calculations
differ by no more than 50 keV for all deformations of
interest.

The truncation of the basis is performed in all these
calculations in such a way that all states belonging to the shells
up to NF = 20 fermionic shells and NB = 20 bosonic shells
are taken into account. This truncation scheme has been tested
and used in the actinides in Ref. [1]. Although the calculations
in such a truncation scheme provide sufficient numerical
accuracy, they are also very computationally demanding (see
Ref. [1] for details). This is the reason why we treat the
pairing channel in the present triaxial RMF calculations in
the BCS approximation despite the fact that the triaxial
cranked relativistic Hartree + Bogoliubov (RHB) approach
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FIG. 3. (Color online) The same as in Fig. 2 but as a function of proton number Z.

with finite-range Gogny forces in the pairing channel was
developed in the late 1990s [61,62]. RMF + BCS calculations
are less time consuming and more stable (especially, in the
saddle-point region) than the RHB calculations.

Figure 1 shows an example of the distribution of defor-
mation points on a PES at which the numerical results were
obtained using these constraints in a triaxial (T) calculation.

All mean-field calculations for fission barriers with tri-
axiality included are computationally demanding. This is
the reason why simple pairing interactions (either seniority
pairing with constant strength G or the zero-range δ-force)
and the BCS framework are used in the majority of the
calculations (see Table IV). The overview given in this
table focuses mainly on the investigations including triaxial
deformation and on the most recent and comprehensive studies
within the specific theoretical frameworks. In particular, the
studies of fission barriers in superheavy elements (SHE) are
included irrespective of whether or not the calculations include
triaxial deformation. This table shows that the majority of
studies neglect particle number projection and use different
prescriptions for the size of the pairing window. The impact
of these prescriptions on the height of the inner fission barrier
has recently been investigated in Ref. [57].

The inclusion of triaxiality has improved the accuracy of
the description of the inner fission barriers in actinides in all
state-of-the-art models [1,6,7,14]. Figures 2 and 3 show the
differences between experimental and calculated heights of
inner fission barriers obtained in different theoretical models
as a function of neutron and proton numbers, respectively.
Note that this comparison covers only results of systematic
triaxial calculations which simultaneously include even-even
Th, U, Pu, Cm, and Cf nuclei. To our knowledge, no such
calculations have been published with DFT based on Skyrme
forces. As a result, these figures cover all existing systematic
triaxial studies of inner fission barriers in actinides.

The δ values displayed on the panels of Figs. 2 and 3
show the average deviation from experiment for the calculated
heights of inner fission barriers. One can see that they are
of the same magnitude in the different approaches and minor
differences between the approaches in the δ values are not

important given the considerable uncertainties in the extraction
of inner fission barrier heights from experimental data as
seen, for example, in the differences of the compilations of
Refs. [49,65].

However, the similarity of the average trends of these
deviations (shown by thick dashed lines in Figs. 2 and 3) as
a function of neutron and proton numbers is more important
given the differences in the underlying mean fields and in the
treatment of pairing correlations. At present, it is difficult to
find a clear explanation for these trends. Although differences
in the treatment of pairing correlations (BCS with monopole
pairing and of different pairing windows in the CDFT [1] and
MM [6,7] calculations versus the Hartree-Fock-Bogoliubov
framework based on the D1S force in Gogny DFT [14]) can
contribute to deviations between theory and experiment [57],
it is quite unlikely that they are responsible for the observed
trends of the deviations.

III. RESULTS AND DISCUSSION

The nucleus 292120 is predicted to be a spherical doubly
magic nucleus in CDFT [11,66]. Its potential energy surface
in the β-γ plane is shown in Fig. 4. It is interesting to compare
it with the PES of the nucleus 240Pu shown in Fig. 1. These
two potential energy surfaces are representative examples of
typical potential energy surfaces in actinides and superheavy
nuclei. The gross structure of these two is defined by the fact
that the total energy is generally increasing when moving away
from the γ = 0◦ axis—so it looks like a canyon. However,
there are local structures inside the canyon which define the
differences between the two mass regions with respect to the
impact of triaxiality on the inner and outer fission barriers.

In 240Pu, a large hill is located at the axial shape β2 ∼ 0.5
inside a canyon. As a consequence, the fission path from the
normal deformed minimum initially proceeds along the γ =
0◦ axis, then bypasses the axial β2 = 0.5 hill via a path with
γ ∼ 10◦, and then proceeds along the bottom of the canyon
on an axially symmetric path again. As a result of this bypass,
the inner fission barrier heights of the actinides are lowered by
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FIG. 4. (Color online) Potential energy surfaces of selected nuclei. The energy difference between two neighboring equipotential lines is
equal to 0.5 MeV. The saddles along the Ax, Tr-A, and Tr-B fission paths are shown by solid circles, triangles, and squares, respectively. The
solid diamonds show the outer fission barrier saddles. The saddles are defined via the immersion method [7], while the fission paths are defined
as minimum energy paths [63,64] which represent the most probable pathway connecting two minima via a given saddle. Note that in contrast
to other nuclei there are two possible fission paths for the outer fission barrier in the 300116 nucleus.
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1−4 MeV due to triaxiality [1]. However, the calculated outer
fission barriers of the actinides are not affected by triaxiality
[1].

The properties of the PES of the nucleus 292120, defining the
fission paths, are completely opposite to the case of 240Pu since
there are two triaxial hills and one axial one inside the PES
canyon of 292120. The two triaxial hills are located at moderate
deformations (β2 ∼ 0.35, γ ∼ ±30◦), while the axial hill is
superdeformed (β2 ∼ 0.75). The fission path (shown by a
red dashed line in Fig. 4) starts at a spherical shape, then
proceeds between two triaxial hills (β2 ∼ 0.35, γ ∼ 30 ◦),
and bypasses the axial hill at β2 ∼ 0.75 via a γ ∼ 7◦ path.
The γ -softness of the PES, which exists between the two
triaxial hills, has only a minor effect on the height of the inner
fission barrier; the triaxial solution is lower than the axial one
by 100–200 keV at β2 = 0.2–0.3 deformations (see Fig. 5).
However, this figure shows that along this fission path the
height of the inner fission barrier is not affected by triaxiality.

The second fission path shown by a solid red line starts at
a spherical shape and proceeds along the axially symmetric
γ = 60◦ axis, via a saddle point at (β2 ∼ 0.47, γ ∼ 21◦)
and then along the first fission path after second minimum.
The existence of the valley between the walls of the canyon
and triaxial hills at (β2 ∼ 0.35, γ ∼ ±30◦) is a necessary
condition for the existence of this path. This type of fission
path exists in a number of nuclei, so for convenience we will
call it a triaxial Tr-B fission path. The unusual physical feature
of this second path is the fact that initially the nucleus has
to be squeezed along the axis of symmetry, thus creating an
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FIG. 5. (Color online) Deformation energy curves for the Z =
120, N = 172 nucleus obtained with the NL3* parametrization.
The black solid, red dashed, and blue dot-dashed lines display the
deformation energy curves for the axially symmetric, triaxial, and
axial octupole deformed solutions. We show the deformation energy
curves for the last two solutions only in the range of β2 values where
it is lower in energy than the deformation energy curve of the axially
symmetric solution. Note that the Tr-B fission path via the saddle
at β2 = 0.47, γ = 26◦ (see text for details) is not shown since this
saddle is lower than the one of the Ax fission path only by 0.2 MeV
(see Table V); the results of Ref. [67] suggest that spontaneous fission
exploiting this path is less likely than the one along the Ax fission
path.

oblate nucleus with quadrupole deformation β2 ∼ −0.39. This
is contrary to the usual picture of fission where the prolate
or near-prolate nucleus is stretched out along the path of
increasing quadrupole deformation. Note that the saddle of this
fission path is only by 0.2 MeV lower than the saddle of the
first fission path (see Table V) and in addition it is much longer.
Therefore, by considering a dynamical calculation taking into
account the action integral along the entire fission path [67]
this path will probably not contribute much to the fission
probability.

Contrary to the actinides, the triaxiality has a considerable
impact on the shape and the height of the outer fission barrier,
which is lowered by ∼3 MeV in the 292120 nucleus (see Fig. 5).
Note that, in this nucleus, the lowering of the outer fission
barrier due to octupole deformation is substantially smaller
than the one due to triaxiality.

It is also evident that the landscape of the PES and the
existence of saddle points and valleys depends on the proton
and neutron numbers. This is clearly seen in Fig. 4 and in
Table V. In the Z = 120 isotopes, the increase of neutron
number up to N = 184 and beyond leads to the emergence
of an axial hill at β2 ∼ 0.2–25; this is clearly visible in the
nucleus 304120 in Fig. 4. Its existence in high-Z and neutron-
rich nuclei leads to the shift of the first fission path in the
deformation space. In lighter systems this path proceeds via
the axially symmetric saddle as, for instance, in the nucleus
292120 in Fig. 4. For heavier systems it starts at spherical
shape,1 proceeds along the axially symmetric γ = 60◦ axis up
to β2 ∼ 0.25, and then via a saddle point at (β2 ∼ 0.32, γ ∼
26◦), located between a triaxial (β2 ∼ 0.35, γ ∼ 28◦)2 and
an axial β2 ∼ 0.2 hill, to the axially symmetric superdeformed
minimum. This type of fission path exists in a number of
nuclei. We will label it as triaxial Tr-A for convenience. In
addition, there is a second triaxial path Tr-B via a saddle at
β2 ∼ 0.5, γ ∼ 22◦, which is similar to the one present in the
nucleus 292120.

The structure of the PES of the nucleus 300116 is similar to
the one of the nucleus 304120 in Fig. 4. The lowering of neutron
number below N = 184 in the nuclei under study leads to the
situation that the fission path via the axially symmetric inner
saddle (called Ax below) becomes energetically favored. This
is clearly seen in the PES of the 286116, 278112, and 290112
nuclei in Fig. 4 and in Table V.

It is clear that the landscape of the PES of superheavy nuclei
in the region of the inner fission barrier is more complicated
than in the case of the actinides. The energetically favored
fission path in the majority of these nuclei proceeds through
an axially symmetric saddle (see Fig. 4 and Table V). Only
in a few nuclei (304,306,308120, 300,302,304118, and 300116) is

1As discussed later, some of the nuclei have superdeformed ground
states. However, the calculated outer fission barriers are rather small
(∼ 2 MeV relative to the superdeformed minimum), which suggests
that these states are extremely unstable against fission. Thus, we start
the discussion from spherical or weakly (normal) deformed minima
which have better survival probability against fission.

2This hill is clearly visible when the energy difference between two
neighboring equipotential lines is set to 0.1 MeV (see Fig. 12 below).
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FIG. 6. (Color online) Deformation energy curves for the Z = 112, 114, and 116 nuclei obtained with the NL3* and DD-PC1
parametrizations of the RMF Lagrangian. Solid lines correspond to axial solutions with reflection symmetry (A), dashed lines to triaxial
solutions with reflection symmetry (T), and dotted lines to octupole deformed solutions with axial symmetry (O). Note that the T and O
solutions are shown only in the deformation range in which they are lower in energy than the axial solution.

the triaxial fission path Tr-A lower in energy than the axial
Ax fission path. The triaxial fission path Tr-B exists in the
majority of the nuclei apart from neutron-poor Z = 114 nuclei
and Z = 112 nuclei (see Fig. 4 and Table V). The energy of the
saddle point of this fission path is lower than the one of the first
fission path (either Ax or Tr-A) in a number of nuclei. However,
the results of calculations within the MM method [67] suggest
that, although triaxiality lowers the static fission barriers, it
plays a minor role in spontaneous fission of superheavy nuclei
with Z � 120. This is because a fission path via an oblate shape
and triaxial saddles is substantially longer compared to the
axially symmetric path, which leads to a significant reduction
of the penetration probability. However, this complexity of the
PES and the presence of two fission paths for the inner fission
barriers calls for finding the dynamical path along which the
fission process takes place in CDFT. Work in this direction is
in progress.

Figures 6 and 7 show deformation energy curves for several
isotopes with charge numbers Z = 112, 114, and 116 for
three classes of CDFT models. Experimental estimates of the

inner fission barrier heights were obtained for these nuclei
in Ref. [68]. The potential energy structure of these nuclei
is similar to the one seen in 292120 (Fig. 4); the presence of
two triaxial hills at moderate deformations (β2 ∼ 0.35, γ ∼
±30◦) defines two possible fission paths: one between the hills
(either Ax or Ax-Tr paths) and another between the hill and
the walls of the PES canyon (Tr-B path). The γ -softness of
the PES, which exists between the two triaxial hills, defines
whether the fission path passing between these two hills is
fully axially symmetric (Ax path) or has some degree of
triaxiality (Ax-Tr path). The Ax-Tr path is generally similar
to the Ax path but differs from it by the fact that moderate
triaxiality (γ � 10◦) appears at the saddle and along the
shoulder of the inner fission barrier. Although the heights of
the discussed hills in the region of inner fission barrier depends
on the parametrization, the observed features of the potential
energy surfaces and fission paths are rather independent of the
parametrization (Fig. 8). Tables V, VI and VII show that the
saddle point along this path has triaxiality only in the case of
the two nuclei 292,294114. However, even in these cases the Ax
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FIG. 7. (Color online) The same as Fig. 6 but for the NL3* and DD-ME2 parametrizations.

saddle is only 50–150 keV higher than the Tr-A saddle. Thus,
similarly to the 292120 nucleus, triaxiality only marginally
affects the inner fission barriers. Note that the ground states
are somewhat deformed in these nuclei [see Figs. 6 and 9(a)].

For these nuclei triaxiality has a considerable impact on
the shape and height of the outer fission barriers; the decrease
of the heights of the outer fission barriers due to triaxiality
is typically in the range of 1.5–2.0 MeV and it depends on
the particle number and on the RMF parametrization. Note
that the outer fission barriers are affected also by octupole
deformation. In the Z = 112 nuclei, the triaxial saddle is lower
in energy than the octupole saddle. The situation is reversed in
the Z = 114, 116 nuclei.

Among the different classes of CDFT models, the DD-ME2
parametrization always gives the highest values for the inner
and outer fission barrier heights. They are (on average) by
1 and 1.5 MeV higher than the ones obtained in the NL3*
and the DD-PC1 parametrizations. The heights and the shapes
of the inner fission barriers are very similar for the NL3*
and DD-PC1 parametrizations. The outer fission barriers also
come close to each other in these two parametrizations in
axial [A], triaxial [T], and octupole [O] (for Z = 112 nuclei)
calculations. However, with Z increasing from 114 to 116
the difference between the results of octupole calculations

increases; the difference between the energies of the octupole
saddles obtained in the NL3* and DD-PC1 parametrizations
reaches 2 MeV in the Z = 116 nuclei (see Fig. 6).

There is only one experimental work [68] where estimates
on the heights of inner fission barriers in superheavy nuclei
with Z = 112, 114, and 116 have been obtained. Unfortunately,
experimentally the fission barriers are accessible only indi-
rectly and a model-dependent analysis is used to obtain these
quantities, which causes an ambiguity in the comparison with
theoretical results. Even in the actinide region where the fission
barrier heights were extracted from a number of independent
experiments with high statistics (see, for example, Ref. [7]), a
typical uncertainty in the experimental values, as suggested by
the differences among various compilations, is of the order of
±0.5 MeV [54]. These uncertainties are expected to be higher
in superheavy nuclei since the estimates of Ref. [68] are based
on experimental data represented by low statistics and on a
method which differs from the methods used in the analysis
of fission barrier heights in actinides. In addition, there is no
independent confirmation of the inner fission barrier height
estimates of Ref. [68]. The interpretation of experimental data
based on cross sections in terms of fission barrier heights
becomes even more complicated when the fission path has a
double-hump structure, which according to many calculations

024314-10



FISSION BARRIERS IN COVARIANT DENSITY . . . PHYSICAL REVIEW C 85, 024314 (2012)

γ=60 γ=30

γ=
0

β2cos(γ+30)

β 2si
n(

γ+
30

)

DD−PC1

0.25 0.5

0.25

0.5

−2

−1

0

1

2

3

4

5

6

7
γ=60 γ=30

γ =
0

β2cos(γ+30)

β 2
si

n(
γ+

30
)

DD−ME2

0.25 0.5

0.25

0.5

−2

−1

0

1

2

3

4

5

6

7

γ=60 γ=30

γ
=

0

β2cos(γ+30)

β 2
si

n(
γ+

30
)

NL3*

0.25 0.5

0.25

0.5

−2

−1

0

1

2

3

4

5

6

7

FIG. 8. (Color online) The same as in Fig. 4 but for the nucleus 294116. The results are shown for the parametrizations NL3*, DD-PC1, and
DD-ME2. The energy difference between two neighboring equipotential lines is equal to 0.2 MeV.

may be the case in superheavy nuclei. The widening of the
barrier due to the second hump (or its remnant) would require
the lowering of the inner fission barrier height; this possibility
has not been taken into account in the analysis of Ref. [68].
Based on this discussion it is clear that the level of confidence
of fission barrier height estimates for superheavy nuclei is
significantly lower than the one for the actinides.

According to Ref. [68], the estimated lower limits for
fission barrier heights in even-even Z = 112, 114, and 116
nuclei shown in Figs. 6 and 7 are 5.5, 6.7, and 6.4 MeV,
respectively. Our results for the heights of the inner fission
barrier in these nuclei along the Ax and Ax-Tr fission paths
are always smaller than the experimental data by 1–3 MeV.
The saddle along the Tr-B fission path is somewhat lower in
energy (by 0.4–0.7 MeV) than the saddle along the Ax-Tr path
in 292,294116 nuclei (see Table VII). However, as discussed
above (based on the results of Ref. [67]) it is unlikely
that the fission predominantly proceeds along the Tr-B path

considering especially (i) that the gain in saddle-point energy
compared with the Ax-Tr path is small and (ii) the Tr-B path
is substantially longer compared with the Ax-Tr path.

Given the discussion above, it is not clear at this moment
how serious the discrepancy between calculations and exper-
imental estimates is. However, the results of the calculations
suggest one possible way to increase the heights of inner fission
barriers. Potential energy surfaces in the ground-state region
of these nuclei are extremely soft (see Figs. 6 and 7). For such
nuclei, the correlations beyond mean field (taken into account,
for example, by the generator coordinate method) can lower
the energy of the ground state by a few MeV without affecting
much the barrier top, thus effectively increasing the height of
the inner fission barrier.

Systematic calculations of inner fission barriers have
been performed for even-even Z = 112–120 nuclei with
N − Z = 52–68 using the NL3* parametrization. This is the
same parametrization which has been used in systematic
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TABLE V. The heights of axially symmetric (Ax) and triaxial
(Ax-Tr, Tr-A, and Tr-B) saddle points (in MeV) with respect to
spherical or weakly (normal) deformed minima and their deforma-
tions. Note that only the quadrupole deformation is given for the axial
saddle. Columns 4 and 5 show the values for the saddles of either
Ax-Tr or Tr-A fission paths. The asterisk to the fission barrier height
in column 4 indicates that the values for the Ax-Tr path are displayed;
the absence of the asterisk implies that the values for the Tr-A path
are shown. Note that triaxial saddles are shown only in the cases when
their heights are lower than those of the axial saddle.

Nucleus BAx
f β2 BX

f (β2,γ ) BTr−B
f (β2,γ )

1 2 3 4 5 6 7

Z = 120 nuclei
308120 5.11 0.20 3.04 (0.34,26◦) 2.23 (0.48,22◦)
306120 5.00 0.20 3.46 (0.33,26◦) 2.02 (0.50,22◦)
304120 5.46 0.21 4.51 (0.33,26◦) 3.30 (0.51,21◦)
302120 5.37 0.19 5.00 (0.33,25◦) 3.93 (0.50,24◦)
300120 5.35 0.32 4.93∗ (0.31,11◦) 4.08 (0.50,26◦)
298120 5.35 0.33 5.02∗ (0.33,12◦) 4.27 (0.49,28◦)
296120 5.67 0.34 5.57∗ (0.35,10◦) 4.92 (0.50,27◦)
294120 5.27 0.34 4.73 (0.50,27◦)
292120 5.82 0.36 5.61 (0.50,27◦)

Z = 118 nuclei
304118 4.97 0.21 3.92 (0.33,26◦) 3.03 (0.51,26◦)
302118 5.07 0.23 4.57 (0.33,26◦) 3.41 (0.51,25◦)
300118 5.18 0.28 4.94∗ (0.27,15◦) 3.37 (0.51,26◦)
298118 5.07 0.32 4.72∗ (0.32,12◦) 3.67 (0.50,27◦)
296118 5.00 0.32 4.73∗ (0.33,10◦) 3.87 (0.50,26◦)
294118 4.95 0.32 4.82∗ (0.33,10◦) 4.12 (0.50,25◦)
292118 4.75 0.34 4.35 (0.50,23◦)
290118 4.15 0.36 4.08 (0.49,24◦)
288118 3.28 0.36

Z = 116 nuclei
300116 4.83 0.26 4.48 (0.35,25◦) 3.13 (0.52,22◦)
298116 4.78 0.28 4.57 (0.30,15◦) 3.29 (0.51,23◦)
296116 4.53 0.32 4.32∗ (0.32,11◦) 3.35 (0.51,24◦)
294116 4.37 0.32 4.22∗ (0.33,7◦) 3.40 (0.50,25◦)
292116 3.98 0.33 3.93∗ (0.34,7◦) 3.39 (0.48,26◦)
290116 3.39 0.34 3.47 (0.48,27◦)
288116 3.55 0.34
286116 3.43 0.36
284116 3.40 0.37

Z = 114 nuclei
296114 4.65 0.28 4.43∗ (0.31,15◦) 3.42 (0.49,24◦)
294114 4.19 0.29 4.14∗ (0.31,10◦) 3.08 (0.49,25◦)
292114 3.81 0.32 3.18 (0.48,25◦)
290114 3.40 0.34 3.38 (0.48,26◦)
288114 3.52 0.32
286114 3.32 0.33
284114 3.07 0.38
282114 3.08 0.42
280114 3.20 0.42

calculations of fission barriers in actinides [1] and which
provides 0.76 MeV average deviation from experiment for
the heights of inner fission barriers in these nuclei. For a
given proton number Z a sequence of nine even-even nuclei
is selected such that the middle nucleus of this sequence

roughly corresponds to an experimentally observed nucleus (or
a nucleus which is expected to be observed in the near future).
This crudely outlines the region which may be experimentally
studied within the next one or two decades. The results of these
calculations are summarized in Table V and VI.

Based on the results of Ref. [67], it is reasonable to
neglect the path Tr-B since it is substantially longer compared
with other paths, which leads to significant reduction of the
penetration probability. In Fig. 9(b) we consider the evolution
of the heights of the inner fission barriers as a function of
the neutron number N . The Z = 112, 114, and 116 isotope
chains show a generally increasing trend for the barrier heights
with increasing neutron number for N � 172. Figure 9(a)
suggests that the origin of this trend can be traced back to the
deformation of the ground state. For small neutron numbers
these nuclei are deformed in the ground state. However,
they gradually become spherical when approaching N = 184
because there is a spherical shell gap at this neutron number
(see, for example, Fig. 28 in Ref. [66]). The negative shell
correction energy at the ground state is larger in absolute value
in the vicinity of the N = 184 spherical shell gap than at
lower neutron numbers, where the ground state is deformed
and characterized by a larger level density in the vicinity of the
Fermi level. The level density (and, as a consequence, the shell
correction energy) at the saddle point of the inner fission barrier
does not change so drastically as the one at the ground state. As
a result, the heights of inner fission barriers, which are defined
as the energy differences between the binding energies of the
ground state and saddle point, show the observed features.
Note that in these nuclei the energies of the Ax and Ax-Tr
saddles differ by at most 200 keV; the difference between the
energies of the Ax and Tr-A saddles does not exceed 400 keV.

The nuclei with Z = 118 and 120 have, with the exception
of the nucleus 288118, spherical minima due to the presence
of the Z = 120 spherical shell gap. The nucleus 292120 has
the highest value for the fission barrier among all nuclei under
investigation. This is connected with its doubly magic nature
in CDFT. In the isotope chain with Z = 120, moving away
from the N = 172 shell closure, shell effects connected with
spherical shape become less pronounced and this leads to a
decrease of the inner fission barrier, because the barrier height
in these nuclei is defined with respect to the spherical ground
state. Apart from the lightest two and the heaviest Z = 118

TABLE VI. The same as Table V but for Z = 112 nuclei.

Nucleus BAx
f β2 BX

f (β2,γ ) BTr-B
f (β2,γ )

1 2 3 4 5 6 7

Z = 112 nuclei
292112 3.94 0.30 3.64 (0.48,27◦)
290112 3.48 0.31 3.44 (0.47,26◦)
288112 3.07 0.31
286112 2.90 0.32
284112 2.65 0.32
282112 2.35 0.41
280112 2.70 0.43
278112 3.06 0.44
276112 3.34 0.44
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TABLE VII. The same as in Table V but only for nuclei where ex-
perimental estimates of inner fission barrier heights exist. The results
of calculations with the DD-PC1 and DD-ME2 parametrizations are
presented.

Nucleus BAx
f β2 BX

f (β2,γ ) BTr-B
f (β2,γ )

DD-PC1 parametrization
294116 3.64 0.31 3.47* (0.32,10◦) 2.58 (0.48,27◦)
292116 3.63 0.32 3.55* (0.32,5◦) 2.83 (0.49,26◦)
290114 3.42 0.34
288114 3.38 0.32
286112 3.02 0.31
284112 2.75 0.31

DD-ME2 parametrization
294116 5.36 0.32 5.20* (0.32,8◦) 4.45 (0.48,25◦)
292116 4.77 0.32 4.68* (0.32,5◦) 4.24 (0.48,27◦)
290114 4.33 0.34
288114 4.18 0.32
286112 3.62 0.31
284112 3.12 0.31

isotopes, the fission barrier heights of the Z = 118 chain are
nearly constant as a function of neutron number and they are
close to 4.5 MeV. Note that in these nuclei the energies of the
Ax and Ax-Tr saddles differ only by 100−400 keV. However,
the difference between the energies of the Ax and Tr-A saddles
can reach 2 MeV (as in the case of the nucleus 308120; see
Table V).

It is important to mention that the valley between the axial
β2 ∼ 0.2 and triaxial β2 ∼ 0.40, γ ∼ 25◦ hills leading to a
Tr-A saddle is rather shallow. Its depth with respect to the
tip of the triaxial hill varies between 100 and 300 keV. The
latter value is obtained, for example, in the 302120 nucleus (see
Fig. 12 below).

It is interesting to compare the current results with the
ones obtained in other models. The results of Skyrme DFT
calculations of Ref. [13] for the N = 184 isotones show that
the impact of triaxiality on the inner fission barrier is small
for Z = 112, but it increases with increasing Z (see Fig. 4
in Ref. [13]). The lowering of the inner fission barrier due to
triaxiality is around 2 MeV for Z = 120 and exceeds 3 MeV
for Z = 126. In the ETFSI model calculations [10] the inner
fission barriers are lowered due to triaxiality in the nuclei (Z =
112, N = 182) and (Z = 114, N = 184) by 0.5 and 1.1 MeV,
respectively. In the macroscopic + microscopic calculations of
Ref. [9] the largest reduction of the inner barrier height due to
triaxiality is about 2 MeV and it appears in the region around
Z ≈ 122, N ≈ 180 (see Fig. 2 in Ref. [9]).

As discussed in Ref. [1] on the example of actinide
nuclei, the reduction of the inner fission barrier height due
to triaxiality is caused by the level densities in the vicinity
of the Fermi level, which are lower at triaxial shape than at
axial shape. The different locations of the “magic” shell gaps
in superheavy nuclei in the macroscopic + microscopic model
(at Z = 114, N = 184), in Skyrme DFT (predominantly at
Z = 126, N = 184), and in CDFT (at Z = 120, N = 172)
result in different deformed single-particle structures at the
deformations typical for the saddles of the inner fission barrier.
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FIG. 9. (Color online) (a) The deformations of the ground states
of even-even Z = 112–120 nuclei as a function of neutron number.
(b) The energies of axial (large solid symbols, thick lines) and triaxial
(either Ax-Tr or Tr-A; shown by small open symbols and thin lines)
saddles with respect to the spherical or weakly (normal) deformed
minima in these nuclei as a function of neutron number. Note that the
same type of symbols is used for axial and triaxial saddles in a given
isotope chain.

This is one of the sources of the differences in the predictions
of different models.

We have to keep in mind, however, that we use in
this investigation a seniority-zero pairing force with a fixed
cutoff energy of Ecutoff = 120 MeV. It has been shown in
Ref. [57] that pairing correlations play an important role for the
calculation of the fission barriers and that even if the strength of
the pairing force is adjusted to experimental gap parameters at
the ground state, the range of the pairing force has an influence
on the height of the barrier. This means that for zero-range
forces and for the seniority-zero forces the barriers depend
on the cutoff energy. It also has been shown in Ref. [57] that
the parameter set DD-ME2 in connection with the finite-range
Gogny force D1S in the pairing channel produces in axial
symmetric calculations in most of the actinide nuclei inner
barriers which are too high as compared with experiment (see
Fig. 9 of Ref. [57]) and that it produces for the superheavy
elements with Z = 112, 114, and 116, where experimental
estimates are available [68] in axially symmetric calculations
barriers which are in rather good agreement with those values
(see Fig. 10 of Ref. [57]). Of course, so far, there exist no
relativistic triaxial calculations with the finite-range Gogny
force in the pairing channel and full Gogny calculations [14]
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FIG. 10. (Color online) The heights of outer fission barriers
of even-even Z = 112–120 nuclei relative to spherical or weakly
(normal) deformed minima as a function of neutron number. The
results of calculations of type A (axial), T (triaxial), and O (octupole)
obtained with the NL3* parametrization are presented.

are hard to compare because of the different spin-orbit force
used in this model. We have, however, to keep in mind
that triaxiality reduces the barriers in the actinides, but not
in the superheavy elements with Z = 112, 114, and 116.
Therefore, at the moment, we can only conclude that for a final
comparison with the experimental data we have to wait for full
RHB calculations or at least RMF + BCS calculations with the
finite-range Gogny force in the pairing channel. Investigations
in this direction are in progress.

It is well known that reflection-asymmetric (octupole
deformed) shapes become important at the second fission
barrier and beyond (see Refs. [2,7] and references therein).
Our calculations indicate that triaxiality can play a similarly
important role at the outer fission barriers. Usually, the
triaxiality of these barriers is not mentioned in the publications.
To our knowledge, it is only discussed in Ref. [6] that nonaxial
degrees of freedom play an important role in the description
of outer fission barriers of actinides. Figure 10 compares the
energies of outer barrier saddle points as obtained in axial
reflection-symmetric (A), triaxial (T), and axial reflection-
asymmetric (octupole deformed) (O) calculations. One can see
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FIG. 11. (Color online) The same as in Fig. 5 but for the nuclei
298120 and 306120. Note that for simplicity only the axial solution (A)
is shown at β2 < 0.5.

that the inclusion of triaxiality or octupole deformation always
lowers the outer fission barrier. The underlying shell structure
clearly defines which of the saddle points (triaxial or octupole
deformed) is lower in energy. For example, the lowest saddle
point is obtained in triaxial calculations in proton-rich nuclei
(N < 174). In contrast, the lowest saddle point is obtained in
octupole deformed calculations in neutron-rich nuclei (N >

174). Note that the decrease of the saddle-point energy by
octupole deformation or triaxiality reaches 3 MeV in some
nuclei. Thus, one can conclude that, due to the structure of the
PES in the fission path valley, we observe in the superheavy
region a situation opposite to that of actinide nuclei, where
the triaxiality has no impact on the outer fission barriers. Our
results also suggest that in some superheavy nuclei (mostly
in the nuclei where the deformation energy curves of the A
and O calculations are similar in energy) the combination of
two deformations (triaxiality and odd-multipole deformations)
may be important in the definition of the fission path for
β2 � 0.5. The CDFT calculations with both deformations
included are at present not yet possible, but they require further
investigations.

Figure 11 shows that some nuclei are superdeformed in the
ground state. A summary for such nuclei is given in Table VIII.
Whether these states are stable or metastable should be defined
by the height and the width of the outer fission barrier. The
current calculations show that in many nuclei this barrier is
appreciable in the axial calculations of type A. However, the
inclusion of triaxial or octupole deformation decreases this
barrier substantially, so it is around 2 MeV in the majority
of the nuclei. This low barrier would translate into a high
penetration probability for spontaneous fission, such that most
likely these superdeformed states are metastable. Calculations
of the spontaneous fission half-lives from spherical or weakly
deformed and superdeformed minima are needed in order
to decide which of these minima is more stable against
fission. Table VIII shows that the saddle point obtained in
octupole deformed calculations (O) is the lowest in energy in
most of the cases. Only in proton-rich 294120 and 290,292118
nuclei are the saddle points of triaxial calculations (T) the
lowest.
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TABLE VIII. A summary of the nuclei in which the superde-
formed minimum is the lowest in energy. The energies of outer fission
barrier saddle points with respect to this minimum, as obtained in axial
(BA

f -II ), triaxial (BT
f -II ) and octupole (BO

f -II ) deformed calculations,
are shown in columns 3, 4, and 5, respectively. For each nucleus,
the outer saddle point with the lowest energy is shown in bold. The
excitation energies Eexc of spherical or weakly (normal) deformed
minima with respect to the superdeformed minima are shown in
column 2. The graphical explanation of these quantities is also given
in Fig. 11.

Nucleus Eexc BA
f -II BT

f -II BO
f -II

1 2 3 4 5

Z = 120 nuclei
308120 4.84 4.52 2.75 1.62
306120 4.26 4.36 3.00 1.82
304120 3.48 4.49 3.57 2.07
302120 2.89 5.30 3.65 2.55
300120 2.60 6.18 3.82 2.61
298120 1.99 5.71 3.38 2.25
296120 1.72 4.87 2.94 2.52
294120 0.62 4.63 2.24 2.71

Z = 118 nuclei
304118 2.68 2.41 2.14 1.31
302118 2.92 3.58 2.42 1.42
300118 1.78 5.16 3.40 2.20
298118 1.70 5.34 3.54 2.34
296118 1.48 5.17 3.15 2.26
294118 1.15 4.99 2.82 2.35
292118 0.69 4.58 2.28 2.59
290118 0.40 4.03 1.61 2.60

Z = 116 nuclei
300116 0.92 2.76 2.60 1.75
298116 0.83 3.98 2.95 1.88

A superdeformed minimum exists also in the doubly magic
nucleus 292120 at a low excitation energy of approximately
0.6 MeV (see Fig. 5). This is definitely not an artifact of
the model under consideration, since similar minima exist
also in axial relativistic Hartree-Bogoliubov calculations with
the DD-ME2 parametrization with Gogny D1S forces in
the pairing channel (see Fig. 8 in Ref. [57]). Its calculated
excitation energy depends on the actual strength of pairing
and varies between 0 and 2 MeV.

It is interesting to compare our results for the structure
of the outer fission barriers with those obtained in the axial
RMF + BCS model (with and without reflection symmetry)
of Ref. [52], in which the NL3 and NL-Z2 parametrizations
were employed. Similar to our calculations, the superdeformed
minima exist in the calculations of Ref. [52] (see Fig. 5 in
this reference) without octupole deformation. However, in the
calculations of Ref. [52] with the NL-Z2 parametrization,
the heights of outer fission barriers with respect to the
superdeformed minimum are lower by approximately 2 MeV
compared to our calculations. As a consequence, the inclusion
of octupole deformation completely eliminates the outer
fission barriers, leading to results contradicting ours. On the
other hand, the results of the calculations of Ref. [52] (see
Fig. 6 in this reference) for a few selected nuclei based on
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FIG. 12. (Color online) The same as in Fig. 4 but for the nucleus
302120. In order to show the potential energy surface between the
axial β ∼ 0.2 and triaxial (β2 ∼ 0.40, γ ∼ 25◦) hills in greater detail
the energy difference between two neighboring equipotential lines is
set to 0.1 MeV and only one fourth of the deformation plane of Fig. 4
is shown.

the NL3 parametrization are very similar to ours; namely, the
ground state is superdeformed and the outer fission barrier
has a height of approximately 2.5 MeV. This result is not
surprising given that the NL3* parametrization is very similar
to NL3 [38]. However, the results of the calculations for a
few selected Z = 112, 114, and 116 nuclei shown in Figs. 6
and 7 reveal that the outer fission barriers survive in the
presence of octupole and triaxial deformation not only in the
NL3* parametrization but also in the DD-ME2 and DD-PC1
parametrizations. On average, the height of the outer fission
barrier in these nuclei is around 2 MeV. In contrast, the
calculations with the NL-Z2 parametrization in Ref. [52] show
that octupole deformation kills the outer fission barriers in
these nuclei (see Fig. 5 in this reference).

IV. CONCLUSIONS

We have carried out systematic investigations of fission
barriers in even-even superheavy nuclei with Z = 112–120
within covariant density functional theory including triaxial
shapes with D2 symmetry and octupole shapes with axial
symmetry. Three different classes of models with the state-of-
the-art parametrizations NL3*, DD-ME2, and DD-PC1 were
used in the calculations. Pairing correlations are taken into
account in the BCS approximation using seniority pairing
forces adjusted to empirical values of the gap parameters. The
following conclusions have been obtained:

(i) The low-Z and low-N nuclei in this region are charac-
terized by axially symmetric inner fission barriers. The
increase of the particle numbers leads to a softening
of the potential energy surfaces in the triaxial plane.
As a result, several competing fission paths in the
region of the inner fission barrier emerge in some of
the nuclei. Their importance in spontaneous fission
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can be defined only by taking into account the fission
dynamics more seriously. However, the results of
the calculations within the macroscopic + microscopic
method [67] suggest that the Tr-B path (and even
maybe the Tr-A one) may not be so important since
they are substantially longer compared with the axially
symmetric path which leads to a significant reduction
of the penetration probability.

(ii) Triaxiality lowers the outer fission barriers by 1.5–
3 MeV in reflection-symmetric calculations. In many
nuclei the lowering due to triaxiality is even more
important than the one due to octupole deformation,
which is known to be important for the outer fission
barriers and beyond from previous calculations (see
Ref. [52] and references therein). The underlying shell
structure clearly defines a triaxial (octupole) saddle that
is lower in energy for proton-rich nuclei with N < 174
(neutron-rich nuclei with N > 174).

(iii) On average, inner and outer fission barriers obtained for
the NL3* and DD-PC1 parametrizations are similar.
In contrast, the DD-ME2 parametrization produces
barriers which are 1–1.5 MeV higher than the ones
obtained with NL3* and DD-PC1.

(iv) The superdeformed minimum is the lowest in energy
in some of these nuclei. In the present calculations,
the outer fission barriers with respect to these minima
are about 2 MeV high. Both minima and barriers

are present in all three classes of the CDFT models.
It has to be investigated, however, whether these
superdeformed minima are stable with respects to more
general deformations not taken into account so far.

The comparison of our results with those of nonrelativistic
models clearly shows that CDFT predictions for the heights of
inner fission barriers in the superheavy region with a seniority-
zero pairing force still remain on the lower end among
nuclear structure models used so far. Only axially symmetric
calculations with the finite-range Gogny force D1S in the
pairing channel can reproduce the estimates of the inner fission
barrier heights of Ref. [68]. Given the uncertainties of these
estimates, investigation of other experimental observables that
strongly depend on fission barrier heights, especially fission
half-lives and β- or electron capture delayed fission, is needed.
Work in this direction is in progress.
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[4] P. Möller, A. J. Sierk, and A. Iwamoto, Phys. Rev. Lett. 92,
072501 (2004).

[5] A. Sobiczewski and M. Kowal, Phys. Scr., T 125, 68
(2006).

[6] A. Dobrowolski, K. Pomorski, and J. Bartel, Phys. Rev. C 75,
024613 (2007).
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H. Uhrenholt, and S. Åberg, Phys. Rev. C 79, 064304 (2009).

[8] A. Dobrowolski, B. Nerlo-Pomorska, K. Pomorski, and J. Bartel,
Acta Phys. Pol. B 40, 705 (2009).

[9] M. Kowal, P. Jachimowicz, and A. Sobiczewski, Phys. Rev. C
82, 014303 (2010).

[10] A. K. Dutta, J. M. Pearson, and F. Tondeur, Phys. Rev. C 61,
054303 (2000).

[11] M. Bender, K. Rutz, P.-G. Reinhard, J. A. Maruhn, and
W. Greiner, Phys. Rev. C 58, 2126 (1998).

[12] L. Bonneau, P. Quentin, and D. Samsoen, Eur. Phys. J. A 21,
391 (2004).

[13] A. Staszczak, J. Dobaczewski, and W. Nazarewicz, Acta Phys.
Pol. B 38, 1589 (2007).

[14] J.-P. Delaroche, M. Girod, H. Goutte, and J. Libert, Nucl. Phys.
A 771, 103 (2006).

[15] M. Warda, Eur. Phys. J. A 42, 605 (2009).
[16] R. Rodrı́guez-Guzmán, P. Sarriguren, L. M. Robledo, and J. E.

Garcia-Ramos, Phys. Rev. C 81, 024310 (2010).
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[32] T. Nikšić, D. Vretenar, P. Finelli, and P. Ring, Phys. Rev. C 66,

024306 (2002).
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