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A deformed relativistic Hartree Bogoliubov (RHB) theory in continuum is developed aiming at a proper
description of exotic nuclei, particularly those with a large spatial extension. In order to give an adequate
consideration of both the contribution of the continuum and the large spatial distribution in exotic nuclei, the
deformed RHB equations are solved in a Woods-Saxon (WS) basis in which the radial wave functions have a
proper asymptotic behavior at large distance from the nuclear center. This is crucial for the proper description
of a possible halo. The formalism of deformed RHB theory in continuum is presented. A stable nucleus, 20Mg
and a weakly bound nucleus 42Mg are taken as examples to present numerical details and to carry out necessary
numerical checks. In addition, the ground-state properties of even-even magnesium isotopes are investigated.
The generic conditions of the formation of a halo in weakly bound deformed systems and the shape of the halo
in deformed nuclei are discussed. We show that the existence and the deformation of a possible neutron halo
depend essentially on the quantum numbers of the main components of the single particle orbitals in the vicinity
of the Fermi surface.
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I. INTRODUCTION

The development of radioactive-ion-beam facilities around
the world [1–7] stimulates very much the study of nuclei
far from the β stability line [8–16]. Some new and exotic
phenomena have been observed in nuclei close to drip lines
such as neutron or proton halos [17–19], changes of nuclear
magic numbers [20], pygmy resonances [21], etc. In halo
nuclei, the fact of an extremely weak binding leads to many
new features, such as the coupling between bound states and
the continuum due to pairing correlations and very extended
spatial density distributions. Therefore, one must consider
properly the asymptotic behavior of nuclear densities at a large
distance r from the center and treat in a self-consistent way the
discrete bound states, the continuum and the coupling between
them in order to give a proper theoretical description of the
halo phenomenon [22–24]. This could be achieved by solving
the nonrelativistic Hartree-Fock-Bogoliubov (HFB) [25,26] or
the relativistic Hartree Bogoliubov (RHB) [27–29] equations
in coordinate (r) space which can fully take into account
the mean-field effects of the coupling to the continuum. The
resonant-BCS (rBCS) approach presents another method to
include the contribution of the resonant continuum which has
been used to study halo phenomena [30,31].

The solution of the coupled differential equations of HFB
and RHB theories is particularly simple in spherical systems
with local potentials, where one-dimensional Numerov or
Runge-Kutta methods [32] can be applied, and this is true
even for nonlocal problems where finite element methods
(FEM) [33] have been used. A different method to solve
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such equations is the expansion of the single-particle wave
functions in an appropriate basis. The oscillator basis has
been used for this purpose with a great success for de-
formed or nonlocal systems in the past [34–37]. The Woods-
Saxon basis has been proposed in Ref. [38] as a reconciler
between the harmonic oscillator basis and the integration
in coordinate space. Woods-Saxon wave functions have a
much more realistic asymptotic behavior at large r than
do the harmonic oscillator wave functions. A discrete set
of Woods-Saxon wave functions is obtained by using box
boundary conditions to discretize the continuum. It has been
shown in Ref. [38] for spherical systems that the solution
of the relativistic Hartree equations in a Woods-Saxon basis
is almost equivalent to the solution in coordinate space. The
Woods-Saxon basis has also been used in more complicated
situations; for example, for the description of exotic nuclei
where both deformation and pairing have to be taken into
account. Recently, for spherical systems, both nonrelativistic
and relativistic Hartree-Fock-Bogoliubov theories with forces
of finite range have been investigated in a Woods-Saxon
basis [39,40].

Over the past years, lots of efforts have been made to
develop a deformed relativistic Hartree (RH) theory [41] and a
deformed relativistic Hartree Bogoliubov theory in continuum
[42]. As a first application, halo phenomena in deformed nuclei
have been investigated within the continuum RHB theory, and
some brief results can be found in Ref. [43]. In this paper we
present the full version of the theoretical framework with all
the details.

Spherical symmetry facilitates considerably the treatment
of the continuum in nonrelativistic HFB [25,26] and in
relativistic RHB theory [27–29] in r space. Since most of the
known nuclei are deformed, interesting questions arise: Do
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deformed halos exist and what new features can be expected
in deformed exotic nuclei [44–49]? Such questions can be
answered by the deformed counterparts of the HFB or RHB
theories in coordinate space. From the experimental point
of view, 31Ne is measured to be a strongly deformed halo
nucleus [50], and for the well-deformed magnesium isotopes,
35Mg is probably a halo nucleus, too [51]. Nevertheless, for
deformed nuclei, to solve the HFB or RHB equations in r space
becomes much more sophisticated and numerically very time
consuming. Many efforts have been made to develop nonrel-
ativistic HFB theories either in (discretized) coordinate space
or in a scaled oscillator basis with an improved asymptotic
behavior [37]. The HFB equations have been solved in three-
dimensional coordinate space by combining the imaginary
time approach and the two basis method [52] with a truncated
basis composed of discrete localized states and discretized
continuum states up to a few MeV [53]. Alternatively, the HFB
equations have been solved on a two-dimensional basis-spline
Galerkin lattice [54–56] or on a three-dimensional Cartesian
mesh [57] using the canonical-basis approach [58]. Recently,
the Gaussian expansion method has been used to solve the
HF and HFB equations for deformed nuclei [59], and contin-
uum Skyrme-Hartree-Fock-Bogoliubov approaches have been
developed both for spherical and deformed nuclei [60]. The
deformed relativistic Hartree Bogoliubov (RHB) theory has
only been solved in the conventional harmonic oscillator
basis [61–64] and neither the above-mentioned approaches nor
other methods which could improve the asymptotic behavior
of the nuclear densities at large r have been implemented in
the deformed RHB theory so far.

In this paper we present a method which allows us to take
into account, at the same time, the coupling to the continuum,
deformations, and pairing correlations in a fully self-consistent
way. For this purpose we expand the deformed Dirac spinors
in a basis of spherical Dirac wave functions obtained by the
solution of the Dirac equations for potentials with a spherical
Woods-Saxon shape. This idea is similar to a method proposed
in Ref. [65] for the solution of the deformed relativistic mean-
field (RMF) equations in light nuclei, where the deformed
Dirac-spinors were expanded in terms of the self-consistent
solutions of the spherical RMF-equations. Compared with
these early calculations, our method is simpler, because it
is based on Woods-Saxon wave functions. On the other side
it is more general, because it allows us to include pairing
correlations, which play an essential role in the formation of
halo structures.

The paper is organized as follows: In Sec. II, we give the
formalism of the deformed RHB theory in continuum. The
numerical details are presented in Sec. III and we discuss
applications and detailed results for magnesium isotopes in
Sec. IV. A summary is given in Sec. V.

II. FORMALISM OF DEFORMED RELATIVISTIC
HARTREE BOGOLIUBOV THEORY IN CONTINUUM

The starting point of relativistic mean-field theory is a
Lagrangian density where nucleons are described as Dirac
spinors which interact via exchange of effective mesons (σ , ω,

and ρ) and the photon [66–72],

L = ψ̄ (i/∂ − M) ψ + 1

2
∂μσ∂μσ − U (σ ) − gσ ψ̄σψ

− 1

4
�μν�

μν + 1

2
m2

ωωμωμ − gωψ̄/ωψ

− 1

4
�Rμν

�Rμν + 1

2
m2

ρ �ρμ �ρμ − gρψ̄/�ρ �τψ

− 1

4
FμνF

μν − eψ̄
1 − τ3

2
�Aψ, (1)

where M is the nucleon mass and mσ , gσ , mω, gω, mρ , and gρ

are masses and coupling constants of the respective mesons.
The nonlinear self-coupling for the scalar meson is given by
[73]

U (σ ) = 1

2
m2

σ σ 2 + g2

3
σ 3 + g3

4
σ 4, (2)

and field tensors for the vector mesons and the photon fields
are defined as

�μν = ∂μων − ∂νωμ,

�Rμν = ∂μ �ρν − ∂ν �ρμ − gρ( �ρμ × �ρν), (3)

Fμν = ∂μAν − ∂νAμ.

Pairing correlations are crucial in the description of
open-shell nuclei. For exotic nuclei, the conventional BCS
approach turns out to be only a poor approximation [26].
Starting from the Lagrangian density (1), a relativistic theory
of pairing correlations in nuclei has been developed by
Kucharek and Ring [74]. If we neglect the Fock terms as it
is usually done in the covariant density functional theory, the
Dirac Hartree Bogoliubov (RHB) equation for the nucleons
reads∫

d3r ′
(

hD − λ �

−�∗ −hD + λ

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
, (4)

where Ek is the quasiparticle energy, λ is the chemical
potential, and hD is the Dirac Hamiltonian,

hD(r, r ′) = α · p + V (r) + β [M + S(r)] . (5)

The scalar and vector potentials

S(r) = gσσ (r), (6)

V (r) = gωω0(r) + gρτ3ρ
0(r) + e

1 − τ3

2
A0(r), (7)

depend on the scalar field σ and on the time-like compo-
nents ω0, ρ0, and A0 of the isoscalar vector field ω, the
three-component isovector vector field ρ and the photon
field.

The equations of motion for the mesons and the
photon

[−� + ∂σU (σ )] σ (r) = −gσρs(r),(−� + m2
ω

)
ω0(r) = gωρv(r),

(8)(−� + m2
ρ

)
ρ0(r) = gρρ3(r),

−�A0(r) = eρp(r),
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have as sources the various densities

ρs(r) =
∑
k>0

V
†
k (r)γ0Vk(r),

ρv(r) =
∑
k>0

V
†
k (r)Vk(r),

(9)
ρ3(r) =

∑
k>0

V
†
k (r)τ3Vk(r),

ρc(r) =
∑
k>0

V
†
k (r)

1 − τ3

2
Vk(r),

where, according to the no-sea approximation, the sum over
k > 0 runs over the quasiparticle states corresponding to
single-particle energies in and above the Fermi sea.

The pairing potential reads

�(r1s1p1, r2s2p2) =
s ′

2p
′
2∑

s ′
1p

′
1

V pp(r1, r2; s1p1, s2p2, s
′
1p

′
1, s

′
2p

′
2)

× κ(r1s
′
1p

′
1, r2s

′
2p

′
2), (10)

where p = 1, 2 is used to represent the large and small
components of the Dirac spinors. V pp is the effective pairing
interaction and κ(r1s

′
1p

′
1, r2s

′
2p

′
2) is the pairing tensor [75].

In the particle-particle (pp) channel, we use a density-
dependent zero-range force,

V pp(r1, r2) = V0
1

2
(1 − P σ ) δ(r1 − r2)

(
1 − ρ(r1)

ρsat

)
.

(11)

1
2 (1 − P σ ) projects onto the spin S = 0 component in the
pairing field. In this case the gap equation (10) has the simple
form

�(r) = V0 [1 − ρ(r)/ρsat] κ(r), (12)

and we need only the local part of the pairing tensor

κ(r) =
∑
k>0

V
†
k (r)Uk(r). (13)

Details of the calculation of the pairing interaction and the
pairing tensor are given in Appendices B and E, respectively.

For axially deformed nuclei with spatial reflection sym-
metry, we expand the potentials S(r) and V (r) in Eqs. (6)
and (7) and the densities in Eq. (9) in terms of the Legendre
polynomials [76],

f (r) =
∑

λ

fλ(r)Pλ(cos θ ), λ = 0, 2, 4, . . . , (14)

with

fλ(r) = 2λ + 1

4π

∫
d�f (r)Pλ(�). (15)

The quasiparticle wave functions Uk and Vk in Eq. (4)
are Dirac spinors. Each of them is expanded in terms
of spherical Dirac spinors ϕnκm(rsp) with the eigenval-
ues εnκ obtained from the solution of a Dirac equation
h

(0)
D containing spherical potentials S(0)(r) and V (0)(r) of

Woods-Saxon shape [38,77]:

Uk(rsp) =
∑
nκ

u
(m)
k,(nκ)ϕnκm(rsp), (16)

Vk(rsp) =
∑
nκ

v
(m)
k,(nκ)ϕ̄nκm(rsp). (17)

The basis wave function reads

ϕnκm(rs) = 1

r

(
iGnκ (r)Y l

jm(�s)

−Fnκ (r)Y l̃
jm(�s)

)
, (18)

where Gnκ (r)/r and Fnκ (r)/r are the radial wave functions
for the upper and lower components, respectively. The
spherical spinor ϕnκm is characterized by the radial quantum
number n, angular quantum j , and the parity π . j and
π are combined to the relativistic quantum number κ =
π (−1)j+1/2(j + 1/2) which runs over positive and negative
integers κ = ±1,±2, . . .. Y l

jm and Y l̃
jm are the spinor spherical

harmonics where l = j + 1
2 sgn(κ) and l̃ = j − 1

2 sgn(κ).
ϕ̄nκm(rsp) is the time-reversal state of ϕnκm(rsp). These

states form a complete spherical and discrete basis in Dirac
space (see Appendix A for details). Because of the axial
symmetry, the z component m of the angular momentum j is a
conserved quantum number and the RHB Hamiltonian can be
decomposed into blocks characterized by m and parity π . For
each mπ block, solving the RHB equation (4) is equivalent to
the diagonalization of the matrix(A − λ B

B† −A∗ + λ

) (Uk

Vk

)
= Ek

(Uk

Vk

)
, (19)

where

Uk = (
u

(m)
k,(nκ)

)
, Vk = (

v
(m)
k,(nκ)

)
, (20)

and

A = (
h

(m)
D(nκ)(n′κ ′)

) = (〈nκm|hD|n′κ ′m〉), (21)

B = (
�

(m)
(nκ)(n′κ)

) = (〈nκm|�|n′κ ′m〉). (22)

Further details are given in Appendix B.
Since we use a zero-range pairing force we have to

introduce a pairing cutoff in the sums of Eqs. (9) and (13)
over the quasiparticle space. In the present work, a smooth
cutoff is adopted where two parameters, E

q.p.
cut and �

q.p.
cut , are

introduced and the square root of the factor

s(Ek) = 1

2

⎛
⎝1 − Ek − E

q.p.
cut√(

Ek − E
q.p.
cut

)2 + (
�

q.p.
cut

)2

⎞
⎠ (23)

is multiplied in the occupation component Vk(r) of each
quasiparticle state with v2 < 1/2. Note that this smooth cutoff
is similar to the soft cutoff proposed in Ref. [78].

The total energy of a nucleus is

E = Enucleon + Eσ + Eω + Eρ + Ec + Ec.m.

=
∑

k

2(λ − Ek)v2
k − Epair

−1

2

∫
d3r [gσσ (r)ρs(r) + U (σ )]
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−1

2

∫
d3rgωω(r)ρv(r)

−1

2

∫
d3rgρρ(r)

[
ρZ

v (r) − ρN
v (r)

]
−1

2

∫
d3rA0ρ

Z
v (r) + Ec.m., (24)

where

v2
k =

∫
d3rV

†
k (r)Vk(r) =

∑
nκm

(
v

(m)
k,(nκ)

)2
. (25)

For a zero-range force, the pairing field �(r) is local and
the pairing energy is calculated as

Epair = −1

2

∫
d3rκ(r)�(r). (26)

The center-of-mass correction energy

Ec.m. = − 1

2Am
〈P̂2〉, (27)

is calculated after variation with the wave functions of the self-
consistent solution [79,80] or, in the oscillator approximation,

Ec.m. = −3

4
× 41A1/3 MeV. (28)

Details are given in Appendix G. The root-mean-square (rms)
radius is calculated as

Rτ,rms ≡ 〈r2〉1/2 =
(∫

d3r[r2ρτ (r)]

)1/2

=
(∫

dr
[
r4ρτ

v,λ=0(r)
])1/2

, (29)

where τ represents the proton, the neutron, or the nucleon. The
rms charge radius is calculated simply as r2

ch = r2
p + 0.64 fm2.

The intrinsic multipole moment is calculated by

Qτ,λ =
√

16π

2λ + 1
〈r2Yλ0(θ, φ)〉 = 2〈r2Pλ(θ )〉

= 8π

2λ + 1

∫
dr

[
r4ρτ

v,λ(r)
]
. (30)

The quadrupole deformation parameter is obtained from the
quadrupole moment by

βτ,2 =
√

5πQτ,2

3Nτ

〈
r2
τ

〉 , (31)

where Nτ refers to the number of neutrons, protons, or
nucleons.

III. NUMERICAL DETAILS AND ROUTINE CHECKS

A. Details on Woods-Saxon basis

For numerical reasons several parameters have to be
introduced in the calculations; for example, the mesh size �r

and the box size Rbox for the determination of the basis wave
functions by solving the spherical Dirac equations with the
Hamiltonian h

(0)
D , the maximal λ value λmax in the expansion

Eq. (14) of the deformed fields and densities, and the cutoff

parameters for the radial and angular quantum numbers n and
κ in the expansion of Eqs. (16) and (17), nmax and κmax.
Instead of nmax, we introduced an energy cutoff parameter
E+

cut for positive-energy states in the Woods-Saxon basis and,
in each κ block, the number of negative-energy states in the
Dirac sea is the same as that of positive-energy states above
the Dirac gap [38]. We have investigated the dependence of
our results on these parameters in spherical and deformed
relativistic Hartree models [38,41]. It is found that a box
of the size Rbox = 4r0A

1/3 with r0 = 1.2 fm, a step size
�r = 0.1 fm, λmax = 4, and |κmax| = 15 leads (in light nuclei)
to an acceptable accuracy of less than 0.1% for the binding
energies, the rms radii, and the quadrupole moments.

In the present work we use the determination of the Woods-
Saxon basis a box size Rbox = 20 fm, a mesh size �r = 0.1 fm
and a cutoff energy E+

cut = 100 MeV. In each κ block in the
Woods-Saxon basis, the number of negative-energy states in
the Dirac sea is the same as that of positive-energy states above
the Dirac gap. In Sec. III C we investigate the convergence of
our results with respect to these three parameters.

In order to reduce the computational time, λmax = 4 and
|κmax| = 10 are used in this work. The parameter sets NL3 [81]
and PK1 [79] are used for the Lagrangian density. Note that
the center-of-mass correction energy is calculated differently
with these two parameter sets. For NL3, the empirical formula
in Eq. (28) is used and, for PK1, the center-of-mass correction
energy is calculated microscopically (see Appendix G).

B. Parameters for pairing force

There are two parameters in the phenomenological pairing
force Eq. (11), namely, V0 and ρsat, and two additional ones
in the smooth cutoff Eq. (23). We take the empirical value
0.152 fm−3 for the saturation density ρsat. The pairing strength
V0, the cutoff parameter E

q.p.
cut , and the smooth parameter �

q.p.
cut

are fixed by reproducing the proton pairing energy of the
Gogny force D1S in the spherical nucleus 20Mg. We first
calculate the ground-state properties of 20Mg by using the
spherical relativistic Hartree Bogoliubov theory in a harmonic
oscillator basis (SRHBHO) [82] in which the Gogny-D1S [83]
force is used in the pp channel. The pairing energy for protons
is obtained as −9.2382 MeV. In Table I the proton pairing en-
ergy E

p
pair from the SRHBHO and deformed RHB calculations

for 20Mg are given. The deformed RHB calculation using the
parameter set NL3 with V0 = 380 MeV fm3, Eq.p.

cut = 60 MeV,

TABLE I. Determination of the parameters for the pairing force
used in the deformed RHB calculations presented in this work. In
the last column is given the proton pairing energy E

p
pair from the

SRHBHO and deformed RHB calculations for the spherical nucleus
20Mg.

Model Pairing force Parameters E
p
pair (MeV)

SRHBHO Gogny D1S [83] −9.2382

Surface δ V0 = 380 MeV fm3

RHB with ρsat = 0.152 fm−3 −9.2382
smooth cutoff E

q.p.
cut = 60 MeV

�
q.p.
cut = 5.65 MeV
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FIG. 1. (Color online) Bulk properties of ground state (a) and the
oblate minimum (b) of 42Mg as functions of the cutoff energy E+

cut.
From the lowest to the top panels, the total binding energy EB, the
quadrupole deformation β, and the rms radius R are plotted. The
parameter set is NL3, the box size is Rbox = 20 fm, and the step size
is �r = 0.1 fm.

and the smooth parameter �
q.p.
cut = 5.65 MeV reproduces the

proton pairing energy from the SRHBHO calculation for 20Mg.
These parameters for the pairing are used in all the following
calculations regardless of whether NL3 or PK1 is used for the
RMF Lagrangian density.

C. Completeness of Woods-Saxon basis

The spherical nucleus 20Mg has been investigated as the first
test of the deformed RHB theory and some results were given
in Fig. 1 in Ref. [42]. A comparison was made between results
obtained for ground-state properties of the spherical nucleus
20Mg with the spherical RCHB code [29] based on the Runge-
Kutta method in the radial coordinate r and the new deformed
RHB code discussed in this paper. We summarize these
comparison in Table II. In these calculations, the parameter set
NL3, a box of the size Rbox = 4r0A

1/3 = 13.0 fm, and a step

TABLE II. Ground-state properties of 20Mg from deformed RHB
calculations with different cutoff parameters in the Woods-Saxon
basis compared with the results of spherical RCHB [29] theory.

Properties Deformed RHB RCHB

E+
cut (MeV)

100 200 300

λp (MeV) −0.8992 −0.9072 −0.9063 −0.9061
�p (MeV) 2.3823 2.3866 2.3871 2.3876
Rn (fm) 2.5910 2.5902 2.5900 2.5900
Rp (fm) 3.0073 3.0052 3.0049 3.0049
E

p
pair (MeV) −9.1165 −9.2294 −9.2381 −9.2387

E (MeV) −136.6728 −136.7608 −136.7701 −136.7668

size �r = 0.1 fm are used. The surface δ pairing force is used
with the strength V0 = −374 MeV fm3 and ρsat = 0.152 fm−3.
A sharp cutoff is applied on the quasiparticle states with
E

q.p.
cut = 60 MeV. It is shown that, when the basis size increases,

the total binding energy E, the proton pairing energy E
p
pair, and

the rms radius R all converge to the corresponding exact values.
In practical calculations, E+

cut may be chosen according to the
balance between the desired accuracy and the computational
cost. It is concluded [42] that, for light nuclei, one can safely
use E+

cut = 100 MeV which results in accuracies in the total
binding energy and the proton pairing energy of about a
hundred keV and in the rms radius of around 0.002 fm.

Since we are also interested in drip line nuclei, we study
next the dependence of the deformed RHB results on the
completeness of the Woods-Saxon basis for a very neutron-rich
nucleus. First we study the results with different values of
E+

cut. For the calculation with a Woods-Saxon basis [38], a
box of the size Rbox = 4r0A

1/3 with r0 = 1.2 fm is used. In
this case, Rbox is different for different magnesium isotopes,
for example, 13.0 fm for 20Mg and 16.7 fm for 42Mg. In the
present work, we prefer to use a fixed box size Rbox = 20 fm
which is large enough for all magnesium isotopes. The mesh
size for the radial wave function of each Woods-Saxon state is
taken as 0.1 fm.

For 42Mg both prolate and oblate minima in the potential
energy surface are searched for and it is found that the ground
state is prolate. In Fig. 1 the total binding energy EB, the
quadrupole deformation β, and the rms radius R are plotted as
functions of E+

cut for the prolate ground state and for the oblate
minimum of 42Mg, respectively. Apparently, when we increase
E+

cut, these quantities all converge well. Similar to the case of
the spherical nucleus 20Mg, for light deformed nuclei, the
cutoff E+

cut = 100 MeV results in relative accuracies of 0.5%
for the quadrupole deformation, 0.05% for the rms radius, and
0.1% for the total binding energy.

The box size Rbox = 20 fm and the cutoff energy E+
cut =

100 MeV are fixed when we investigate the convergence of
the deformed RHB results with respect to the mesh size �r .
In Fig. 2 it is shown that, when the mesh size decreases, the
total binding energy EB, the quadrupole deformation β, and
the rms radius R all converge well. The difference of the
binding energy between calculations with �r = 0.1 fm and
�r = 0.05 fm is smaller than 0.025 MeV for both minima,
which is about 0.008% of the total binding energy. When �r

is decreased from 0.1 to 0.05 fm, the relative changes of the
quadrupole deformation β and the radius R are both smaller
than 0.01%.

Figure 3 shows the same quantities as a function of the box
size Rbox. The relative deviations between the rms radius R at
Rbox = 20 fm and Rbox = 30 fm are about 0.1% for the prolate
ground state and 0.01% for the oblate minimum. The box size
Rbox = 20 fm also gives good accuracy for the quadrupole
deformation β and the binding energy.

In conclusion, in the following calculations, we fix the box
size at Rbox = 20 fm, the mesh size at �r = 0.1 fm, and the
cutoff energy for positive-energy states in the Woods-Saxon
basis at E+

cut = 100 MeV. In each κ block, the number of
negative-energy states in the Dirac sea is the same as that
of positive-energy states above the Dirac gap. The cutoff
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FIG. 2. (Color online) Bulk properties for 42Mg as in Fig. 1 but
now as functions of the step size �r . The box size is Rbox = 20 fm
and the energy cutoff is E+

cut = 100 MeV.

parameter for λ in the expansion Eq. (14) is λmax = 4, and
the cutoff parameter for the angular quantum number κ in the
expansion Eq. (17) is |κmax| = 10. With these values we do not
introduce sizable errors.

IV. RESULTS AND DISCUSSIONS

In this section, we present results from the deformed
RHB theory in continuum. We choose magnesium isotopes
as examples. After discussing the bulk properties of mag-
nesium isotopes, we will focus on the neutron-rich nucleus
42Mg.
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and the energy cutoff is E+

cut = 100 MeV.
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FIG. 4. (Color online) Neutron Fermi energy λn (a) and two-
neutron separation energy S2n (b) of magnesium isotopes calculated
with the parameter sets NL3 and PK1. The data of S2n (labeled
“Expt.”) are taken from Ref. [84].

A. Bulk properties of magnesium isotopes

Figure 4 shows the neutron Fermi energy λn and two-
neutron separation energy S2n of magnesium isotopes cal-
culated with the parameter sets NL3 [81] and PK1 [79].
The separation energies are compared with data taken from
Ref. [84]. Except the different prediction of the two-neutron
drip line nucleus, the results of the neutron Fermi surfaces
and two-neutron separation energies are very similar for both
parameter sets. The calculated two-neutron separation energies
S2n of magnesium isotopes agree reasonably well with the
available experimental values except for 32Mg. The large
discrepancy in 32Mg is connected to the shape and the shell
structure at N = 20 and will be discussed later.

Experimentally, the nucleus 40Mg has been observed
[85]. Theoretically, there are several predictions on the last
bound nucleus in Mg isotopes; for example, 44Mg in the
phenomenological finite range droplet model [86], 40Mg in
a macroscopic-microscopic model [87], a RMF model with
the parameter set NLSH [88], the Skyrme HFB model with
the parameter set SLy4 and solved in a three-dimensional
Cartesian mesh [52], and 42Mg from the Skyrme HFB model
with SLy4 but solved in a transformed harmonic oscillator
basis [37] and the HFB21 mass table [89]. Therefore, the
prediction of the two-neutron drip line nucleus in Mg isotopes
is both model and parametrization dependent. In our deformed
RHB calculations with the parameter set NL3, 46Mg is the last
nucleus of which the neutron Fermi surface is negative and the
two-neutron separation energy is positive. However, with the
parameter set PK1, 42Mg is predicted to be the last nucleus
within the two-neutron drip line.
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FIG. 5. (Color online) Quadrupole deformation parameter β of
magnesium isotopes calculated with parameter sets NL3 and PK1.
The experimental vales (“Expt.”) are taken from Ref. [90].

The comparison of the quadrupole deformation β between
the theory and the experiment is given in Fig. 5. The
experimental values of β is extracted from the measured
B(E2 : 0+

1 → 2+
1 ) values and therefore only absolute val-

ues are available [90]. Generally speaking, the ground-state
quadrupole deformations β calculated with both parameter sets
reproduce the data rather well. Exceptions are the nuclei 32Mg,
which turns out to be spherical in both models, and 30Mg,
which is prolate and slightly less deformed than the experiment
for PK1 and slightly oblate for NL3. In 32Mg, the gap between
the neutron levels 1d3/2 and 1f7/2 is almost 7 MeV, which
results in a strong closed shell at N = 20. Therefore, the
deformed RHB calculations with both parameter sets predict
spherical shapes for this nucleus. This also results in a
large discrepancy from the experiment for the two-neutron
separation energy S2n of 32Mg, as seen in Fig. 4. Other
mean-field models predict spherical or almost-spherical shapes
for 32Mg, too [52,88,91–96]. For the isotopes beyond this
nucleus with 32 < A < 46, we observe large deformations, the
so-called “island of inversion” [97–100], which is related to
the quenching of the N = 20 shell closure. On the mean-field
level the nucleus 32Mg does not belong to this island yet.
In fact, going beyond mean field and calculating the energy
surface as a function of the deformation parameters, one finds
that this nucleus is a transitional nucleus with an extended
shoulder reaching to large deformations. This leads in GCM
calculations with the Gogny force [93] to wave functions
with large fluctuations in deformation space and to a large
B(E2 : 0+

1 → 2+
1 ) value as it is observed in the experiment

[101]. So far it is an open question as to why other GCM
calculations based on Skyrme forces [102] or on the relativistic
point-coupling model PC-F1 [96] cannot reproduce this
fact.

Up to 42Mg, the deformed RHB results from the parameter
set NL3 are very similar to those from the parameter set PK1.
Therefore, in the following we will mainly focus our discussion
on the results from PK1.

In Fig. 6, the root-mean-square radii for magnesium
isotopes are plotted as functions of neutron number. We display
neutron radii Rn, proton radii Rp, matter radii Rt, the r0A

1/3

curve with r0 = 1 fm, and experimental matter radii [51,103].
The proton radius is almost constant with a very slow increase
with increasing N due to the neutron-proton coupling included

2.5

3.0

3.5

4.0

4.5

 16  20  24  28  32  36  40  44

R
 (

fm
)

A

Mg  PK1

Expt.
Rn
Rp
Rt

r0  A
1/3

FIG. 6. (Color online) Root-mean-square radii for magnesium
isotopes plotted as functions of neutron number. We display the
neutron radius Rn, the proton radius Rp , the matter radius Rt, and
the available data for Rt [51,103]. The r0A

1/3 curve is included to
guide the eye.

in the mean field. With the neutron number increasing, the
neutron radius Rn increases monotonically with an exception at
32Mg. The neutron radius of 32Mg is relatively small, which is
again due to the strong shell effect at N = 20 in the mean-field
calculations. It is shown that the deformed RHB results
agree well with the experiment for the matter radius. The
calculated matter radius follows roughly the r0A

1/3 curve up
to A = 34. From 36Mg on, the matter radius lies high above the
r0A

1/3 curve. This may indicate some exotic structure in these
nuclei.

Figure 7 shows neutron density profiles of even-even mag-
nesium isotopes with A � 28 calculated with the parameter
set PK1. ρn,λ=0(r) represents the spherical component of
the neutron density distribution [cf. Eq. (14)]. ρn(z, r⊥ = 0)
with r⊥ =

√
x2 + y2 refers to the density distribution along

the symmetry axis z (θ = 0◦) and ρn(z = 0, r⊥) refers to
that perpendicular to the symmetry axis z (θ = 90◦). With
increasing A, the spherical component of the neutron density
distribution ρn,λ=0(r) changes rapidly at 42Mg. The density
distribution along the symmetry axis ρn(z, r⊥ = 0) changes
abruptly from 32Mg to 34Mg. This can be understood easily by
the change in shape in going from the spherical 32Mg to the
prolate 34Mg where the density is elongated along the z axis. In
the direction perpendicular to the symmetry axis, the neutron
density ρn(z = 0, r⊥) of 42Mg extends very far away from the
center of the nucleus and a long tail emerges, revealing the
formation of a halo.

By comparing ρn(z, r⊥ = 0) and ρn(z = 0, r⊥) for 42Mg, it
is found that, in the tail part, the neutron density extends more
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FIG. 7. (Color online) Neutron density profiles of even-even
magnesium isotopes with A � 28 calculated with the parameter set
PK1. Details are given in the text.

along the direction perpendicular to the symmetry axis. Since
this nucleus as a whole is prolate, it indicates that the neutron
tail has a different shape than the core. This fact is similar to
the decoupling of the shape of the halo from the shape of the
core found for 44Mg in Ref. [43]. Next, we will concentrate
on 42Mg and discuss in details the structure of its ground
state.

B. Ground state of 42Mg

In the calculations based on the parameter set PK1, the
chain of Mg isotopes reaches the two-neutron drip line at
the nucleus 42Mg. Its properties are summarized in Table III.
For 42Mg we find two minima in the energy surface as a
function of the deformation parameter β. The lower one
has a prolate shape and corresponds to the ground state of
42Mg. The second minimum has an oblate shape. From RMF
calculations allowing for triaxial deformations [104] we know,
however, that the oblate minimum is not stable. It forms a
saddle point in the (β-γ ) plane and therefore it does not
correspond to an isomeric state. The ground state is well

TABLE III. Properties of 42Mg at the ground state and at the
oblate minimum derived from deformed RHB calculations with the
parameter sets NL3 and PK1. The neutron and proton Fermi surface
(λn and λp), neutron, proton, and total quadrupole deformation (βn,
βp , βt), neutron, proton, and total radii (Rn, Rp , Rt), neutron and
proton pairing energies (En

Pair, E
p
Pair), and total binding energy EB are

listed.

PK1 NL3

λn −0.6147 −0.1753 −0.8805 −0.3989
λp −24.6731 −23.9050 −24.2695 −22.8118
βn −0.3282 0.4155 −0.3299 0.4181
βp −0.2426 0.3911 −0.2426 0.3917
βt −0.3038 0.4085 −0.3049 0.4105
Rn 4.0250 4.1077 4.0291 4.0971
Rp 3.1208 3.1499 3.1393 3.1673
Rt 3.7888 3.8584 3.7962 3.8544
En

Pair −18.2511 −6.2620 −17.1509 −6.1595
E

p
Pair −7.0405 0.0000 −6.7639 0.0000

EB −265.4629 −266.4505 −270.6907 −270.6993

deformed with a quadrupole deformation β ≈ 0.41, and a
very small two-neutron separation energy S2n ≈ 0.22 MeV.
The density distribution of this weakly bound nucleus has a
very long tail in the direction perpendicular to the symmetry
axis (cf. Fig. 7), which indicates the prolate nucleus 42Mg has
an oblate halo.

The density distribution in Fig. 8 is decomposed into
contributions of the oblate “halo” and of the prolate “core.”
Details of this decomposition will be given further down. This
indicates the decoupling between the deformations of the core
and the halo.

Pairing correlations play a very important role in the
formation of the halo [27]. For the parameter set PK1 we find
in Table III in the ground state of 42Mg a vanishing pairing
energy for protons and a paring energy En

Pair = −6.26 MeV for
the neutrons. For the zero-range pairing interaction in Eq. (11)
only spin singlet (S = 0) states and elements diagonal in the
quantum number p are taken into account in the pairing tensor.
See Appendix F for more details concerning this assumption.
In Fig. 9 we show the components κ++

λ (r) in Eq. (E5) and
κ−−

λ (r) in Eq. (E6) of the pairing tensor in the ground state of
42Mg for the parameter set PK1. Figure 9(b) shows the main
component κ++

λ (r) corresponding to the large components of
the Dirac spinor. Comparing Fig. 9(a) with Fig. 9(b) one finds
that κ−−

λ (r) is smaller by two orders of magnitude than κ++
λ (r).

The same sign for the quadrupole (λ = 2) and the spherical
(λ = 0) components can be understood by the fact that the
ground state of 42Mg is prolate in the present calculation.
The maximum of κ++

λ (r) appears at about 4.8 fm, indicating
that paring in nuclei is a surface effect. The hexadecapole
components (λ = 4) are much smaller than the spherical
components (λ = 0).

Weakly bound orbitals or those embedded in the continuum
play a crucial role in the formation of a nuclear halo
[27,105,106]. In order to have an intuitive understanding of
the single-particle structure, the canonical basis is constructed
by the method given in Ref. [29]. The single-particle spectrum
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FIG. 8. (Color online) Density distributions of the ground state
of 42Mg with the z axis as the symmetry axis: (a) neutron halo, and
(b) neutron core.

around the Fermi level for the ground state of 42Mg is shown in
Fig. 10. For an axially deformed nucleus with spatial reflection
symmetry, the good quantum numbers of each single-particle
state include the parity π and the third component of the
angular momentum m (labeled by the Nilsson quantum number
� in the figures). The occupation probabilities v2 in the
canonical basis have a BCS form [75] and are given by
the length of the horizontal lines in Fig. 10. To guide the
eye we also show by a blue dashed line the BCS formula
calculated with an average gap parameter. The levels close
to the threshold are labeled by the number i according to
their energies, and their conserved quantum number �π as
well as the main spherical components are given on the
right-hand side. The neutron Fermi level is within the pf shell
and most of the single-particle levels have negative parities.
Since the chemical potential λn ≈ −175 keV is negative,
the corresponding density ρ(r) is localized and the particles
occupying the levels in the continuum are bound [26]. Since
the chemical potential λn is close to the continuum, orbitals
above the threshold have noticeable occupations due to the
pairing correlations. For instance, the occupation probability
of the fifth level (�π = 3/2−) is 31.5%. The fourth level
�π = 1/2− is just below the threshold with a single-particle
energy in the canonical basis εcan = −0.234 MeV and an
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FIG. 9. (Color online) Neutron pairing tensor r2κ−−
λ (r) (a) and

r2κ++
λ (r) (b) with λ = 0, 2, and 4 of the ground state of 42Mg from

the deformed RHB theory in continuum with the parameter set PK1.

occupation probability of 53.0%. All the other levels below
that orbital are well bound with εcan < −2 MeV. Similar
to those of 44Mg in Ref. [43], the single neutron levels
of 42Mg can be divided into two parts, the deeply bound
levels (εcan < −2 MeV) corresponding to the “core,” and
the remaining weakly bound levels close to the threshold
(εcan > −0.3 MeV) and in the continuum corresponding to the
“halo.”

We have already seen in Fig. 8 that the core is prolate and the
halo is oblate. According to Eq. (14) the density distributions of
the core and of the halo are decomposed into spherical (λ = 0),
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FIG. 10. (Color online) Single neutron levels of ground state of
42Mg in the canonical basis as a function of occupation probability
v2. The order i, good quantum numbers �π , and the main spherical
components for orbitals close to the threshold are also given. The blue
dashed line corresponds to the BCS formula with an average pairing
gap.
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FIG. 11. (Color online) Decomposition of the neutron density of
the ground state of 42Mg into spherical (λ = 0), quadrupole (λ = 2),
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(b).

quadrupole (λ = 2), and hexadecapole (λ = 4) components in
Fig. 11. The quadrupole component of the core turns out to be
positive, which is consistent with the prolate shape of 42Mg
in the ground state. However, for the halo, the quadrupole
component is mainly negative, which means the halo has
an oblate shape. This explains the decoupling between the
quadrupole deformations of the core and the halo. We also
find in Fig. 11 that the spherical component is absolutely the
main part of the density distribution for both the core and
the halo, and that the hexadecapole component in the density
distribution of the neutron halo is also noticeable.

In order to study the formation mechanism of the halo
in more detail, we show in Fig. 12(a) the main (spherical)
components ρi

n,λ=0 of the density distribution for the weakly
bound neutron orbitals i. Figure 12(b) gives the ratio of these
spherical components ρi

n,λ=0 to the spherical component of the
total neutron density ρn,λ=0. One can clearly see that, far from
the center, the main contribution comes from the 4th and 5th
levels. Almost 80% of the total density distribution in the tail
part comes from these two levels, which are close to the Fermi
surface. Level 7 is embedded in the continuum and also gives
some contribution to the tail of the total density distribution.
However, the occupation probability of this level is just 5.7%,
so its contribution is very small. The occupation probability
of level 6 is 7.9%, a bit lager than that of level 7. But there
is almost no contribution to the tail of total density from this
level. By examining the spherical Woods-Saxon components,
it is found that the main component of level 6 is 1f7/2. The large
centrifugal barrier of f states with l = 3 strongly hinders its
spatial extension. For level 7, about 31.3% contribution comes
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FIG. 12. (Color online) Spherical components of neutron density
distributions of ground state of 42Mg: (a) the total density and its
decomposition into core and halo and contributions from several
neutron orbitals around the Fermi level; (b) relative contributions of
these neutron orbitals to total neutron density.

from 2p1/2 with a small centrifugal barrier, and therefore the
density can extend far away from the center of the nucleus.

As shown in Fig. 12, the halo is mainly formed by levels
4 and 5 with occupation probabilities of 53.0% and 31.5%,
respectively. Having in mind the degeneracy 2 for each single-
particle level, the occupation number of these two orbitals
is about 1.7. If we decompose the deformed wave functions
of these two orbitals in the spherical Woods-Saxon basis, it
turns out that, in both cases, the major part comes from p

waves, as indicated on the right-hand side of Fig. 10. For level
4 (�π = 1/2−), the probabilities of 2p3/2, 1f5/2, and 2p1/2

are 37.0%, 32.3%, and 21.2% respectively. For level 5 (�π =
3/2−), 2p3/2 is the dominant component with a probability of
78.6%. The low centrifugal barrier for p waves gives rise to
the formation of the halo.

The shape of the halo originates from the intrinsic structure
of the weakly bound or continuum orbitals [43,45]. As
discussed before, for the ground state of 42Mg, the halo is
mainly formed by levels 4 and 5. We know that the angular
distribution of |Y10(θ, φ)|2 ∝ cos2 θ with a projection of the
orbital angular momentum on the symmetry axis � = 0 is
prolate and that of |Y1±1(θ, φ)|2 ∝ sin2 θ with � = 1 is oblate
[45]. For level 4 (�π = 1/2−), � could be 0 or 1 since the
third component of total spin is 1/2. However, it turns out that
the � = 0 component dominates, which results in an oblate
shape. For level 5, since the third component of the total spin
is 3/2, � can only be 1, which corresponds to an oblate shape
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too. Therefore, in 42Mg the shape of the halo is oblate and
decouples from the prolate core.

V. SUMMARY

A deformed relativistic Hartree Bogoliubov theory in con-
tinuum is developed in order to describe deformation effects
in exotic nuclei allowing for halo structures. The deformed
RHB equations are solved in a Woods-Saxon basis where the
radial wave functions have a proper asymptotic behavior at
large distance from the nuclear center. This is crucial for the
formation of a halo. The formalism and the numerical details
of the deformed RHB theory are presented. Routine checks
are made including convergence studies of the deformed RHB
results concerning the mesh size, the box size and the size of
the Woods-Saxon basis. The results are compared for spherical
nuclei with solutions of the one-dimensional continuum RHB
equations in the radial coordinate r based on the Runge-Kutta
method.

The deformed RHB theory in continuum is applied to
study the chain of magnesium isotopes with the parameter
sets NL3 and PK1 of the Lagrangian. Except for the different
prediction of the two-neutron drip line nucleus, the results of
neutron Fermi surfaces and two-neutron separation energies
are very similar for both parameter sets. The calculated
two-neutron separation energies S2n of magnesium isotopes
agree reasonably well with the available experimental values
except for 32Mg, which is a well-known problem connected
with the shape and the shell structure at N = 20. For 32Mg,
the gap between the neutron levels 1d3/2 and 1f7/2 is almost
7 MeV, which results in a strong shell closure at N = 20.
The nuclear radii are also investigated, and the deformed RHB
results agree well with the experiment for matter radii. The
proton radius is almost constant with a very slow increase
with increasing N due to neutron-proton coupling included
in the mean field. A sharp increase in the neutron radius is
observed at 42Mg.

Detailed results are shown for the two-neutron drip line
nucleus 42Mg with the parameter set PK1, which is well
deformed. The ground state of 42Mg is prolate; however, it
has an oblate neutron halo. By examining in detail the density
distributions, the pairing tensor, and the single-particle levels
in the canonical basis in the deformed nucleus 42Mg, it can
be understood why the shape of the neutron halo decouples
from that of the core. It is shown that the existence and the
deformation of a possible neutron halo depends essentially
on the quantum numbers of the main components of the
single-particle orbits in the vicinity of the Fermi surface and
the shape of their single-particle density distributions.

In stable nuclei, there are situations that the levels of valence
nucleons are sometimes also well separated from the core. It
is, however, a difficult question, whether there exists cases of
such a decoupling of shapes as we have seen here in the case
of loosely bound valence orbits close to the continuum limit,
because in stable nuclei even the valence nucleons are well
bound in the average potential.

We can conclude that spherical and deformed relativistic
Hartree Bogoliubov theory in continuum is a very powerful

tool providing a proper description of exotic nuclei including
halo phenomena, because it takes into account in a self-
consistent and microscopic way polarization effects, shape
changes of individual orbitals, pairing correlations and the
coupling to the continuum with proper boundary conditions.
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APPENIDX A: SPHERICAL SPINORS IN
COORDINATE SPACE

In this work we use three different representations of the
wave functions. The starting point is the coordinate space
representation x = (rsp), where s is the spin coordinate and
p describes large (or upper) (p = 1 or p = +) and small
(or lower) (p = 2 or p = −) components. The second basis
is a discrete basis of spherical Dirac spinors |nκm〉 which
is obtained by the diagonalization of the spherical Dirac
Hamiltonian with fields of Woods-Saxon shape. This basis is
called the Woods-Saxon basis in the following. In this basis the
RHB equations are solved and the solutions form a basis of
quasiparticle states labeled by |k〉. The Dirac spinors of the
Woods-Saxon basis are represented in coordinate space as

〈rsp|nκm〉 = φnκm(rsp) = ip
Rnκ (r, p)

r
Y l(p)

κm (�, s). (A1)

The orbital angular momenta of these components are l(p =
1) = j + 1

2 sgn(κ) and l(p = 2) = j − 1
2 sgn(κ). Rnκ (r, 1) =

Gnκ (r), Rnκ (r, 2) = Fnκ (r) are the radial wave functions, and
Y l

κm are the spinor spherical harmonics

Y l
κm(�, s) =

∑
ml,ms

C

(
1

2
mslml|jm

)
Ylml

(�)χ 1
2 ms

. (A2)

The time-reversal state reads

φ̄nκm(rsp) = (−1)p+l(p)+j−mφnκ−m(rsp). (A3)

These basis functions are obtained from the solution of
a Dirac equation with spherical potentials of Woods-Saxon-
shape [77]

h
(0)
D = α · p + β[M + S(0)(r)] + V (0)(r), (A4)
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on a mesh in r-space using the Runge-Kutta method. For each
κ we have eigenstates with positive and negative eigenvalues
εnκ and, for completeness of the basis, the sum over nκ has
to include states with positive eigenvalues and those with
negative eigenvalues [38]. This has nothing to do with the
no-sea approximation which is applied in the final quasiparticle
basis where the sum over k in Eq. (9) runs only over solutions
with positive single-particle energies.

Since the RHB equation (19) has to be solved in this basis
one has to evaluate matrix elements of the form

〈nκm|hD|n′κ ′m〉 and 〈nκm|�|n′κ ′ m〉. (A5)

In order to simplify the calculations, the integrations over the
angles are carried out analytically using well-known angular
momentum coupling techniques and only the radial integrals
are calculated numerically. For local potentials we need the
following products of basis wave functions∑

s

φnκm(rsp)φ∗
n′κ ′m(rsp). (A6)

Following Eq. (14) they are expanded in terms of Legendre
polynomials. For the coefficient of rank λ depending only on
the radius r we find[∑

s

φnκmφ∗
n′κ ′m

]
λ

= Rnκ (r, p)

r

Rn′κ ′(r, p)

r
〈κm|Pλ|κ ′m〉.

(A7)

The angular matrix elements 〈κm|Pλ|κ ′m〉 can be derived with
the help of the Wigner-Eckart theorem [107]. For even values
of l + λ + l′ we find

〈κm|Pλ|κ ′m〉 = (−)m− 1
2 ĵ ĵ ′

(
j

−m

λ

0

j ′

m

)(
j

− 1
2

λ

0

j ′
1
2

)
,

(A8)

where ĵ = √
2j + 1. For odd values of l + λ + l′ these matrix

elements vanish.

APPENIDX B: MATRIX ELEMENTS OF DRHB
HAMILTONIAN

The Dirac Hartree-Bogoliubov equations [74] read, in
coordinate space,∑

s ′p′

∫
d3r ′

(
hD(rsp, r ′s ′p′) − λ �(rsp, r ′s ′p′)
−�∗(rsp, r ′s ′p′) −hD(rsp, r ′s ′p′) + λ

)

×
(

Uk(r ′s ′p′)
Vk(r ′s ′p′)

)
= Ek

(
Uk(rsp)

Vk(rsp)

)
, (B1)

where Ek is the quasiparticle energy and λ the chemical
potential. On the Hartree level the Dirac Hamiltonian is local

hD(rsp, r ′s ′p′) = hD(r, sp, s ′p′)δ(r − r ′). (B2)

For the zero-range pairing force in Eq. (11), which projects
onto the S = 0 part of the pairing density, the pairing field is
local, too, and does not depend on the spin variables

�(rp, r ′p′) = δpp′�(rp)δ(r − r ′). (B3)

In this work we restrict ourselves to pairing fields diagonal
in the quantum number p (see Appendix F). These equations
of motions are solved by expanding the spinors Uk and Vk

in terms of a Woods-Saxon basis of Dirac spinors ϕnκm(rs)
in Eq. (18) with positive and negative single-particle energies
εnκ .

For the self-consistent solution of the Dirac Eq. (5)
with deformed potentials of axial symmetry, we expand the
potentials S(r) and V (r) in terms of the Legendre polynomials
as in Eq. (14). The deformed Dirac Hamiltonian hD is divided
into two parts, the spherical Woods-Saxon Hamiltonian h

(0)
D of

Eq. (A4) and the deformed rest

hD = h
(0)
D +

∑
λ

[βS ′
λ(r) + V ′

λ(r)]Pλ(�), (B4)

with S ′
0 = S0 − S(0), V ′

0 = V0 − V (0), and S ′
λ = Sλ, and V ′

λ =
Vλ for λ > 0. Using Eq. (A7) the matrix elements of the Dirac
Hamiltonian read

〈nκ|hD|n′κ ′〉 = εnκδnn′δκκ ′ +
∑

λ

〈κm|Pλ|κ ′m〉

×
∫

dr{Gnκ (r)[V ′
λ(r) + S ′

λ(r)]Gn′κ ′ (r)

+Fnκ (r)[V ′
λ(r) − S ′

λ(r)]Fn′κ ′ (r)} . (B5)

The integral in the pairing matrix element 〈nκm|�|n′κ ′ m〉
contains the time reversal basis function. Since the pairing
interaction Eq. (11) projects onto the S = 0 we have to couple
the product φnκm(rs)φ̄n′κ ′m(rs) to spin S = 0 and find∑

s

(−)
1
2 −sφnκm(s)φ̄n′κ ′m(−s) =

∑
s

φnκm(s)φ∗
n′κ ′m(s). (B6)

Using again Eq. (A7) one finds

〈nκ|�++|n′κ ′〉 =
∑

λ

〈κm|Pλ|κ ′m〉
∫

drGnκ�λ(r)Gn′κ ′

(B7)

and

〈nκ|�−−|n′κ ′〉 =
∑

λ

〈κm|Pλ|κ ′m〉
∫

drFnκ�λ(r)Fn′κ ′ ,

(B8)

where the potentials �λ(r) will be given in Appendix E.

APPENIDX C: CALCULATION OF DENSITIES

In order to determine the self-consistent fields in the next
step of the iteration we first have to determine the densities.
Starting from the expansion coefficients u

(m)
k,(nκ) and v

(m)
k,(nκ)

obtained through the diagonalization of the RHB matrix (19)
we find the density matrix in the Woods-Saxon basis

ρ
(m)
(nκ)(n′κ ′) =

∑
k>0

v
(m)∗
k,(nκ)v

(m)
k,(n′κ ′). (C1)
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Next we transform these densities to coordinate space and find
for the local part

ρ(rp) = 2
∑
m>0

n′κ ′∑
nκ

∑
s

φnκm(rsp)ρ(m)
(nκ),(n′κ ′)φ

∗
n′κ ′m(rsp)

=
∑

λ

ρλ(r, p)Pλ(�). (C2)

Using Eq. (A7) we finally obtain the various local densities

ρs
λ(r) = 2

2λ + 1

4πr2

∑
m>0

n′κ ′∑
nκ

ρ
(m)
(nκ)(n′κ ′)[Gnκ (r)Gn′κ ′(r)

−Fnκ (r)Fn′κ ′(r)]〈κm|Pλ|κ ′m〉, (C3)

ρv
λ(r) = 2

2λ + 1

4πr2

∑
m>0

n′κ ′∑
nκ

ρ
(m)
(nκ)(n′κ ′)[Gnκ (r)Gn′κ ′(r)

+Fnκ (r)Fn′κ ′ (r)]〈κm|Pλ|κ ′m〉, (C4)

and similar equations for the isovector density ρ3
λ(r) and for

the charge density ρc
λ(r).

APPENIDX D: SOLUTION OF KLEIN-GORDON EQUATION

The various densities are the sources of the meson fields
in the Klein Gordon equations (8). These equations are solved
by integrating the densities over the static Green functions in
spherical coordinates. For simplicity we give here the details
only for the σ meson

D(r, θ, r ′, θ ′,mσ ) = −mσ

∑
λ

jλ(imσ r<)h(1)
λ (imσ r>)

×(2λ + 1)Pλ(cos θ )Pλ(cos θ ′), (D1)

and the photon

D(r, θ, r ′, θ ′) =
∑

λ

rλ
<

rλ+1
>

Pλ(cos θ )Pλ(cos θ ′). (D2)

Here r> = max(r, r ′) and r< = min(r, r ′). The solution for the
σ field is

σ (r) =
∑

λ

σλ(r)Pλ(cos θ ), (D3)

with

σλ(r) = −4πgσ mσ

(
hλ(imσ r)

∫ r

0
dr ′jλ(imσ r ′)ρs

λ(r ′)

+ jλ(imσ r)
∫ ∞

r

dr ′hλ(imσ r ′)ρs
λ(r ′)

)
, (D4)

where jλ and hλ are the spherical Bessel and Hankel functions.
Similarly, we find for the Coulomb field

A0
λ(r) = 1

rλ+1

∫ r

0
dr ′r ′λρc

λ(r ′) + rλ

∫ ∞

r

dr ′ 1

r ′λ+1
ρc

λ(r ′).

(D5)

From the λ components of the meson fields [σλ(r), ω0
λ(r)

ρ0
λ(r), and A0

λ(r)] we find immediately the corresponding

components of the scalar and the vector potential given in
Eqs. (6) and (7).

APPENIDX E: PAIRING FIELDS AND TENSORS

As in the case of the normal density we first calculate the
pairing tensor κ in the Woods-Saxon basis

κ
(m)
(nκ)(n′κ ′) =

∑
k>0

v
(m)∗
k,(nκ)u

(m)
k,(n′κ ′). (E1)

Next we transform it to coordinate space and obtain
κ(rsp, r ′s ′p′). This is a 2 × 2 matrix in spin space and
therefore it can be expressed in terms of the unity and the
Pauli matrices

κ(rsp, r ′s ′p′) = κ(rp, r ′p′) + κ(rp, r ′p′) · σ , (E2)

where κ(rp, r ′p′) is the S = 0 part and κ(rp, r ′p′) is a vector,
the S = 1 part of the pairing tensor. We realize that the special
form of the pairing interaction in Eq. (11) guarantees that we
do not need the full matrix κ(rsp, r ′s ′p′). As a consequence
of the zero range we need only the local part of this matrix and,
since the force acts in the S = 0 channel, only the spin scalar
part of κ contributes. It is obtained by coupling to S = 0:

κ(r, p, p′) =
∑

s

(−)s+
1
2 κ(rsp, r−sp′). (E3)

As mentioned above, in this work we take into account only
pairing fields which are diagonal in the quantum number p.

Because of the symplectic structure of the RHB equations
the pairing tensor κ connects basis states |nκm〉 with the
time reversal states |n′κ ′m〉. Using the same arguments as in
Eq. (B6) we obtain for the local and scalar part of the pairing
density

κ(rp) = 2
∑
m>0

n′κ ′∑
nκ

∑
s

φk (rsp)κ (m)
(nκ),(n′κ ′)φ

∗
k′(rsp)

=
∑

λ

κλ(r, p)Pλ(�). (E4)

Finally, with the help of Eq. (A7) we obtain the pairing
densities in various λ channels:

κ++
λ (r) = 2

2λ + 1

4πr2

∑
m>0

n′κ ′∑
nκ

Gnκκ
(m)
(nκ),(n′κ ′)Gn′κ ′ 〈κm|Pλ|κ ′m〉,

(E5)

κ−−
λ (r) = 2

2λ + 1

4πr2

∑
m>0

n′κ ′∑
nκ

Fnκκ
(m)
(nκ),(n′κ ′)Fn′κ ′ 〈κm|Pλ|κ ′m〉.

(E6)

As a consequence of these simplifications the gap equa-
tion (10) has the local form

�(r, p) = V0f (r)κ(r, p), (E7)

with f (r) = [1 − ρ(r)/ρsat]. The decomposition of this equa-
tion into spherical harmonics yields

�λ(r) = (2λ + 1)V0

∑
λ′,λ′′

fλ′(r)κλ′′(r)

(
λ

0

λ′

0

λ′′

0

)2

(E8)

and fλ(r) = [δλ0 − ρλ(r)/ρsat].
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APPENIDX F: RELATIVISTIC STRUCTURE
OF PAIRING FIELD

So far we have neglected parts of the pairing field which
connect large and small components; that is, we have assumed
that

�+−(r) = κ+−(r) = 0. (F1)

Since the density ρ(r) and the density-dependent function
f (ρ(r)) of the pairing interaction does not mix these com-
ponents, the structure of Eq. (E8) shows also very clearly that
the pairing tensor κ(r) and the pairing field �(r) are in this
respect completely connected. If κ(r) mixes these components,
so does �.

Considering the structure of Eqs. (E5) and (E6) we find that
a nonvanishing term κ+−(r) would have the form

κ+−
λ (r) = 2

2λ + 1

4πr2

∑
m>0

n′κ ′∑
nκ

Gnκκ
(m)
(nκ),(n′κ ′)Fn′κ ′

×〈κm|Pλ|κ ′m〉. (F2)

Since large and small components have different parities,
nonvanishing values of this function would require odd
values of l + l′ and, because of the parity selection rule in
〈κm|Pλ|κ ′m〉, also odd values of λ. This means the parts of
κ+−(r) and �+−(r) can only be expanded in components with
odd λ values. Of course, this fact is rather trivial. It does
not violate the parity, because even the simple Dirac equation
with parity-conserving fields have large and small components
with different parities: h+−

D = σ · p has also a negative
parity.

We can conclude that, in the spherical case, where λ = 0
and even, the field �+−(r) has to vanish. In the deformed
case this is not necessarily true. On the other side, these
considerations depend on the interaction, as for instance on
the fact that the pairing force we have used here excludes
S = 1. In particular, we did not take into account odd-λ values
in the pairing field, and therefore �+− fields are excluded
from the beginning. If we would allow for S = 1 pairs,
spin-vector components of the form � · α mixing large and
small components are not excluded, even in the spherical case,
because in this case L = 1 and S = 1 can couple to J = 0.
Of course this depends on the interaction. In Ref. [82] the
S = 1 part of the zero-range pairing force was not excluded
and nonvanishing pairing fields �+− were taken into account.
However, they turned out to be an order of magnitude smaller
than the diagonal matrix elements �++. In particular, they are
very small as compared to the term σ · p which mixes large
and small components in the Dirac Hamiltonian. Therefore,
they can be neglected as a very good approximation.

APPENIDX G: MICROSCOPIC CENTER-OF-MASS
CORRECTION

The center-of-mass correction in Eq. (27) which is widely
used in the literature [75] can be derived as a first-order
correction to a projection after variation [108] onto good linear
momentum. In Ref. [109] this term has been derived in the

framework of the BCS approximation as

〈P̂2〉
2Am

= − h̄2

Am

[ ∑
i>0

v2
i �ii +

∑
i,i ′>0

[vivi ′(vivi ′ + uiui ′)

×(|∇ii ′ |2 + |∇iī ′ |2)]

]
. (G1)

In the following we show, how this formula can be applied
in the framework of relativistic Hartree-Bogoliubov theory.
In a first step we use the fact that any Hartree-Bogoliubov
wave function can be expressed in the form of a BCS state
in the canonical basis [75]. This basis is obtained by the
diagonalization of the density matrix in ρ = V ∗V T in the
Woods-Saxon basis (18):∑

n′κ ′
ρm

nκ,n′κ ′c
i
n′κ ′ = v2

i c
i
nκ . (G2)

The eigenvalues v2
i are the BCS occupation probabilities and

the eigenvectors are the expansion coefficients of the canonical
wave functions in the spherical spinors of the Woods-Saxon
basis:

�i(rs) =
∑
nκ

ci
nκϕnκm(rs). (G3)

Here, i = (nmπ ) where m is the third component of the angular
momentum j and π = ± is the parity.

Of course the eigenvalues of Eq. (G2) provide us only
the absolute values of the occupation amplitudes vi and
ui =

√
1 − v2

i . In Eq. (G1) we also need the sign of uivi .
It is determined by the diagonal elements of the pairing tensor
in the canonical basis,

uivi =
n′κ ′∑
nκ

ci
nκc

i
n′κ ′κ(nκ)(n′κ ′) . (G4)

For the direct term we need the diagonal matrix elements
of the Laplacian

�ii = −
∑
nn′κ

ci
nκc

i
n′κ

∫
dr

{
∂Gnκ (r)

dr

∂Gn′κ (r)

∂r

+ l(l + 1)
Gnκ (r)Gn′κ (r)

r2
+ ∂Fnκ (r)

dr

∂Fn′κ (r)

∂r

+ l̃(l̃ + 1)
Fnκ (r)Fn′κ (r)

r2

}
. (G5)

For the exchange term, we have |∇ii ′ |2 =∑
μ(−)μ(∇μ)ii ′(∇−μ)ii ′ and, according to the Wigner-Eckart

theorem [107], we find for the spherical coordinate μ of the
gradient operator

(∇μ)ii ′ =
n′κ ′∑
nκ

ci
nκc

i ′
n′κ ′ (−)j−m

(
j 1 j ′

−m μ m′

)
〈φnκ ||∇||φn′κ ′ 〉,

(G6)
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with the reduced matrix element

〈φnκ ||∇||φn′κ ′ 〉 = (−)j−1/2ĵ ĵ ′
[

(−)l
′
{

j ′

l

j

l′
1
1
2

} ∫
drGnκ (r)〈l||∇||l′〉Gn′κ ′ (r)

+ (−)l̃
′
{

j ′

l̃

j

l̃′
1
1
2

} ∫
drFnκ (r)〈l̃||∇||l̃′〉Fn′κ ′(r)

]
, (G7)

where ĵ = √
2j + 1 and the expression 〈l||∇||l′〉 is the reduced matrix element of ∇ with respect to the integration over the

angles. Of course, it still contains derivatives with respect to the radial coordinate. Following Sec. 5.7 of Ref. [107], we obtain

〈l||∇||l′〉 = δl,l′+1

√
l

[
d

dr
− l

r

]
− δl,l′−1

√
l′

[
d

dr
+ l′

r

]
. (G8)
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