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Single-nucleon potential decomposition of the nuclear symmetry energy
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The nuclear symmetry energy Esym(ρ) and its density slope L(ρ) can be decomposed analytically in terms of the
single-nucleon potential in isospin asymmetric nuclear matter. Using three popular nuclear effective interaction
models which have been extensively used in nuclear structure and reaction studies, namely, the isospin and
momentum-dependent MDI interaction model, the Skyrme-Hartree-Fock approach, and the Gogny-Hartree-Fock
approach, we analyze the contribution of different terms in the single-nucleon potential to Esym(ρ) and L(ρ).
Our results show that the observed different density behaviors of Esym(ρ) for different interactions are essentially
due to the variation of the symmetry potential Usym,1(ρ, k). Furthermore, we find that the contribution of the
second-order symmetry potential Usym,2(ρ, k) to L(ρ) generally cannot be neglected. Moreover, our results
demonstrate that the magnitude of Usym,2(ρ, k) is generally comparable with that of Usym,1(ρ, k), indicating
that the second-order symmetry potential Usym,2(ρ, k) may have significant corrections to the widely used Lane
approximation for the single-nucleon potential in extremely neutron rich or proton rich nuclear matter.
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I. INTRODUCTION

During the last decade, the nuclear symmetry energy
Esym(ρ), which essentially characterizes the isospin-dependent
part of the equation of state (EOS) of asymmetric nuclear
matter, has attracted much attention from different fields
due to its multifaceted influences in nuclear physics and
astrophysics [1–6] as well as some interesting issues regarding
possible new physics beyond the standard model [7–10].
For example, the density slope L of the symmetry energy
at nuclear matter saturation density ρ0 has been shown to
be important in determining several critical quantities such
as the size of the neutron skin in heavy nuclei [11–20],
the location of the neutron drip line [21], the core-crust
transition density [3,4,12,22–25], and the gravitational binding
energy [26] of neutron stars. The symmetry energy may also
have significant influence on gravitational wave emission
from compact stars [27–31]. Furthermore, knowledge on
the symmetry energy might be useful for understanding the
non-Newtonian gravity proposed in grand unified theories and
for constraining properties of the neutral, weakly coupled,
light spin-1 gauge U boson originating from supersymmetric
extensions of the standard model [10,32–35].

In recent years, a great deal of experimental and theoretical
efforts has been devoted to determining the density dependence
of the symmetry energy [5,6]. Although significant progress
has been made, large uncertainties on Esym(ρ) still exist even
around the nuclear matter saturation density, e.g., while the
value of Esym(ρ0) is determined to be around 30 ± 4 MeV,
mostly from analyzing nuclear masses, the extracted density
slope L scatters in a very large range from about 20 to
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115 MeV, depending on the observables and methods used
in the studies [17,36,37] (see, e.g., Refs. [19,38–41] for a
review of recent progress.) Reducing the uncertainties on the
constraints of Esym(ρ0) and L is thus of critical importance
and remains a big challenge in the community.

So far, information on Esym(ρ0) and its density slope L

is essentially obtained from theoretical model analyses on
the experimental data of heavy-ion collisions [36,37,42–44],
nuclear mass [45,46], excitation energies of isobaric analog
states [47], pygmy dipole resonances of neutron-rich nuclei
[48,49], isovector giant dipole resonances of neutron-rich
nuclei [50,51], and neutron skin thickness [17,19]. In these
theoretical models, an energy density functional with a number
of parameters is usually assumed a priori, and the model pa-
rameters are then obtained from fitting experimental data and
the empirical values of some physical quantities. Information
on Esym(ρ0) and L is then extracted based on the obtained
model parameters. Since all the phenomena (observables)
are in some way at least indirectly and qualitatively related
to Esym(ρ0) and L, it is very useful to directly decompose
Esym(ρ0) and L in terms of some relevant parts of the
commonly used underlying nuclear effective interaction [52].
This decomposition of Esym(ρ0) and L provides an important
and physically more transparent approach to extracting in-
formation about isospin dependence of the strong interaction
in the nuclear medium from experiments and understanding
why the predicted symmetry energy from various models is so
uncertain [53].

In a recent work [38], based on the Hugenholtz–Van
Hove (HVH) theorem [54,55], it was indeed shown that
both Esym(ρ0) and L are completely determined by the
single-nucleon potential in asymmetric nuclear matter, which
can be extracted from the nucleon global optical model
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potentials. In that work, the Lane approximation [56] to the
single-nucleon potential in asymmetric nuclear matter, i.e.,
Un/p(ρ, δ, k) ≈ U0(ρ, k) ± Usym,1(ρ, k)δ, has been assumed
and also the momentum-independent nucleon effective mass
has been used; therefore, the higher-order effects such as
the contributions from the second-order symmetry potential
Usym,2(ρ, k) and the momentum dependence of the nucleon
effective mass, which can also contribute to L, have been
neglected. So far, to the best of our knowledge, there has
been no empirical or experimental information nor even
theoretical predictions on the second-order symmetry potential
Usym,2(ρ, k). It is thus interesting and important to estimate
Usym,2(ρ, k) with some well-established theoretical models.

The main motivation of the present work is to evaluate
Usym,2(ρ, k) and estimate its contribution to L based on several
popular nuclear effective interaction models which have been
extensively used in nuclear structure and reaction studies.
Our results indicate that, although the momentum dependence
of the nucleon effective mass might not be important, the
second-order symmetry potential Usym,2(ρ, k) might have a
nonnegligible contribution to the L. Furthermore, we find that
the magnitude of Usym,2(ρ, k) is generally comparable with
that of Usym,1(ρ, k), indicating that the second-order symmetry
potential Usym,2(ρ, k) may have significant corrections to the
widely used Lane approximation Un/p(ρ, δ, k) ≈ U0(ρ, k) ±
Usym,1(ρ, k)δ for the single-nucleon potential in extremely
neutron (or proton) rich nuclear matter, e.g., in neutron stars
and the neutron-skin region of heavy nuclei. These results
imply that it is important to extract experimentally information
on Usym,2(ρ, k).

The paper is organized as follows. In Sec. II, we briefly
recall the definition of the symmetry energy and the symmetry
potential in asymmetric nuclear matter, and then we derive the
explicit expressions for the single-nucleon potential decom-
position of the symmetry energy and its density slope. The
results and discussion are presented in Sec. III. A summary is
then given in Sec. IV. For completeness, the theoretical models
used in the present paper are briefly described in the Appendix.

II. THEORETICAL FORMULISM

A. The symmetry energy and the symmetry potential
in asymmetric nuclear matter

Due to the exchange symmetry between protons and
neutrons in nuclear matter when one neglects the Coulomb
interaction and assumes charge symmetry of nuclear forces,
the EOS of isospin asymmetric nuclear matter, defined by its
binding energy per nucleon, can be expanded as a power series
of even-order terms in isospin asymmetry δ as

E(ρ, δ) = E0(ρ) + Esym(ρ)δ2 + O(δ4), (1)

where ρ = ρn + ρp is the baryon density and δ = (ρn − ρp)/ρ
is the isospin asymmetry with ρn and ρp denoting the neutron
and proton densities, respectively; E0(ρ) = E(ρ, δ = 0) is the
EOS of symmetric nuclear matter, and the nuclear symmetry

energy is expressed as

Esym(ρ) = 1

2!

∂2E(ρ, δ)

∂δ2
|δ=0. (2)

The higher-order terms of δ in Eq. (1) are negligible, leading
to the well-known empirical parabolic law for the EOS of
asymmetric nuclear matter, which has been verified by all
many-body theories to date, at least for densities up to
moderate values (see, e.g., Ref. [6]).

Around the nuclear matter saturation density ρ0, the nuclear
symmetry energy Esym(ρ) can be expanded as

Esym(ρ) = Esym(ρ0) + Lχ + O(χ2), (3)

where χ = (ρ − ρ0)/3ρ0 is a dimensionless variable and L =
L(ρ0) is the density slope parameter of the symmetry energy
at ρ0. More generally, the slope parameter of the symmetry
energy at arbitrary density ρ is defined as

L(ρ) = 3ρ
dEsym(ρ)

dρ
. (4)

The slope parameter L at ρ0 characterizes the density depen-
dence of the nuclear symmetry energy around nuclear matter
saturation density ρ0, and thus it carries important information
on the properties of nuclear symmetry energy at both high and
low densities.

The single-nucleon potential Uτ (ρ, δ, k) (in which we
assume τ = 1 for neutrons and −1 for protons in this work)
in asymmetric nuclear matter generally depends on the baryon
density ρ, the isospin asymmetry δ, and the amplitude of the
nucleon momentum k. Due to the isospin symmetry of nuclear
interactions under the exchange of neutrons and protons, the
single-nucleon potential Uτ (ρ, δ, k) can be expanded as a
power series of δ as [52]

Uτ (ρ, δ, k) = U0(ρ, k) +
∑

i=1,2,···
Usym,i(ρ, k)(τδ)i

= U0(ρ, k) + Usym,1(ρ, k)(τδ)

+Usym,2(ρ, k)(τδ)2 + · · ·, (5)

where U0(ρ, k) ≡ Un(ρ, 0, k) = Up(ρ, 0, k) is the single-
nucleon potential in symmetric nuclear matter and the
Usym,i(ρ, k) are expressed as

Usym,i(ρ, k) ≡ 1

i!

∂iUn(ρ, δ, k)

∂δi
|δ=0

= (−1)i

i!

∂iUp(ρ, δ, k)

∂δi
|δ=0, (6)

with Usym,1(ρ, k) being the well-known nuclear symmetry
potential [6] (where Usym,1 is denoted by Usym), and the
higher-order term Usym,2(ρ, k) being called the second-order
nuclear symmetry potential here. Neglecting the higher-order
terms (δ2, δ3, · · ·) in Eq. (5) leads to the well-known Lane
potential [56], i.e.,

Uτ (ρ, δ, k) ≈ U0(ρ, k) + Usym,1(ρ, k)(τδ), (7)

which has been extensively used to approximate the single-
nucleon potential Uτ (ρ, δ, k) in asymmetric nuclear matter,
and in this case the symmetry potential Usym,1(ρ, k) can be
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obtained approximately by [6,57]

Usym,1(ρ, k) ≈ Un(ρ, δ, k) − Up(ρ, δ, k)

2δ
. (8)

B. Single-nucleon potential decomposition of the symmetry
energy and its density slope

According to the HVH theorem [54,55], the chemical po-
tentials of neutrons and protons in asymmetric nuclear matter
with energy density ε(ρ, δ) = ρE(ρ, δ) can be expressed,
respectively, as

t(kFn
) + Un(ρ, δ, kFn

) = ∂ε(ρ, δ)

∂ρn

, (9)

t(kFp
) + Up(ρ, δ, kFp

) = ∂ε(ρ, δ)

∂ρp

, (10)

where t(kFτ
) = k2

Fτ
/2m is the nucleon kinetic energy at Fermi

momentum kFτ
= kF (1 + τδ)1/3 with kF = (3π2ρ/2)1/3 be-

ing the Fermi momentum in symmetric nuclear matter at
density ρ. We would like to point out that the HVH theorem is
independent of the detailed nature of the nucleon interactions
used and has been strictly proven to be valid for any interacting
self-bound infinite Fermi system [54,55].

The right-hand side of Eq. (9) can be further written as

∂ε(ρ, δ)

∂ρn

= ∂ε(ρ, δ)

∂ρ

∂ρ

∂ρn

+ ∂ε(ρ, δ)

∂δ

∂δ

∂ρn

= ∂ε(ρ, δ)

∂ρ
+ 1

ρ

∂ε(ρ, δ)

∂δ
− ∂ε(ρ, δ)

∂δ

δ

ρ
. (11)

Similarly, the right-hand side of Eq. (10) can be expressed as

∂ε(ρ, δ)

∂ρp

= ∂ε(ρ, δ)

∂ρ
− 1

ρ

∂ε(ρ, δ)

∂δ
− ∂ε(ρ, δ)

∂δ

δ

ρ
. (12)

Subtracting Eq. (12) from Eq. (11) and noting ε(ρ, δ) =
ρE(ρ, δ), we then obtain

∂ε(ρ, δ)

∂ρn

− ∂ε(ρ, δ)

∂ρp

= 2

ρ

∂ε(ρ, δ)

∂δ
= 2

∂E(ρ, δ)

∂δ
, (13)

while adding Eq. (11) and Eq. (12), we have

∂ε(ρ, δ)

∂ρn

+ ∂ε(ρ, δ)

∂ρp

= 2E(ρ, δ) + 2ρ
∂E(ρ, δ)

∂ρ
− 2δ

∂E(ρ, δ)

∂δ
. (14)

On the one hand, substituting Eq. (1) into Eq. (13) and
Eq. (14), respectively, leads to following expressions:

t(kFn
) − t(kFp

) + Un(ρ, δ, kFn
) − Up(ρ, δ, kFp

)

= 4Esym(ρ)δ + O(δ3) (15)

and

t(kFn
) + t(kFp

) + Un(ρ, δ, kFn
) + Up(ρ, δ, kFp

)

= 2E0(ρ) + 2ρ
∂E0(ρ)

∂ρ
+

[
2

3
L(ρ) − 2Esym(ρ)

]
δ2

+O(δ4). (16)

On the other hand, t(kFτ
) and Uτ (ρ, δ, kFτ

) can be expanded
as a power series of δ, respectively, as

t(kFτ
) = t(kF ) + ∂t(k)

∂k

∣∣∣∣
kF

· 1

3
kF (τδ)

+1

2

[
k2
F

9

∂2t(k)

∂k2

∣∣∣∣
kF

− 2kF

9

∂t(k)

∂k

∣∣∣∣
kF

]
δ2 + O(δ3) (17)

and

Uτ (ρ, δ, kFτ
)

= U0(ρ, kF ) +
[
kF

3

∂U0(ρ, k)

∂k

∣∣∣∣
kF

+ Usym,1(ρ, kF )

]
(τδ)

+
[
kF

3

∂Usym,1(ρ, k)

∂k

∣∣∣∣
kF

+ Usym,2(ρ, kF )

]
δ2

+ 1

2

[
k2
F

9

∂2U0(ρ, k)

∂k2

∣∣∣∣
kF

− 2kF

9

∂U0(ρ, k)

∂k

∣∣∣∣
kF

]
δ2

+O(δ3). (18)

Substituting Eqs. (17) and (18) into the left-hand sides of
Eqs. (15) and (16), and comparing the coefficients of the first-
order δ terms on both left- and right-hand sides, we then obtain

Esym(ρ) = 1

2
Usym,1(ρ, kF ) + 1

6

∂[t(k) + U0(ρ, k)]

∂k

∣∣∣∣
kF

· kF ,

(19)

while comparing the coefficients of second-order δ terms on
both sides leads to the following expression:

L(ρ) = 3

2
Usym,1(ρ, kF ) + 3Usym,2(ρ, kF )

+ ∂Usym,1

∂k

∣∣∣∣
kF

· kF + 1

6

∂[t(k) + U0(ρ, δ)]

∂k

∣∣∣∣
kF

· kF

+ 1

6

∂2[t(k) + U0(ρ, δ)]

∂k2

∣∣∣∣
kF

· k2
F . (20)

It should be stressed that higher-order terms of the single-
nucleon potential in Eq. (5) [i.e., Usym,3(ρ, k) and higher-order
terms] have no contributions to Esym(ρ) and L(ρ), and thus
Eq. (19) and Eq. (20) are complete and exact, and they
are valid for arbitrary density ρ. Furthermore, Eq. (19) and
Eq. (20) can be rewritten as

Esym(ρ) = 1

3

h̄2k2

2m∗
0

∣∣∣∣
kF

+ 1

2
Usym,1(ρ, kF ), (21)

L(ρ) = 2

3

h̄2k2

2m∗
0

∣∣∣∣
kF

− 1

6

(
h̄2k3

m∗
0

2

∂m∗
0

∂k

)∣∣∣∣
kF

+ 3

2
Usym,1(ρ, kF )

+ ∂Usym,1

∂k

∣∣∣∣
kF

· kF + 3Usym,2(ρ, kF ), (22)

in terms of the nucleon effective mass m∗
0(ρ, k) in symmetric

nuclear matter, which is generally dependent on the density ρ

and the nucleon momentum k, i.e.,

m∗
0(ρ, k) = m

1 + m

h̄2k

∂U0(ρ,k)
∂k

,
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due to the following relations:

∂[t(k) + U0(ρ, k)]

∂k

∣∣∣∣
kF

= h̄2k

m∗
0

∣∣∣∣
kF

,

∂2[t(k) + U0(ρ, δ)]

∂k2

∣∣∣∣
kF

= h̄2

m∗
0

∣∣∣∣
kF

−
( h̄2k

m∗
0

2

∂m∗
0

∂k

)∣∣∣∣
kF

.

For convenience, we can reexpress Esym(ρ) and L(ρ),
respectively, as

Esym(ρ) = E1(ρ) + E2(ρ),
(23)

L(ρ) = L1(ρ) + L2(ρ) + L3(ρ) + L4(ρ) + L5(ρ),

with

E1(ρ) = 1

3

h̄2k2
F

2m∗
0(ρ, kF )

, (24)

E2(ρ) = 1

2
Usym,1(ρ, kF ), (25)

L1(ρ) = 2

3

h̄2k2
F

2m∗
0(ρ, kF )

, (26)

L2(ρ) = −1

6

h̄2k3
F

m∗
0

2(ρ, kF )

∂m∗
0(ρ, k)

∂k

∣∣∣∣
kF

, (27)

L3(ρ) = 3

2
Usym,1(ρ, kF ), (28)

L4(ρ) = ∂Usym,1(ρ, k)

∂k

∣∣∣∣
kF

· kF , (29)

L5(ρ) = 3Usym,2(ρ, kF ). (30)

In this way, one can see that E1(ρ) represents the kinetic
energy part (including the effective mass contribution) of the
symmetry energy while E2(ρ) is due to the symmetry potential
contribution to the symmetry energy. Furthermore, L1(ρ),
L2(ρ), L3(ρ), L4(ρ), and L5(ρ) have respective physical
meaning, namely, L1(ρ) represents the kinetic energy part
(including the effective mass contribution) of the L parameter,
L2(ρ) is from the momentum dependence of the nucleon
effective mass, L3(ρ) is due to the symmetry potential
contribution, L4(ρ) comes from the momentum dependence
of the symmetry potential, and L5(ρ) is from the second-order
symmetry potential Usym,2(ρ, kF ). In this way, the symmetry
energy Esym(ρ) and its slope L(ρ) have been decomposed
in terms of U0(ρ, k), Usym,1(ρ, k), Usym,2(ρ, k), and/or their
first- and second-order partial derivatives with respect to k

and δ. In particular, at nuclear matter saturation density ρ0,
U0(ρ0, k), Usym,1(ρ0, k), and Usym,2(ρ0, k) [and thus Esym(ρ0)
and its slope parameter L] can be determined completely
from the isospin- and momentum-dependent nucleon global
optical potential, which can be directly extracted from nucleon-
nucleus and (p, n) charge-exchange reactions (see, e.g.,
Refs. [38,58,59]).

For the single-nucleon potential decomposition of the slope
parameter L(ρ), if we use the Lane potential [Eq. (7)] and
neglect the contributions from the momentum dependence of
the nucleon effective mass, L(ρ) is then reduced to

L(ρ) = L1 + L3 + L4, (31)

namely,

L(ρ) = 2

3

h̄2k2

2m∗
0

∣∣∣∣
kF

+ 3

2
Usym,1(ρ, kF )

+ ∂Usym,1(ρ, k)

∂k

∣∣∣∣
kF

· kF , (32)

which has been used in previous work [38]. Although the
Lane potential could be a good approximation in evaluating
Usym,1(ρ, k) as in Eq. (8) [6,57], it would be interesting to
see whether or not the higher-order Usym,2(ρ, kF ) contribution
to L(ρ) is significant. Using three popular nuclear effective
interaction models, we will demonstrate in the following that
the contribution of the higher-order Usym,2(ρ, k) term to L(ρ)
generally cannot be neglected.

III. RESULTS AND DISCUSSION

In the following, we analyze the single-nucleon potential
decomposition of Esym(ρ) and L(ρ) as well as the density
and momentum dependence of Usym,1(ρ, k) and Usym,2(ρ, k)
using three popular nuclear effective interaction models which
have been extensively used in nuclear structure and reaction
studies, namely, the isospin- and momentum-dependent MDI
interaction model, the Skyrme-Hartree-Fock approach, and
the Gogny-Hartree-Fock approach. One can find details of
these three models in the Appendix. A very useful feature
of these models is that analytical expressions for many
interesting physical quantities, such as the single-nucleon
potential in asymmetric nuclear matter at zero temperature,
can be obtained, and this makes our analysis and calculations
physically transparent and very convenient.

For the MDI interaction, we use three parameter sets, i.e.,
x = −1, x = 0, and x = 1 [36], which give three different
density dependencies of the symmetry energy, namely, stiff,
moderate, and soft, respectively, and have been applied exten-
sively in transport model simulations for heavy-ion collisions.
For the Skyrme interaction, we mainly use the famous SKM*
[60] and SLy4 [61] as well as the recently developed MSL0
[19]. In addition, a number of other Skyrme interactions are
used for the single-nucleon potential decomposition of Esym(ρ)
and L(ρ) at ρ0. For the Gogny interaction, we use the existing
D1 [62], D1S [63], D1N [64], and D1M [65] which have been
successfully applied in nuclear structure studies.

A. Single-nucleon potential decomposition of Esym(ρ)

In Figs. 1, 2, and 3, we plot the density dependence of
Esym(ρ), E1(ρ), and E2(ρ) in the MDI interaction model, the
Skyrme-Hartree-Fock approach, and the Gogny-Hartree-Fock
approach, respectively. One can see from Fig. 1 that for
different x values, E1(ρ) displays the same density depen-
dence while E2(ρ) exhibits very different density behaviors,
indicating that the different density dependencies of Esym(ρ)
for x = −1, 0, and 1 are completely due to the different
density dependence of E2(ρ), i.e., the symmetry potential
Usym,1(ρ, kF ). Similar behaviors can also be seen in Fig. 2

024305-4



SINGLE-NUCLEON POTENTIAL DECOMPOSITION OF THE . . . PHYSICAL REVIEW C 85, 024305 (2012)

FIG. 1. (Color online) Density dependence of Esym(ρ), E1(ρ) =
1
3

h̄2k2
F

2m∗
0(ρ,kF ) , and E2(ρ) = 1

2 Usym,1(ρ, kF ) in the MDI interaction with

x = −1 (a), 0 (b), and 1 (c).

for the Skyrme-Hartree-Fock calculations and in Fig. 3 for the
Gogny-Hartree-Fock calculations.

Furthermore, one can see from Figs. 1, 2, and 3 that for all
the interactions considered here, E1(ρ) increases with increas-
ing density and is always positive while E2(ρ) can increase
or decrease with density and even become negative at higher
densities. These features can be understood since E1(ρ) =
1
3

h̄2k2
F

2m∗
0(ρ,kF ) is determined uniquely by the single-nucleon poten-

tial U0(ρ, k) in symmetric nuclear matter, for which reliable
information about its density and momentum dependence has
already been obtained from heavy-ion collisions (see, e.g.,
Ref. [2]), albeit there is still some room for further im-
provements, particularly at high momenta and densities, and
the nuclear effective interactions are usually constructed to
reasonably describe U0(ρ, k), especially around ρ0. However,
in contrast, the symmetry potential Usym,1(ρ, kF ), which
mainly reflects the isospin dependence of the nuclear effective
interaction in the nuclear medium, is still not very well
determined, especially at high densities and momenta. In fact,
it has been identified as the key quantity responsible for the
uncertain high-density behavior of the symmetry energy as
stressed in Ref. [6] (see also Refs. [52,53]). These results
show that the observed different density behaviors of Esym(ρ)
for different interactions are essentially due to the variation of
the symmetry potential Usym,1(ρ, k).

(a) (b) (c)

FIG. 2. (Color online) Same as Fig. 1 but in the Skyrme-Hartree-
Fock approach with MSL0 (a), SLy4 (b), and SKM* (c).

FIG. 3. (Color online) Same as Fig. 1 but in the Gogny-Hartree-
Fock approach with D1 (a), D1S (b), D1N (c), and D1M (d).

B. Single-nucleon potential decomposition of L(ρ)

In order to illustrate the single-nucleon potential decom-
position of L(ρ), we show in Figs. 4, 5, and 6 the density
dependence of L(ρ), L1(ρ), L2(ρ), L3(ρ), L4(ρ), and L5(ρ)
in the MDI interaction model, the Skyrme-Hartree-Fock
approach, and the Gogny-Hartree-Fock approach, respectively.
It is seen that L1(ρ) displays a similar density dependence for
all the interactions considered here, just like E1(ρ) shown
in Figs. 1, 2, and 3, because L1(ρ) = 2E1(ρ). L2(ρ) is seen
to contribute a small negative value to L(ρ), indicating that
the momentum dependence of the nucleon effective mass is
generally unimportant. In particular, one can see from Fig. 5
that L2(ρ) vanishes for the Skyrme-Hartree-Fock calculations
because the nucleon effective mass is momentum indepen-
dent for the zero-range Skyrme interaction considered here.
L3(ρ) exhibits different density dependencies for different

FIG. 4. (Color online) Density dependence of L(ρ), L1(ρ) =
2
3

h̄2k2
F

2m∗
0(ρ,kF ) , L2(ρ) = − 1

6
h̄2k3

F

m∗
0

2(ρ,kF )

∂m∗
0(ρ,k)

∂k
|kF

, L3(ρ) = 3
2 Usym,1(ρ, kF ),

L4(ρ) = ∂Usym,1(ρ,k)
∂k

|kF
· kF , and L5(ρ) = 3Usym,2(ρ, kF ) in the MDI

interaction with x = −1 (a), 0 (b), and 1 (c).
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FIG. 5. (Color online) Same as Fig. 4 but in the Skyrme-Hartree-
Fock approach with MSL0 (a), SLy4 (b), and SKM* (c).

interactions, reflecting the variation of Usym,1(ρ, kF ) with den-
sity for different interactions. L4(ρ) represents the contribution
of the momentum dependence of the symmetry potential to
L(ρ), and it displays different density dependence for different
interactions and can be negative or positive, depending on the
interaction used.

It is particularly interesting to analyze L5(ρ) since it reflects
the higher-order Usym,2(ρ, kF ) contribution to L(ρ) and has
been neglected in previous work [38]. From Figs. 4, 5, and 6,
it is surprising to see that L5(ρ) may play an important role in
determining L(ρ). In the MDI interaction with x = −1, L5(ρ)
is always positive and increases rapidly with density while the
opposite behavior is observed for the MDI interaction with x =
1. For the MDI interaction with x = 0, L5(ρ) is positive and
moderately increases with density. For the Skyrme-Hartree-
Fock calculations, L5(ρ) can be positive or negative while it
is always negative for the Gogny-Hartree-Fock calculations
with D1, D1S, D1N, and D1M. These results indicate that

FIG. 6. (Color online) Same as Fig. 4 but in the Gogny-Hartree-
Fock approach with D1 (a), D1S (b), D1N (c), and D1M (d).

generally the higher-order Usym,2(ρ, kF ) contribution to L(ρ)
cannot be neglected and the Lane potential approximation to
the single-nucleon potential in asymmetric nuclear matter may
cause significant error for the determination of L(ρ) from the
single-nucleon potential decomposition.

Due to the special interest on the values of Esym(ρ) and
L(ρ) at ρ0, we list in Table I the values of the characteristic
parameters ρ0, E0(ρ0), Esym(ρ0), E1, E2, L, L1, L2, L3, L4,
and L5 at ρ0 for the MDI interaction with x = −1, 0 and
1, the Gogny-Hartree-Fock predictions with D1, D1S, D1N,
and D1M, as well as the Skyrme-Hartree-Fock predictions
with 112 standard Skyrme interactions. (In the table, the
interactions in different models are in order according to the L

value and the corresponding reference for different interactions
is included in the last column.) For the MDI interaction
model, one can see from Table I that the value of E2(ρ0)
is comparable with that of E1(ρ0), and all the E0(ρ0), E1(ρ0),
and E2(ρ0) values are the same for different x values because
U0(ρ, k) and Usym,1(ρ0, k) are independent of the x parameter
by construction [36]. For the same reason, the values of L1,
L2, L3, and L4 are all independent of the x parameter too.
Therefore, for the MDI interaction, the x dependence of the
L parameter is completely determined by the second-order
symmetry potential Usym,2(ρ, kF ). Depending on the value of
the x parameter, Usym,2(ρ, kF ) can be positive or negative.
In particular, we have L = L1 + L2 + L3 + L4 = 48.5 MeV
if we assume Usym,2(ρ, kF ) = 0. Furthermore, it is seen that
the L2 contribution is relatively small compared with that
of L1, L3, or L4, indicating that the contribution due to
the momentum dependence of the nucleon effective mass is
unimportant, and this is consistent with the observation from
Fig. 4.

For the Gogny interaction, the values of L listed in Table I
range from about 18 to 34 MeV. And, similarly with the MDI
interaction model, L2 is relatively small, ranging from about
−8 to −3 MeV. It is interesting to see that the values of L1

and L3 from the Gogny interactions are quite similar to those
of the MDI interaction model, and thus the difference of the
L parameter from different interactions in these two models
is mainly due to the variation of L4 and L5. Furthermore, for
the different Gogny interactions considered here, the value of
L4 can be positive or negative while the value of L5 is always
negative, and the L5 contribution to the L parameter usually
is relatively important.

For the standard Skyrme interactions, we have L2 = 0 MeV.
For the 112 Skyrme interactions considered in Table I, it is seen
that the value of L ranges from about −50 to 160 MeV, L1

from about 20 to 60 MeV, L3 from about 4 to 74 MeV, L4

from about −48 to 36 MeV, and L5 from about −102 to 58
MeV. Therefore, the contributions from different terms to the L

parameter can change a lot in the standard Skyrme interactions,
especially for L3, L4, and L5.

In order to see more clearly and intuitively the contributions
from different terms to the L parameter, we show in Fig. 7
the correlations of L1(ρ0), L3(ρ0), L4(ρ0), and L5(ρ0) with
L(ρ0) for the MDI interaction with x = −1, 0, and 1, the
Gogny-Hartree-Fock predictions with D1, D1S, D1N, and
D1M, as well as the Skyrme-Hartree-Fock predictions with
the 112 standard Skyrme interactions. One can see from Fig. 7
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TABLE I. The characteristic parameters ρ0 (fm−3), E0(ρ0) (MeV), Esym(ρ0) (MeV), E1 (MeV), E2 (MeV), L (MeV), L1 (MeV), L2 (MeV),
L3 (MeV), L4 (MeV), and L5 (MeV) at saturation density ρ0 for the MDI interaction with x = −1, 0, and 1, the Gogny-Hartree-Fock predictions
with D1, D1S, D1N, and D1M, as well as the Skyrme-Hartree-Fock predictions with 112 standard Skyrme interactions. The interactions in
different models are in order according to L value. The corresponding reference is included as the last column.

Model ρ0 E0(ρ0) Esym(ρ0) E1 E2 L L1 L2 L3 L4 L5 Ref.

MDI
MDI x = 1 0.160 −16.2 30.5 18.2 12.3 14.6 36.4 −6.2 36.9 −18.6 −33.9 [36]
MDI x = 0 0.160 −16.2 30.5 18.2 12.3 60.2 36.4 −6.2 36.9 −18.6 11.6 [36]
MDI x = −1 0.160 −16.2 30.5 18.2 12.3 105.7 36.4 −6.2 36.9 −18.6 57.2 [36]
Gogny
D1 0.166 −16.3 30.7 18.8 11.9 18.4 37.7 −5.0 35.6 −17.1 −32.7 [62]
D1S 0.163 −16.0 31.1 17.9 13.3 22.4 35.7 −7.6 39.8 −7.5 −37.9 [63]
D1M 0.165 −16.0 28.6 16.8 11.8 24.8 33.6 −4.2 35.3 4.5 −44.3 [65]
D1N 0.161 −16.0 29.6 16.5 13.1 33.6 33.0 −3.7 39.2 9.2 −44.2 [64]
Skyrme
Z-fit 0.159 −16.0 26.8 14.5 12.3 −49.7 29.0 0 36.9 −13.3 −102.4 [67]
Esigma-fit 0.163 −16.0 26.4 14.8 11.6 −36.9 29.6 0 34.9 −18.1 −83.2 [67]
E-fit 0.159 −16.1 27.7 14.1 13.6 −31.3 28.2 0 40.7 −15.2 −84.9 [67]
Zsigma-fit 0.163 −15.9 26.7 15.9 10.8 −29.4 31.8 0 32.4 −17.1 −76.5 [67]
SVII 0.143 −15.8 27.0 11.4 15.6 −10.2 22.8 0 46.7 −11.7 −68.0 [68]
SkSC4o 0.161 −15.9 27.0 12.3 14.7 −9.7 24.6 0 44.0 0 −78.3 [69]
SVI 0.143 −15.8 26.9 12.0 14.9 −7.3 24.1 0 44.6 −12.2 −63.8 [68]
ZsigmaS-fit 0.162 −16.0 28.8 16.0 12.8 −4.5 32.0 0 38.4 −17.9 −57.0 [67]
v070 0.158 −15.8 28.0 11.6 16.4 −3.5 23.1 0 49.3 −34.7 −41.2 [70]
v075 0.158 −15.8 28.0 11.6 16.4 −0.3 23.1 0 49.3 −27.8 −45.0 [70]
SI 0.155 −16.0 29.2 13.2 16.0 1.2 26.4 0 48.1 −11.4 −61.9 [67]
v080 0.157 −15.8 28.0 11.6 16.4 2.2 23.1 0 49.3 −21.7 −48.5 [70]
v090 0.157 −15.8 28.0 11.6 16.4 5.0 23.1 0 49.3 −11.6 −55.8 [70]
Skz4 0.160 −16.0 32.0 17.5 14.5 5.8 35.1 0 43.4 27.9 −100.6 [71]
SkSC15 0.161 −15.9 28.0 12.3 15.7 6.7 24.6 0 47.0 0 −65.0 [69]
BSk3 0.157 −15.8 27.9 10.8 17.1 6.8 21.6 0 51.3 −16.6 −49.6 [72]
MSk3 0.158 −15.8 28.0 12.2 15.8 7.0 24.3 0 47.5 0 −64.8 [73]
v105 0.157 −15.8 28.0 11.6 16.4 7.1 23.1 0 49.3 0 −65.3 [70]
MSk4 0.157 −15.8 28.0 11.6 16.4 7.2 23.1 0 49.3 0 −65.2 [73]
BSk1 0.157 −15.8 27.8 11.6 16.2 7.2 23.1 0 48.7 0 −64.7 [74]
v110 0.157 −15.8 28.0 11.6 16.4 7.5 23.1 0 49.3 3.2 −68.1 [70]
MSk5 0.157 −15.8 28.0 11.6 16.4 7.6 23.1 0 49.3 0 −64.9 [73]
BSk2p 0.157 −15.8 28.0 11.6 16.4 7.8 23.2 0 49.3 −14.9 −49.7 [75]
BSk2 0.157 −15.8 28.0 11.7 16.3 8.0 23.3 0 49.0 −14.8 −49.6 [75]
MSk8 0.158 −15.8 27.9 11.0 16.9 8.3 22.1 0 50.6 0 −64.5 [76]
v100 0.157 −15.8 28.0 11.6 16.4 8.7 23.1 0 49.3 −3.5 −60.2 [70]
MSk7 0.158 −15.8 27.9 11.6 16.4 9.4 23.1 0 49.1 0 −62.9 [77]
MSk6 0.157 −15.8 28.0 11.6 16.4 9.6 23.1 0 49.3 0 −62.8 [73]
SIII 0.145 −15.9 28.2 15.1 13.1 9.9 30.2 0 39.2 −14.8 −44.7 [78]
MSk9 0.158 −15.8 28.0 12.2 15.8 10.4 24.3 0 47.5 0.0 −61.5 [76]
BSk4 0.157 −15.8 28.0 13.2 14.8 12.5 26.4 0 44.4 −6.5 −51.7 [72]
Skz3 0.160 −16.0 32.0 17.5 14.5 13.0 35.1 0 43.4 10.3 −75.8 [71]
BSk8 0.159 −15.8 28.0 15.3 12.7 14.9 30.6 0 38.2 7.5 −61.4 [79]
Dutta 0.162 −16.0 26.6 12.4 14.2 16.5 24.8 0 42.7 0 −51.0 [80]
Skz2 0.160 −16.0 32.0 17.5 14.5 16.8 35.1 0 43.4 −10.7 −50.9 [71]
BSk6 0.157 −15.8 28.0 15.2 12.8 16.8 30.4 0 38.4 6.2 −58.2 [72]
BSk7 0.157 −15.8 28.0 15.2 12.8 18.0 30.4 0 38.4 7.5 −58.3 [72]
SKP 0.163 −16.0 30.0 12.4 17.6 19.6 24.8 0 52.7 −26.1 −31.9 [81]
BSk5 0.157 −15.8 28.7 13.2 15.5 21.4 26.4 0 46.5 −8.0 −43.5 [72]
Skz1 0.160 −16.0 32.0 17.5 14.5 27.7 35.1 0 43.4 −24.7 −26.1 [71]
SIIIs 0.148 −16.1 32.0 15.0 17.0 28.7 29.9 0 51.0 −5.0 −47.3 [68]
SKT6 0.161 −16.0 30.0 12.3 17.6 30.9 24.7 0 52.9 0 −46.7 [82]
SKT7 0.161 −15.9 29.5 14.8 14.7 31.1 29.6 0 44.2 −14.8 −27.8 [82]
SKXm 0.159 −16.0 31.2 12.7 18.5 32.1 25.3 0 55.6 −22.0 −26.9 [81]
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TABLE 1. (Continued.)

Model ρ0 E0(ρ0) Esym(ρ0) E1 E2 L L1 L2 L3 L4 L5 Ref.

RATP 0.160 −16.0 29.2 18.4 10.9 32.4 36.8 0 32.6 −20.5 −16.5 [83]
SkSC14 0.161 −15.9 30.0 12.3 17.7 33.1 24.6 0 53.0 0 −44.5 [69]
SKX 0.155 −16.1 31.1 12.1 19.0 33.2 24.3 0 56.9 −23.7 −24.3 [81]
MSk2 0.157 −15.8 30.0 11.6 18.4 33.4 23.1 0 55.3 0.0 −45.1 [73]
SKXce 0.155 −15.9 30.1 12.0 18.2 33.5 23.9 0 54.5 −24.2 −20.8 [81]
SKT8 0.161 −15.9 29.9 14.8 15.1 33.7 29.6 0 45.4 0 −41.3 [82]
SKT9 0.160 −15.9 29.8 14.8 15.0 33.7 29.5 0 45.0 0 −40.8 [82]
MSk1 0.157 −15.8 30.0 12.2 17.8 33.9 24.3 0 53.5 0 −43.9 [73]
Skz0 0.160 −16.0 32.0 17.5 14.5 35.1 35.1 0 43.4 −42.1 −1.3 [71]
Skyrme1p 0.155 −16.0 29.4 13.2 16.1 35.3 26.4 0 48.4 −11.4 −28.1 [84]
BSk15 0.159 −16.0 30.0 15.3 14.7 33.6 30.6 0 44.2 −3.9 −37.2 [85]
BSk10 0.159 −15.9 30.0 13.3 16.7 37.2 26.6 0 50.1 −10.5 −29.0 [86]
SGII 0.158 −15.6 26.8 15.5 11.3 37.6 31.0 0 33.9 −16.1 −11.2 [87]
BSk12 0.159 −15.9 30.0 13.3 16.7 38.0 26.5 0 50.2 −9.9 −28.8 [86]
BSk11 0.159 −15.9 30.0 13.3 16.7 38.4 26.5 0 50.2 −9.8 −28.6 [86]
SLy10 0.156 −15.9 32.0 17.6 14.3 38.7 35.3 0 43.0 15.4 −55.0 [88]
BSk13 0.159 −15.9 30.0 13.3 16.7 38.8 26.5 0 50.2 −9.7 −28.2 [86]
BSk16 0.159 −16.1 30.0 15.3 14.7 34.9 30.5 0 44.2 −2.1 −37.8 [89]
BSk9 0.159 −15.9 30.0 15.3 14.7 39.9 30.6 0 44.2 10.8 −45.7 [79]
BSk17 0.159 −16.1 30.0 15.3 14.7 36.3 30.5 0 44.2 −2.1 −36.4 [90]
KDE 0.164 −16.0 32.0 16.5 15.4 41.4 33.1 0 46.3 12.3 −50.2 [91]
SLy230a 0.160 −16.0 32.0 17.6 14.4 44.3 35.2 0 43.1 32.0 −66.1 [61]
KDE0 0.161 −16.1 33.0 17.2 15.8 45.2 34.4 0 47.4 6.9 −43.5 [91]
SLy8 0.160 −16.0 31.4 17.7 13.8 45.3 35.3 0 41.3 13.7 −45.1 [88]
SLy4 0.160 −16.0 31.8 17.6 14.2 45.4 35.3 0 42.5 13.8 −46.2 [61]
SLy0 0.161 −16.0 31.5 17.6 13.8 45.4 35.3 0 41.5 13.6 −45.0 [88]
SLy3 0.160 −16.0 32.1 17.7 14.4 45.5 35.3 0 43.2 13.8 −46.8 [88]
SKMs 0.160 −15.8 30.0 15.6 14.4 45.8 31.2 0 43.3 −19.4 −9.3 [60]
SLy230b 0.160 −16.0 32.0 17.6 14.4 46.0 35.3 0 43.1 13.9 −46.4 [124]
SLy7 0.158 −15.9 32.0 17.7 14.3 47.2 35.4 0 42.8 15.0 −46.0 [61]
SLy6 0.159 −15.9 32.0 17.7 14.2 47.4 35.4 0 42.7 14.6 −45.3 [61]
SKb 0.155 −16.0 23.9 19.8 4.1 47.5 39.6 0 12.3 −21.6 17.3 [87]
SLy5 0.160 −16.0 32.0 17.6 14.4 48.3 35.3 0 43.1 13.7 −43.8 [61]
SLy2 0.160 −15.9 32.3 17.6 14.7 48.8 35.2 0 44.0 13.6 −44.1 [88]
SLy1 0.160 −16.0 32.5 17.6 14.9 48.8 35.2 0 44.7 13.7 −44.8 [88]
BSk14 0.159 −15.9 30.0 15.3 14.7 43.9 30.5 0 44.2 −2.0 −28.8 [92]
SKM 0.160 −15.8 30.7 15.6 15.2 49.3 31.2 0 45.5 −18.0 −9.3 [93]
SII 0.148 −16.0 34.2 20.1 14.0 50.0 40.3 0 42.0 −19.2 −13.1 [66]
Skzm1 0.160 −16.0 32.0 17.5 14.5 54.1 35.1 0 43.4 −47.9 23.6 [71]
SKT3 0.161 −15.9 31.5 12.3 19.2 55.3 24.7 0 57.5 0 −26.8 [82]
SLy9 0.151 −15.8 32.1 17.8 14.4 55.4 35.5 0 43.2 17.9 −41.1 [88]
SKT3s 0.160 −16.0 31.7 12.3 19.4 55.9 24.6 0 58.2 0 −26.9 [82]
SKT1s 0.160 −16.0 32.0 12.3 19.7 56.1 24.6 0 59.2 0 −27.7 [82]
SKT2 0.161 −15.9 32.0 12.3 19.7 56.2 24.7 0 59.0 0 −27.5 [82]
SKT1 0.161 −16.0 32.0 12.3 19.7 56.2 24.7 0 59.1 0 −27.5 [82]
MSkA 0.153 −16.0 30.3 15.1 15.3 57.2 30.1 0 45.9 −16.4 −2.4 [94]
SkI6 0.159 −15.9 29.9 19.1 10.8 59.2 38.2 0 32.4 23.1 −34.4 [95]
MSL0 0.160 −16.0 30.0 15.4 14.6 60.0 30.7 0 43.9 −13.2 −1.5 [19]
SkI4 0.160 −15.9 29.5 18.9 10.6 60.4 37.8 0 31.7 21.4 −30.6 [96]
LNS 0.175 −15.3 33.4 15.8 17.7 61.5 31.5 0 53.0 −12.8 −10.2 [97]
SIV 0.151 −16.0 31.2 25.1 6.1 63.5 50.2 0 18.4 −23.5 18.5 [78]
SGI 0.154 −15.9 28.3 19.7 8.6 63.9 39.5 0 25.8 −7.0 5.6 [87]
SKOs 0.160 −15.8 31.9 13.7 18.2 68.9 27.4 0 54.7 −2.4 −10.8 [98]
SkMP 0.157 −15.6 29.9 18.6 11.3 70.3 37.1 0 34.0 −13.1 12.3 [99]
Ska 0.155 −16.0 32.9 19.8 13.1 74.6 39.6 0 39.4 −21.6 17.3 [100]
SKO 0.160 −15.8 32.0 13.7 18.2 79.1 27.5 0 54.7 −4.3 1.3 [98]
SKYT 0.148 −15.4 33.7 19.3 14.3 80.8 38.7 0 43.0 −10.8 9.9 [101]
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TABLE 1. (Continued.)

Model ρ0 E0(ρ0) Esym(ρ0) E1 E2 L L1 L2 L3 L4 L5 Ref.

SK272 0.155 −16.3 37.4 15.6 21.8 91.7 31.2 0 65.4 −17.6 12.6 [102]
Rsigma-fit 0.158 −15.6 30.6 15.5 15.0 85.7 31.1 0 45.1 −14.6 24.1 [67]
SKT4 0.159 −16.0 35.5 12.2 23.2 94.1 24.5 0 69.7 0 0 [82]
SK255 0.157 −16.3 37.4 15.2 22.2 95.1 30.5 0 66.5 −20.9 19.0 [102]
SV 0.155 −16.0 32.8 31.4 1.4 96.1 62.8 0 4.2 −29.1 58.2 [67]
SKT5 0.164 −16.0 37.0 12.5 24.5 98.5 25.0 0 73.6 0 0 [82]
SkI3 0.158 −16.0 34.8 21.1 13.8 100.5 42.1 0 41.3 35.5 −18.4 [96]
Gsigma-fit 0.158 −15.6 31.4 15.5 15.9 94.0 31.0 0 47.6 −14.6 30.0 [67]
SkI2 0.158 −15.8 33.4 17.7 15.6 104.3 35.5 0 46.9 15.7 6.2 [96]
SkI5 0.156 −15.8 36.6 20.8 15.8 129.3 41.7 0 47.4 35.0 5.2 [96]
SkI1 0.160 −16.0 37.5 17.7 19.8 161.1 35.5 0 59.3 14.2 52.0 [96]

that the results from the MDI interaction model and the Gogny-
Hartree-Fock calculations are essentially consistent with the
systematics of the Skyrme-Hartree-Fock predictions. Based
on these calculated results, we find that a statistical analysis
can lead to L1(ρ0) ≈ 30 ± 6.5 MeV, L3(ρ0) ≈ 46 ± 9.5 MeV,
L4(ρ0) ≈ −4 ± 15 MeV, and L5(ρ0) ≈ −35 ± 30 MeV. These
results indicate that, within the standard Skyrme-Hartree-Fock
energy density functional, L1(ρ0) and L3(ρ0) are relatively
well constrained, and the main uncertainties are due to the
L4(ρ0) and L5(ρ0) contributions. Furthermore, it is interesting
to see from Fig. 7 that there is an approximately linear
correlation between L5(ρ0) and L(ρ0). If we use the present
empirical constraint L(ρ0) = 60 ± 30 MeV, then we find that
L5(ρ0) can vary from about −66 to 24 MeV; i.e., the value of
Usym,2(ρ0, kF ) can vary from about −22 to 8 MeV.

FIG. 7. (Color online) Correlations of L1(ρ0) (a), L3(ρ0) (b),
L4(ρ0) (c), and L5(ρ0) (d) with L(ρ0) for the MDI interaction with
x = −1, 0, and 1, Gogny-Hartree-Fock predictions with D1, D1S,
D1N, and D1M, as well as Skyrme-Hartree-Fock predictions with
the 112 standard Skyrme interactions considered in Table I.

C. The symmetry potential Usym,1(ρ, k)

Shown in Fig. 8 is the momentum dependence of
Usym,1(ρ, k) at ρ = 0.5ρ0, ρ0, and 2ρ0 using the MDI interac-
tion with x = −1, 0, and 1. For comparison, we also include
in Fig. 8 the corresponding results from several microscopic
approaches, including the relativistic impulse approximation
(RIA) [103,104] using the empirical nucleon-nucleon scatter-
ing amplitude determined by Murdock and Horowitz (MH)
[105] with isospin-dependent and isospin-independent Pauli
blocking corrections as well as by McNeil, Ray, and Wallace
(MRW) [106], the relativistic Dirac-Brueckner-Hartree-Fock
(DBHF) theory [107], and the nonrelativistic Brueckner-
Hartree-Fock (BHF) theory with and without the three-body
force (TBF) rearrangement contribution [108]. For these
microscopic results, one can see that they are all consistent with
each other around and below ρ0, although there still exist larger
uncertainties at the higher density of ρ = 2ρ0. It is interesting
to see that the momentum dependence of Usym,1(ρ, k) from
the MDI interaction with x = 0 is in good agreement with the
results from the microscopic approaches. It should be noted
that the momentum dependencies of Usym,1(ρ, k) at ρ0 are the
same for x = −1, 0, and 1 since Usym,1(ρ, k) is independent of
the x parameter at ρ0 by construction, as mentioned previously.

FIG. 8. (Color online) Momentum dependence of Usym,1(ρ, k) at
ρ = 0.5ρ0 (a), ρ0 (b), and 2ρ0 (c) using the MDI interaction with
x = −1, 0, and 1. The corresponding results from several microscopic
approaches are also included for comparison (see the text for details).
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FIG. 9. (Color online) Same as Fig. 8 but for the Skyrme-Hartree-
Fock approach with MSL0, SLy4, and SKM*.

Similarly as in Fig. 8, we plot in Fig. 9 and Fig. 10 the
momentum dependence of Usym,1(ρ, k) at ρ = 0.5ρ0, ρ0, and
2ρ0 using the Skyrme-Hartree-Fock approach with MSL0,
SLy4, and SKM* and the Gogny-Hartree-Fock approach with
D1, D1S, D1N, and D1M, respectively. On the one hand,
it is seen from Fig. 9 that, for 0 < p < 700 MeV/c, the
results from the MSL0 and SKM* interactions agree well
with those from microscopic approaches while the results
from the SLy4 interaction seem to display large deviation
from the microscopic results, especially at higher nucleon
momenta. On the other hand, one can see from Fig. 10 that,
at ρ = 0.5ρ0 and ρ0, the results from the D1 interaction are
consistent with those of the microscopic calculations while the
results from D1S, D1N, and D1M exhibit large deviation from
the microscopic calculations except at low nucleon momenta
(p � 300 MeV/c). At ρ = 2ρ0, the Gogny-Hartree-Fock
calculations display results different from the microscopic
ones and a strong model dependence appears.

Overall, one can see from Figs. 8, 9, and 10 that the
momentum dependence of Usym,1 varies from one interaction
to another for the MDI interaction model, the Skyrme-Hartree-
Fock approach, and the Gogny-Hartree-Fock approach. For the
MDI interaction with x = −1, 0, and 1, the Gogny interaction
with D1, and the Skyrme interaction with MSL0 and SKM*,
the value of Usym,1 can be negative at higher momentum while
for the Gogny interaction with D1S, D1N, and D1M and the
Skyrme interaction with SLy4, the value of Usym,1 is positive
at higher momentum.

FIG. 10. (Color online) Same as Fig. 8 but for the Gogny-Hartree-
Fock approach with D1, D1S, D1N, and D1M.

FIG. 11. (Color online) Momentum dependence of Usym,2(ρ, k)
at ρ = 0.5ρ0 (a), ρ0 (b), and 2ρ0 (c) using the MDI interaction with
x = −1, 0, and 1.

D. The second-order symmetry potential Usym,2(ρ, k)

As for Usym,2, to the best of our knowledge, there is
no experimental nor empirical information nor theoretical
predictions so far. Figures 11 and 12 show the momentum de-
pendence of Usym,2 at 0.5ρ0, ρ0, and 2ρ0 in the MDI interaction
model and the Gogny-Hartree-Fock approach, respectively.
Since Usym,2 is independent of the nucleon momentum in
the Skyrme-Hartree-Fock approach, we only show here its
density dependence in Fig. 13. From Fig. 11 and Fig. 12, it is
interesting to see that for all interactions in the MDI interaction
model and the Gogny-Hartree-Fock approach at ρ = 0.5ρ0,
ρ0, and 2ρ0, Usym,2 first decreases with nucleon momentum
and then essentially saturates when the nucleon momentum
is larger than about 500 MeV/c. Especially, the results from
the MDI interaction with x = 1 seem to be in quantitative
agreement with those from the Gogny-Hartree-Fock approach.
Furthermore, one can see from Fig. 11 and Fig. 12 that the mag-
nitude of Usym,2 increases with the density, and this is also true
for the Skyrme-Hartree-Fock approach, as shown in Fig. 13.
Another interesting feature is that for the MDI interaction
model and the Skyrme-Hartree-Fock approach, Usym,2 can
be either negative or positive while it is always negative
for the Gogny-Hartree-Fock approach with the interactions
considered here. Therefore, any experimental constraints about
Usym,2 will be very useful and important for constraining the
theoretical models.

FIG. 12. (Color online) Same as Fig. 11 but for the Gogny-
Hartree-Fock approach with D1, D1S, D1N, and D1M.
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FIG. 13. (Color online) Density dependence of Usym,2 for the
Skyrme-Hartree-Fock approach with MSL0, SLy4, and SKM*.

Comparing Fig. 8 with Fig. 11 for the MDI interaction
model, Fig. 9 with Fig. 13 for the Skyrme-Hartree-Fock
approach, and Fig. 10 with Fig. 12 for the Gogny-Hartree-Fock
approach, one can see that, at fixed density and momentum,
the magnitude of Usym,2 is generally comparable with that
of Usym,1. So, in Eq. (5), compared with Usym,1(ρ, k)δ, the
contribution from Usym,2(ρ, k)δ2 could be negligible only
if δ is small (δ � 1). Therefore, we conclude from the
present model calculations that, when δ is small (δ � 1), the
Lane potential might be a good approximation to the single-
nucleon potential Un/p(ρ, δ, p). However, the contributions of
Usym,2(ρ, k) might not be simply neglected when δ is close
to 1.

IV. SUMMARY

Using the Hugenholtz–Van Hove theorem, we have explic-
itly and analytically expressed the symmetry energy Esym(ρ)
and its density slope L(ρ) in terms of the single-nucleon
potential in asymmetric nuclear matter that might be extracted
from experiments. We have carefully checked the contributions
of each decomposed term, i.e., E1(ρ) and E2(ρ) for Esym(ρ),
and L1(ρ), L2(ρ), L3(ρ), L4(ρ), and L5(ρ) for L(ρ), by using
three popular phenomenological nuclear interaction models in
nuclear structure and reaction studies, namely, the isospin- and
momentum-dependent MDI model, the Skyrme-Hartree-Fock
approach, and the Gogny-Hartree-Fock approach.

Our results have indicated that the E2(ρ) due to the
symmetry potential Usym,1(ρ, kF ) is comparable with the
E1(ρ) which describes the kinetic part including the nucleon
effective mass contribution and that the observed different
density behaviors of Esym(ρ) for different interactions are
essentially due to the variation of the symmetry potential
Usym,1(ρ, k). For the density slope parameter L(ρ), interest-
ingly, we have found that, although the term L2 due to the
momentum dependence of the nucleon effective mass might
not have significant contributions. the term L5, which is from

the second-order symmetry potential Usym,2(ρ, kF ), generally
cannot be negligible.

By analyzing the density and momentum dependence of
Usym,1(ρ, k) and Usym,2(ρ, k) for the three nuclear effective
interaction models, we have demonstrated that the magni-
tude of the second-order symmetry potential Usym,2(ρ, k) is
generally comparable with that of the symmetry potential
Usym,1(ρ, k) and thus the Lane potential Un/p(ρ, δ, k) ≈
U0(ρ, k) ± Usym,1(ρ, k)δ could be a good approximation to
the single-nucleon potential only if the isospin asymmetry δ is
small (δ � 1). However, Usym,2(ρ, k) might not be neglected
in describing the single-nucleon potential Un/p(ρ, δ, k) in
extremely neutron (or proton) rich nuclear matter, e.g.,
in neutron stars and in the neutron-skin region of heavy
nuclei, where the value of δ could be very large (close
to 1).

While the momentum dependence of U0(ρ, k) and
Usym,1(ρ, k) has been extensively investigated and relatively
well constrained from the measured nucleon optical model po-
tentials, heavy-ion collision experiments, and the microscopic
calculations, especially around and below nuclear matter
saturation density, our knowledge of Usym,2(ρ, k) is still very
poorly known. The results on Usym,2(ρ, k) presented here from
the three phenomenological models have indicated large model
dependence. Therefore, constraining Usym,2(ρ, k) from exper-
iments or microscopic calculations (e.g., BHF and DBHF)
based on nucleon-nucleon interactions derived from scattering
phase shifts is crucial for a complete and more precise
description for Un/p(ρ, δ, k), and thus for Esym(ρ) and L(ρ).
Experimentally, information on the momentum dependence
of Usym,2(ρ0, k) can be in principle obtained from the isospin-
dependent nucleon optical model potentials. On the other hand,
all analyses in the present work are based on nonrelativistic
models; it will be thus interesting to see how our results change
in models using relativistic covariant energy-density function-
als, such as relativistic mean-field models. These studies are in
progress.
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APPENDIX: MODELS FOR NUCLEAR EFFECTIVE INTERACTIONS

For completeness, we briefly introduce in this Appendix the nuclear interaction models used in this work and also present
some important expressions. These models include the isospin- and momentum-dependent MDI interaction, the Hartree-Fock
approach based on Skyrme interactions, and the Hartree-Fock approach based on finite-range Gogny interactions. These models
have been extensively used in nuclear structure studies and transport model simulations for heavy-ion collisions.

1. Isospin- and momentum-dependent MDI interaction

The isospin- and momentum-dependent MDI interaction is a phenomenological effective interaction based on a modified
finite-range Gogny interaction [36,109]. In the MDI interaction, the potential energy density εpot (ρ, δ) of asymmetric nuclear
matter at total density ρ and isospin asymmetry δ is given by

εpot(ρ, δ) = Au(x)ρnρp

ρ0
+ Al(x)

2ρ0

(
ρ2

n + ρ2
p

) + B

σ + 1

ρσ+1

ρσ
0

(1 − xδ2) + 1

ρ0

∑
τ,τ ′

Cτ,τ ′

∫ ∫
d pd p′ fτ (p)fτ ′(p′)

1 + ( p − p′)2/
2
, (A1)

where Au(x) = −95.98 − x 2B
σ+1 (MeV), Al(x) = −120.57 + x 2B

σ+1 (MeV), B = 106.35 (MeV), σ = 4/3, Cτ,τ =
−11.70 (MeV), Cτ,−τ = −103.40 (MeV), and 
 = h̄(3π2ρ0/2)1/3 are obtained from fitting the momentum dependence of
the single-nucleon potential to that predicted by the Gogny-Hartree-Fock and/or the Brueckner-Hartree-Fock calculations, the
saturation properties of symmetric nuclear matter and a symmetry energy of 30.5 MeV at nuclear matter saturation density
ρ0 = 0.16 fm−3. The incompressibility for cold symmetric nuclear matter at saturation density ρ0 is set to be K0 = 211 MeV.
The x parameter in the MDI interaction is introduced to vary the density dependence of the nuclear symmetry energy while keeping
other properties of the nuclear equation of state fixed [36], and it can be adjusted to mimic the predictions of microscopic and/or
phenomenological many-body theories on the density dependence of nuclear matter symmetry energy. We would like to point
out that the MDI interaction has been extensively used in the transport model for studying isospin effects in intermediate-energy
heavy-ion collisions induced by neutron-rich nuclei [36,110–117], in the study of the thermal properties of asymmetric nuclear
matter [118,119], and in the study of compact star physics [24,120,121]. In particular, the isospin diffusion data from NSCL/MSU
have constrained the value of x to between 0 and −1 for nuclear matter densities less than about 1.2ρ0 [36].

In the mean-field approximation, the single-nucleon potential for a nucleon with momentum p and isospin τ in asymmetric
nuclear matter can be expressed as [109,122,123]

Uτ (ρ, δ, p) = Au(x)
ρ−τ

ρ0
+ Al(x)

ρτ

ρ0
+ B

(
ρ

ρ0

)σ

(1 − xδ2) − 4τx
B

σ + 1

ρσ−1

ρσ
0

δρ−τ

+ 2Cτ,τ

ρ0

2

h3
π
3

[p2
Fτ

+ 
2 − p2

2p

ln

(p + pFτ
)2 + 
2

(p − pFτ
)2 + 
2

+ 2pFτ



− 2 arctan

p + pFτ



+ 2 arctan

p − pFτ




]

+ 2Cτ,−τ

ρ0

2

h3
π
3

[p2
F−τ

+ 
2 − p2

2p

ln

(p + pF−τ
)2 + 
2

(p − pF−τ
)2 + 
2

+ 2pF−τ



− 2 arctan

p + pF−τ



+ 2 arctan

p − pF−τ




]
,

(A2)

where ρτ = ρ(1 + τδ)/2 and pFτ
= h̄(3π2ρτ )1/3.

2. Skyrme-Hartree-Fock approach

For the Skyrme interaction, we use the standard form [124] that has been shown to be very successful in describing the structure
of finite nuclei. By neglecting the spin-orbit interaction term, which is irrelevant in nuclear matter calculations considered here, the
nuclear effective interaction in the standard Skyrme interaction is taken to have a zero-range, density- and momentum-dependent
form [124], i.e.,

V
Skyrme

12 (r1, r2) = t0(1 + x0Pσ )δ(r) + 1
2 t1(1 + x1Pσ )[P ′2δ(r) + δ(r)P2] + t2(1 + x2Pσ )P ′ · δ(r)P

+ 1
6 t3(1 + x3Pσ )[ρ(R)]αδ(r), (A3)

where r = r1 − r2, R = (r1 + r2)/2, Pσ is the spin exchange operator, P = 1
2i

(∇1 − ∇2) is the relative momentum operator
acting on the right, and P ′ is its conjugate, which acts on the left. Here t0, x0, t1, x1, t2, x2, t3, x3, and α are the nine Skyrme
interaction parameters determined from fitting the binding energies, charge radii, and other properties of a large number of nuclei
in the periodic table. In the Skyrme-Hartree-Fock approach, the single-nucleon potential in asymmetric nuclear matter is given

024305-12



SINGLE-NUCLEON POTENTIAL DECOMPOSITION OF THE . . . PHYSICAL REVIEW C 85, 024305 (2012)

by [124]

Uτ (ρ, δ, k) = k2

8
ρ[t1(2 + x1) + t2(2 + x2)] + k2

8
ρτ [t2(1 + 2x2) − t1(1 + 2x1)] + 1

2
t0[(2 + x0)ρ − (2x0 + 1)ρτ ]

+ 1

12
t3ρ

α[(2 + x3)ρ − (2x3 + 1)ρτ ] + α

24
t3ρ

α−1
[
(2 + x3)ρ2 − (2x3 + 1)

(
ρ2

n + ρ2
p

)]
+ 1

8
[t1(2 + x1) + t2(2 + x2)]

(
p5

Fn

5π2h̄5
+

p5
Fp

5π2h̄5

)
+ 1

8
[t2(2x2 + 1) − t1(2x1 + 1)]

p5
Fτ

5π2h̄5
. (A4)

3. Gogny interaction

The Gogny interaction has been proved to be very successful in describing not only nuclear structure but also nuclear
matter [62,125]. Compared with the Skyrme interaction, which only contains δ forces, the Gogny interaction features two
finite-range terms plus one δ force that can well mimic the nucleon-nucleon effective interaction. By neglecting the spin-orbit
interaction term, the conventional Gogny interaction is given by [62,125]

V
Gogny

12 (r1, r2) =
2∑

i=1

(Wi + BiPσ − HiPτ − MiPσPτ )e−r2/μ2
i + t0(1 + x0Pσ )[ρ(R)]αδ(r), (A5)

where W1, B1, H1, M1, μ1, W2, B2, H2, M2, μ2, t0, x0, and α are the 13 Gogny interaction parameters, and Pτ is the isospin
exchange operator. By using the Hartree-Fock approach, we explicitly write down its single-nucleon potential

Uτ (ρ, δ, k) = ρ

2∑
i=1

π
3
2 μ3

i

(
Wi + Bi

2

)
− ρτ

2∑
i=1

π
3
2 μ3

i

(
Hi + Mi

2

)
+ t0ρ

α

[(
1 + x0

2

)
ρ −

(
1

2
+ x0

)
ρτ

]

+ 1

8
t0αρα+1[3 − (2x0 + 1)δ2] +

2∑
i=1

Zi(k, τ )(−Wi − 2Bi + Hi + 2Mi) +
2∑

i=1

Zi(k,−τ )(Hi + 2Mi), (A6)

with

Zi(k, τ ) = 1√
πμik

[
e−μ2

i (k+kFτ )2/4 − e−μ2
i (k−kFτ )2/4

] + 1

2
{erf[μi(k + kFτ

)/2] − erf[μi(k − kFτ
)/2]}, (A7)

where erf(x) is the error function.
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[50] L. Trippa, G. Coló, and E. Vigezzi, Phys. Rev. C 77, 061304

(2008).
[51] L. G. Cao and Z. Y. Ma, Chin. Phys. Lett. 25, 1625 (2008).
[52] C. Xu, B. A. Li, L. W. Chen, and C. M. Ko, Nucl. Phys. A 865,

1 (2011).
[53] C. Xu and B.A. Li, Phys. Rev. C 81, 064612 (2010).

[54] N. M. Hugenholtz and L. Van Hove, Physica 24, 363 (1958).
[55] L. Satpathy, V. S. UmaMaheswari, and R. C. Nayak, Phys. Rep.

319, 85 (1999).
[56] A. M. Lane, Nucl. Phys. 35, 676 (1962).
[57] B. A. Li, Phys. Rev. C 69, 064602 (2004).
[58] A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003).
[59] X. H. Li and L. W. Chen, Nucl. Phys. A 874, 62 (2012).
[60] J. Bartel, P. Quentin, M. Brack, C. Guet, and H.-B. Håkansson,
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