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4Institut für Theoretische Physik, Universität Erlangen, D-91054 Erlangen, Germany

5Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
6Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94551, USA

(Received 18 November 2011; published 8 February 2012)

A new Skyrme-like energy density suitable for studies of strongly elongated nuclei was determined in the
framework of the Hartree-Fock-Bogoliubov theory using the recently developed model-based, derivative-free
optimization algorithm POUNDerS. A sensitivity analysis at the optimal solution has revealed the importance
of states at large deformations in driving the parameterization of the functional. The good agreement with
experimental data on masses and separation energies, achieved with the previous parameterization UNEDF0, is
largely preserved. In addition, the new energy density UNEDF1 gives a much improved description of the fission
barriers in 240Pu and neighboring nuclei.
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I. INTRODUCTION

One of the focus areas of the UNEDF SciDAC collaboration
[1,2] was the description of the fission process within a
self-consistent framework based on nuclear density functional
theory (DFT). Until now, attempts at going beyond the
macroscopic-microscopic methods [3] have been carried in
the context of the original self-consistent nuclear mean-field
theory [4] with Skyrme (see, e.g., Refs. [5–10]), Gogny (see,
e.g., Refs. [11–14]), and relativistic (see, e.g., Refs. [5,15,16])
energy density functionals (EDFs). The fundamental assump-
tion of the nuclear DFT is that one can describe accurately
a broad range of phenomena in nuclei, including excited
states and large-amplitude collective motion, by enriching
the density dependence of the functional while staying at
the single-reference Hartree-Fock-Bogoliubov (HFB) level.
In this picture, beyond-mean-field corrections are implicitly
built in. Preliminary studies aimed at re-examining the old
problem of restoring broken symmetries in this context are
promising [17,18].

A common challenge to both the self-consistent mean field
and the DFT approach is the need to carefully optimize the EDF
parameters to the preselected pool of observables [4,19–25].
In particular, special attention must be paid to optimize the
parameters in the same regime where the theory will later be
applied and to choose the fit observables accordingly. In a re-
cent work [26], we showed that existing Skyrme EDFs exhibit
a significant spread in bulk deformation properties, and re-
emphasized [27,28] that the resulting theoretical uncertainties
could be greatly reduced by considering data corresponding
to large deformation in the optimization process. Let us
recall that the early Skyrme-type EDF SkM∗ [29] was in
fact optimized for fission studies in the actinide region by
considering the experimental information on the fission barrier
of 240Pu. However, the optimization was not performed directly
at the deformed HFB level; instead, a semiclassical approach

was used based on the Thomas-Fermi approximation together
with shell-correction techniques. The D1S parameterization
of the finite-range Gogny force was also fine-tuned to the
first barrier height of 240Pu [30], considering a rotational
correction to the energy of the deformed state. However, this
fine-tuning again was not done directly at the HFB level but by
a manual readjustment of the surface coefficient of the EDF
using a phenomenological model. Also, in the Bsk14 EDF
of the HFB-14 mass model [31] by the Bruxelles-Montréal
collaboration, data on fission barriers were utilized to optimize
the EDF parameters by adding phenomenological collective
corrections, including a rotational one. One may, therefore,
conclude that no EDF has ever been systematically optimized
at the deformed HFB level (and without phenomenological
corrections added) by explicitly considering constraints on
states at large deformations.

In a previous study [25], we applied modern optimization
and statistical methods, together with high-performance
computing, to carry out EDF optimization at the deformed
HFB level, namely, the approximation level where the
functional is later applied. The resulting EDF parameterization
UNEDF0 yields good agreement with experimental masses,
radii, and deformations. The present work represents an
extension of Ref. [25] to the problem of fission. In particular,
it builds on the results reported in Ref. [26], which concluded
that the data on strongly deformed nuclear states should
be considered in the optimization protocol to constrain the
surface properties of the functional.

Here we propose the new EDF Skyrme parameterization,
UNEDF1, which is obtained by adding to the list of fit
observables the experimental excitation energies of fission
isomers in the actinides. To ensure that the functional can
be used in fission and fusion studies, we have removed the
center-of-mass (c.m.) correction in the spirit of the DFT. As in
the case of UNEDF0, a sensitivity analysis has been performed
at the solution to identify possible correlations between model
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parameters and assess the impact of the new class of fit
observables on the resulting parameterization.

This paper is organized as follows. In Sec. II we briefly
review the theoretical framework, establish the notation, and
justify the removal of the c.m. correction. Section III defines
the set of fit observables, discusses numerical precision and
implementation, and presents the new UNEDF1 parameter set
together with the results of the sensitivity analysis. To assess
the impact of fission-isomer data, we compare UNEDF1 with
UNEDF0 in Sec. IV. In Sec. V we study the performance of UN-
EDF1 with respect to global nuclear observables, spectroscopic
properties, fission, and neutron droplets. Section VI contains
the main conclusions and lays out future work.

II. THEORETICAL FRAMEWORK

A. Time-even Skyrme energy density functional

In the nuclear DFT, the total binding energy E of the
nucleus is a functional of the one-body density ρ and pairing
ρ̃ matrices. In its quasilocal approximation, it can be written
as a three-dimensional (3D) spatial integral:

E[ρ, ρ̃] =
∫

d3rH(r)

=
∫

d3r
[
EKin(r) + χ0(r) + χ1(r)

+χ̃ (r) + ECoul
Dir (r) + ECoul

Exc (r)
]
, (1)

where H(r) is the energy density that is quasilocal (it usually
depends on derivatives with respect to the local densities),
time-even, scalar, isoscalar, and real. It is usually broken down
into the kinetic energy [EKin(r)] and nuclear potential [for both
the particle-hole and particle-particle channels, χ0,1(r) and
χ̃(r), respectively] and Coulomb terms [ECoul

Dir (r) and ECoul
Exc (r)].

For Skyrme functionals, the particle-hole energy density
χ0(r) + χ1(r) splits into χ0(r), depending only on isoscalar
densities, and χ1(r), depending on isovector densities (and the
isoscalar particle density through the density dependence of
the coupling constant C

ρρ

1 ; see below) [4,32,33]. Each term
takes the generic form,

χt (r) = C
ρρ
t ρ2

t + C
ρτ
t ρt τt + CJ 2

t J2
t

+C
ρ�ρ
t ρt�ρt + C

ρ∇J
t ρt∇ · J t , (2)

where ρt , τt , and J t (t = 0, 1) can all be expressed in terms
of full density matrix ρt (rσ, r ′σ ′); see Ref. [4] for details.
(For brevity, we have omitted the explicit dependence of the
densities on the coordinate r .) The J t density is the vector
part of the spin-current density tensor Jμν . (As in our previous
work [25], nonvector components of Jμν were disregarded.)
The coupling constants are real numbers, except for C

ρρ
t , which

is taken to be density dependent:

C
ρρ
t = C

ρρ

t0 + C
ρρ

tD ρ
γ

0 . (3)

All volume coupling constants (Cρρ
t and C

ρτ
t ) can be related

to the constants characterizing the infinite nuclear matter [25],
and this relation was used during the optimization to define
the range of parameter changes.

The Coulomb contribution is treated as usual by assuming
a point proton charge. The exchange term was computed at the
Slater approximation:

ECoul
Exc (r) = −3

4
e2

(
3

π

)1/3

ρ4/3
p . (4)

For the pairing energy density χ̃(r), we use the mixed
pairing description of Ref. [34] with

χ̃(r) =
∑

q=n,p

V
q

0

2

[
1 − 1

2

ρ0(r)

ρc

]
ρ̃2

q (r), (5)

where ρ̃ is the local pairing density. The value ρc = 0.16 fm−3

is used throughout this paper. We allow for different pairing
strengths for protons (V p

0 ) and neutrons (V n
0 ) [35]. A cutoff of

Ecut = 60 MeV was used to truncate the quasiparticle space
[36]. To prevent the collapse of pairing, we used the Lipkin-
Nogami procedure according to Ref. [37].

B. Treatment of the center of mass

The success of the self-consistent mean-field theory is, to a
great extent, because of the concept of symmetry breaking. A
classic example is the breaking of the translational invariance
by the mean field that is localized in space. The associated c.m.

correction to the binding energy [4,38,39], −〈 P̂
2
c.m.〉/(2mA),

is usually added to the DFT binding energy in Eq. (1). This
correction contributes typically a few MeV to the total energy.
Moreover, it was shown that adopting approximations to this
correction during the optimization of the functional could lead
to significantly different surface properties [4,17,40].

Because the c.m. correction is not additive in particle
number, it causes serious conceptual problems when dealing
with fission or heavy-ion fusion, that is, when one considers
the split of the nucleus into several fragments, or formation of
the compound nucleus through a merger of two lighter ions.
In fission studies, it was shown that the contribution of the
c.m. correction between the two prefragments could amount
to several MeV near scission [41–43]. Moreover, properly
computing this relative contribution is difficult, as it reflects the
degree of entanglement between prefragments [43,44]. Time-
dependent Hartree-Fock calculations of low-energy heavy-ion
reactions are even more problematic, as there is currently no
solution to the discontinuity of the c.m. correction between the
target+projectile system and the compound nucleus [45,46]:
Such calculations usually neglect the c.m. term altogether,
even though EDFs employed in such calculations have been
usually fitted with the c.m. correction included. There are,
however, some exceptions (see, e.g., Ref. [47]). Note that the
same problem occurs with the so-called rotational correction
arising from the breaking of rotational invariance by deformed
mean fields [41,48].

Another undesired property of the c.m. correction is that
it slightly breaks the variational nature of HFB when adding
or subtracting a particle [49] (i.e., it violates the Koopmans
theorem). The resulting s.p. energy shifts are quite significant
and they are of the order of the mass polarization effect related
to the fact that when adding or subtracting a particle to a closed
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spherical core, the resulting nucleus becomes deformed. If a
spherical symmetry is imposed, the mass polarization effect is
a self-consistent rearrangement of all nucleons, when an odd
particle is introduced to the system. This corresponding energy
shift is EKin/A

2 (i.e., about 0.4 MeV in 40Ca [49]).
As discussed in Sec. I, the EDF is supposed to capture all

the physics of interest at the HFB level. In other words, the
functional is to be built from the full single-reference density
matrix. Although the HFB vacuum breaks the translational
symmetry, the associated correction term should be absorbed
in the density dependence. In particular, it should be possible
to express the c.m. term not as an explicit function of A, as
currently being done, but through a density functional. Until a
simple prescription is proposed, however, it is more consistent
to simply drop all corrections that originate from a Hamiltonian
view of the problem, including the c.m. term. And, because
our focus is on fission, this is precisely what we have done in
this work.

III. OPTIMIZATION AND SENSITIVITY ANALYSIS

A. Experimental data set

Because the focus of this study is the construction of an EDF
optimized for fission, our experimental data set was expanded
by including the excitation energies (bandheads) of four fission
isomers (FIs) listed in Table I. The ground-state (g.s.) binding
energies of 238U, 240Pu, and 242Cm, not included in the previous
UNEDF0 data set [25], were added for consistency (the g.s.
energy of 236U was already there).

Consequently, compared with UNEDF0, the UNEDF1 data set
contains seven new data points: three additional g.s. masses
of deformed nuclei, and four excitation energies of FIs. For
the FIs, we used the weight wi = 0.5 MeV in the χ2 objective
function,

χ2(x) =
∑

i

(
si(x) − di

wi

)2

. (6)

The χ2 weights for binding energies, proton rms radii, and
odd-even mass (OEM) staggering are the same as in Ref. [25].

Two assumptions made in Ref. [25] were also adopted here:
(i) Because the isovector effective mass cannot be reliably
constrained by the current data, it was set to 1/M∗

v = 1.249 as
in UNEDF0 and the SLy4 parameterization [51], which was the
initial starting point in our optimization; and (ii) because tensor
terms are mostly sensitive to the single-particle (s.p.) shell
structure, which is not directly constrained by the UNEDF1 data
set, the tensor coupling constants CJ 2

0 and CJ 2

1 were set to zero.

TABLE I. Experimental excitation energies of fission isomers
[50] (in MeV) considered in the UNEDF1 data set.

Z N E

92 144 2.750
92 146 2.557
94 146 2.800
96 146 1.900

In summary, compared with UNEDF0 [25], the optimization of
UNEDF1 is characterized by the following:

(i) The same 12 EDF parameters to be optimized,
namely, ρc, ENM/A, KNM, aNM

sym, LNM
sym, M∗

s , C
ρ�ρ

0 ,

C
ρ�ρ

1 , V n
0 , V

p

0 , C
ρ∇J

0 , and C
ρ∇J

1 ;
(ii) Seven additional data points: three new masses and

four FI energies with the weights w = 0.5 MeV;
(iii) Neglect of the c.m. correction term.

B. Numerical precision and implementation

All HFB calculations were run with the code HFBTHO [52].
The code expands the HFB solutions on the axially symmetric,
deformed harmonic oscillator (HO) basis. In the optimization
of UNEDF0, we used a spherical basis with 20 HO shells, which
was found to give a good compromise between the numerical
precision and computational performance. The current opti-
mization includes states with much larger deformation than
in the ground state, and the dependence of the energies with
respect to the set of basis states is more significant.

In the UNEDF1 optimization, all quantities but the four
fission isomers were computed with the spherical HO basis
of Nsh = 20 shells, which includes N = 1771 basis states.
For the fission isomers, we adopted a stretched HO basis
with deformation β = 0.4. The basis contains up to Nsh = 50
oscillator shells with an upper limit of N = 1771 basis states
with lowest HO s.p. energies. The oscillator frequency ω3

0 =
ω2

⊥ω‖ was set at h̄ω0 = 1.2 × 41/A1/3 MeV. As seen in Fig. 1,
at this selection of the HO basis, the dependence of FI energies
on the basis deformation remains fairly constant around
β = 0.4. Moreover, the range of variations is significantly less
than the corresponding χ2 weight, wi = 0.5 MeV.

Optimization calculations were performed on Argonne
National Laboratory’s Fusion cluster, managed by Argonne’s
Laboratory Computing Resource Center (LCRC). Fusion
consists of 320 computing nodes, each with dual quad-core
Pentium Xeon processors. By using Intel’s Math Kernel
Library and the Intel Fortran compiler (ifort), we were able to

FIG. 1. (Color online) Excitation energies of fission isomers
considered in the UNEDF1 optimization as functions of the HO basis
deformation.
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run HFBTHO in almost half the time when compared with the
prebuilt reference BLAS library implementation and GNU’s
gfortran compiler. We were also able to dramatically reduce
the wall-clock time of an HFBTHO computation by using
OpenMP at the node level to parallelize key computational
bottlenecks. These bottlenecks involved iteratively computing
the eigenvalues and eigenvectors of the (�, π ) blocks of the
HFB matrix, as well as the density calculations reflecting the
same block pattern. OpenMP allowed us to dynamically assign
processors to blocks of data for parallel processing, which
further reduced the wall-clock time by a factor of 6 when
running on an eight-core node.

The parameter estimation computations presented in this
paper ran 218 total simulations of HFBTHO for each nucleus
in the data set, using 80 compute nodes (640 cores) for
5.67 h. As highlighted in Ref. [25], using the POUNDerS

algorithm [Practical Optimization Using No Derivatives (for
Squares)] on the type of fitting problem considered here
requires more than 10 times fewer HFBTHO runs over a more
traditional, derivative-free Nelder-Mead optimization method
[53]. Hence, without the algorithmic and computational
advancements detailed above, a similar optimization could
have previously consumed a month of computations using
80 cores of the Fusion cluster.

We emphasize that, strictly speaking, both the UNEDF0 and
the UNEDF1 parameterizations obtained in this work should
always be used in their original environment. In particular,
the pairing EDF should be that of Eq. (5) used with the
original pairing space cutoff; pairing calculations must be
complemented by the Lipkin-Nogami prescription; and the
proton and neutron pairing strengths must not vary from the
values determined by our optimization. In short, contrary to
usual practice, there is no flexibility in the treatment of the
pairing channel.

C. Result of the optimization: UNEDF1 parameter set

The starting point for our POUNDerS optimization was
the previously obtained UNEDF0 parameterization. After 177
simulations, the algorithm reached the new optimal result.

The resulting parameter set is listed in Table II. The first six
parameters were restricted to lie within finite bounds, also
listed in Table II, that were not allowed to be violated during the
optimization procedure. As can be seen, parameters ENM/A

and KNM are on the boundary value. In the case of UNEDF0,
we recall that KNM and 1/M∗

s also ended up at their respective
boundaries. The saturation density ρc is given with more digits
than the other parameters. Such extra precision is needed when
computing volume coupling constants [25].

We first note that the same minimum was obtained by
starting either from the UNEDF0 solution or from the UNEDF1ex
parameterization discussed below: This gives us confidence
that the parameter set listed in Table II is sufficiently robust.
We can then observe that most of the parameter values of
UNEDF1 are fairly close to those of UNEDF0 [25]. There
are, nevertheless, a couple of notable exceptions. First, the
magnitude of C

ρ�ρ

1 is now much larger. This is potentially
dangerous, as it might trigger scalar-isovector instabilities
in the functional that could appear in neutron-rich nuclei
[54,55]. (Our mass-table calculations with UNEDF1 do not
show indications of instability in even-even nuclei.) Second,
C

ρ∇J

1 has drifted considerably from its initial value, even
changing sign. These two coupling constants control the
isovector surface properties of the nucleus; hence, only proper
constraints on the shell structure like, for example, spin-orbit
splitting in neutron-rich nuclei will allow these terms to be
pinned down. For the moment, both coupling constants are
relatively unconstrained, as evidenced also by their relatively
large σ value shown in Table II.

D. Sensitivity analysis

1. Correlation matrix of UNEDF1

We have performed a sensitivity analysis at the solution
of the optimization. All residual derivatives were estimated
by using the optimal finite-difference procedure detailed in
Ref. [56]. Because some of the parameters ran at their bounds
during the optimization, the sensitivity analysis was carried
out in a subspace that does not contain these parameters.

TABLE II. Optimized parameter set UNEDF1. Listed are bounds used in the optimization, final optimized parameter values, standard
deviations, and 95% confidence intervals.

x Bounds x̂(fin.) σ 95% CI

ρc [0.15,0.17] 0.15871 0.00042 [0.158, 0.159]
ENM/A [−16.2,−15.8] −15.800 — —
KNM [220, 260] 220.000 — —
aNM

sym [28, 36] 28.987 0.604 [28.152, 29.822]
LNM

sym [40, 100] 40.005 13.136 [21.841, 58.168]
1/M∗

s [0.9, 1.5] 0.992 0.123 [0.823, 1.162]
C

ρ�ρ

0 [−∞, +∞] −45.135 5.361 [−52.548, −37.722]
C

ρ�ρ

1 [−∞, +∞] −145.382 52.169 [−217.515, −73.250]
V n

0 [−∞, +∞] −186.065 18.516 [−211.666, −160.464]
V

p

0 [−∞, +∞] −206.580 13.049 [−224.622, −188.538]
C

ρ∇J

0 [−∞, +∞] −74.026 5.048 [−81.006, −67.046]
C

ρ∇J

1 [−∞, +∞] −35.658 23.147 [−67.663, −3.654]
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TABLE III. Correlation matrix for UNEDF1 parameter set. Correlations greater than 0.8 (in absolute value) are in boldface.

ρc 1.00
aNM

sym −0.35 1.00
LNM

sym −0.14 0.71 1.00
1/M∗

s 0.32 0.23 0.36 1.00
C

ρ�ρ

0 −0.25 −0.25 −0.35 −0.99 1.00
C

ρ�ρ

1 −0.06 −0.15 −0.77 −0.22 0.19 1.00
V n

0 −0.32 −0.22 −0.36 −0.99 0.98 0.22 1.00
V

p

0 −0.33 −0.18 −0.29 −0.97 0.97 0.15 0.96 1.00
C

ρ∇J

0 −0.14 −0.20 −0.32 −0.86 0.91 0.22 0.85 0.84 1.00
C

ρ∇J

1 0.05 −0.17 −0.13 −0.10 0.07 0.21 0.10 0.07 −0.03 1.00

ρc aNM
sym LNM

sym 1/M∗
s C

ρ�ρ

0 C
ρ�ρ

1 V n
0 V

p

0 C
ρ∇J

0 C
ρ∇J

1

The same strategy was also used in the previous sensitivity
analysis of the UNEDF0 parameterization; we refer to Ref. [25]
for a detailed discussion of the available options in the
case of constrained optimization. In Table II we list the
standard deviation σ and 95% confidence interval (CI) for
each parameter at the solution. As discussed in Sec. III C,
the standard deviations of most of the parameters is relatively
small.

The correlation matrix for the UNEDF1 parameter set is
presented in Table III. It was calculated as in Ref. [25] and,
similarly, corresponds to the 10-dimensional subspace of the
parameters that are not at their boundary value. Generally, most
of the parameters are only slightly correlated to each other, with
a few notable exceptions (correlations below 0.8 are not very
significant from a statistical viewpoint). The strong correlation
between 1/M∗

s and both V n
0 and V

p

0 had already been noticed
in the UNEDFnb parameter set of Ref. [25] and reflects the
interplay between the level density at the Fermi surface and the
size of pairing correlations. Similarly, both pairing strengths
are strongly correlated with C

ρ�ρ

0 , which can also be related to
surface properties of the functional. Interestingly, both pairing
strengths are now strongly correlated with one another, which
was not the case with UNEDF0. The same correlation matrix of
Table III is shown graphically in Fig. 2.

Next, we study the overall impact of each data type in our
χ2 function on the obtained parameter set. As in Ref. [25] we
calculate the partial sums of the sensitivity matrix for each data
type. Let us recall that the sensitivity matrix S is defined as

S(x) = [J (x)J T(x)]−1J (x) , (7)

where J (x) is the Jacobian matrix. The results are illustrated
in Fig. 3, where we have summed absolute values of each
data type for each parameter. The total strengths for each
parameter were then normalized to 100%. Note that the fission
isomer excitation energies represent less than 4% of the total
number of data points but account for typically 30% of the
variation of the parameter set. In the case of the symmetry
energy coefficient, this percentage is even 75% (see Sec. IV
for more discussion). Compared with UNEDF0, we find that
the overall dependence on the proton radii has significantly
decreased, except for ρ and C

ρ�ρ

1 , and that the dependence
on the OES has actually increased. This kind of analysis,

however, does not address the importance of a particular data
point to the obtained optimal solution.

A complementary way to study the impact of an individual
datum on the obtained parameter set is therefore presented in
Fig. 4. Here, we have plotted the amount of variation,

||δx/σ || =
√√√√∑

k

(
δxk

σ

)2

, (8)

for the optimal parameter set when data points di are changed
by an amount of 0.1wi one by one. As can be seen, the
variations are small overall, assuring us that the data set was
chosen correctly. The masses of the double magic nuclei 208Pb
and 58Ni seem to have the biggest relative impact on the optimal
parameter set. One can also see that the sensitivity of the
parameters on the new FI data is larger than the average datum
point. By contrast, the dependence of the parameterization
on the masses of deformed actinide and rare earth nuclei is
weaker.

0

0.25

0.5

0.75

1

UNEDF1

ρ c

a
N
M
sy
m

L
N
M
sy
m

C
ρΔ

ρ

0

C
ρΔ

ρ

1

V
n
0

V
p
0

C
ρ∇

J

0

C
ρ∇

J

1

1/
M
∗
s

ρ c

a
N
M
sy
m
L
N
M
sy
m

C
ρΔ

ρ

0 C
ρΔ

ρ

1
V
n
0 V

p
0

C
ρ∇

J

0 C
ρ∇

J

1 1/
M
∗
s

FIG. 2. (Color online) Absolute values of the correlation matrix
of Table III presented in a color-coded format.
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FIG. 3. (Color online) Sensitivity of UNEDF1 to different types of
data entering the χ 2 function.

2. Discussion of the Coulomb exchange term

It was argued in Ref. [57] that removing the Coulomb
exchange term from the functional could improve the overall
fit on nuclear binding energies. This procedure had been
motivated by the earlier works, Refs. [58,59], in which similar
ameliorations, albeit on a smaller data set, were observed.
The origin of these ad hoc manipulations was the observation
that many-body effects induced by the long-range Coulomb
force among protons manifest themselves in the form of a
(positive) correlation energy, which, to some extent, can cancel
out the (negative) exchange term [60,61]. Because such an
exchange-correlation effect is absent from the standard Skyrme
functional, one could feel justified to simulate it by effectively
screening the Coulomb exchange term with an empirical factor
0 � αex � 1. The special cases αex = 0 and αex = 1 give,
respectively, the case without and with full Coulomb exchange.

The result of the optimization of the functional with this
additional parameter αex is given in Table IV. Our objective

Masses (def)

Masses (sph) Charge radii OES FI

FIG. 4. (Color online) Overall change in x for the UNEDF1 when
the datum di is changed by an amount of 0.1wi one by one. The four
rightmost data points marked FI correspond to excitation energies of
fission isomers. The results for UNEDF0 and UNEDF1ex of Sec. III D2
are also shown.

function is slightly decreased from 51.058 to 49.341 when
this term is present. Overall, both parameterizations, with
and without the Coulomb exchange screening term, are very
similar. However, one can see that the 95% CI is relatively large
for the screening parameter, the value of which is also close
to 1 (full Coulomb exchange). We recall that this confidence
interval is extracted from the correlation matrix computed in
the 10-D space of “inactive” parameters, namely, the space
of the 10 parameters that are not at their bound and thus
actively constrained. If one computes the Jacobian matrix
in the original 13-D space of all parameters with a tangent
plane approximation to account for the three active parameters
ENM, KNM, and LNM

sym, we find that the 95% CI for the
screening parameter becomes [−1.663,3.290]. This implies
that αex is basically not constrained with the current data
set.

TABLE IV. Optimized parameter set UNEDF1ex. Listed are bounds used in the optimization, final optimized parameters, standard deviations,
and 95% confidence intervals.

x Bounds x̂(fin.) σ 95% CI

ρc [0.15, 0.17] 0.15837 0.00049 [0.158, 0.159]
ENM/A [−16.2, −15.8] −15.800 — —
KNM [220, 260] 220.000 — –
aNM

sym [28, 36] 28.384 0.711 [27.417, 29.351]
LNM

sym [40, 100] 40.000 — —
1/M∗

s [0.9, 1.5] 1.002 0.123 [0.835, 1.169]
C

ρ�ρ

0 [−∞, +∞] −44.602 5.349 [−51.872, −37.331]
C

ρ�ρ

1 [−∞, +∞] −180.956 47.890 [−246.050, −115.863]
V n

0 [−∞, +∞] −187.469 18.525 [−212.649, −162.288]
V

p

0 [−∞, +∞] −207.209 13.106 [−225.024, −189.395]
C

ρ∇J

0 [−∞, +∞] −74.339 5.187 [−81.389, −67.289]
C

ρ∇J

1 [−∞, +∞] −38.837 23.435 [−70.690, −6.984]
αex [ 0, 1] 0.813 0.154 [0.604, 1.023]
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FIG. 5. (Color online) Similar as in Fig. 3 but for the UNEDF1ex
parameter set.

The dependence of every parameter on the four types of
data included in the data set (masses, charge radii, OES, and FI
data) reveal an interesting consequence of the screening of the
Coulomb exchange term. Figure 5 shows the analog of Fig. 3
when the screening parameter αex is included. Note the striking
difference in the bar plot for the symmetry energy parameter
aNM

sym: Fluctuations in this parameter under a variation of the
excitation energy of the fission isomers are reduced to less
than 10%, compared with nearly 75% when the full Coulomb
exchange term is computed.

This behavior can be qualitatively understood by recall-
ing a few simple facts about the bulk nuclear energy and
deformation. A variation of the excitation energy of very
deformed states such as fission isomers essentially affects
the bulk surface properties of the functional—especially if
the coupling constants driving shell effects are somewhat
constrained by the data set. In the language of the leptodermous
expansion of Sec. IV C, this implies that both the surface
and surface-symmetry energy coefficients (which depend in
a nontrivial way on the coupling constants of the functional)
should be impacted. On the other hand, we may assume that
the isospin dependence of the binding energy (i.e., the total
symmetry energy) is relatively well constrained by the several
long isotopic sequences present in our data set. We therefore
see that the requirement of having the full symmetry energy
constrained together with a relatively large variation of the
surface terms should lead to a relatively large variation of the
volume symmetry aNM

sym, which is indeed observed in Fig. 4.
One can now understand the difference of behavior of aNM

sym
under a change of data when the Coulomb screening term
is present: According to [60,61], the many-body Coulomb
correlation energy that is simulated by αex < 1 essentially
represents a proton surface effect. Changes in bulk surface
properties triggered by variations in the excitation energy of
fission isomers can be entirely absorbed by a readjustment
of αex, especially because the latter is poorly constrained
by the other data, rather than by aNM

sym. Lastly, we note
that the Coulomb exchange term, which is approximated by

the usual local Slater expression, may get worse at large
deformations [62].

In summary, considering that (i) αex is poorly constrained
by the data, yet may affect significantly other parameters like
aNM

sym and (ii) αex does not significantly improve the quality of
the fit, we decided to retain the full Coulomb exchange term
in the present UNEDF1 parameterization.

IV. CHARACTERIZATION OF UNEDF1
PARAMETERIZATION

In this section, we discuss general properties of the UNEDF1
parameterization and compare it with UNEDF0.

A. Energy density in (t, x) parameterization

For practical applications, it is useful to express the
coupling constants of UNEDF0 and UNEDF1 in the traditional
(t, x) parameterization of the standard Skyrme force (see
Appendix A of [4]). The results are given in Table V.

As can be seen, in the (t, x) parameterization the two
functionals are quite different. This is to be expected as the
relation between the C and (t, x) parameterizations is partially
nonlinear [63].

B. Energy density parameters in natural units

The EDF parameters can also be expressed in terms of
natural units [63]. In Table VI we list the parameter set of
UNEDF1 in standard units and in natural units. Here we have
used the same value for the scale � = 687 MeV, characterizing
the breakdown of the chiral effective theory, which was found
in Ref. [63]. From the numbers in Table VI one can see that
most of the UNEDF1 parameters are natural, with only two
minor exceptions. First, because the effective mass M∗

s in our
optimum is close to unity, the C

ρτ

0 is abnormally small. Second,
C

ρ�ρ

1 seems to be on the borderline of being unnaturally large.
As Table II indicates, however, the standard deviation for this
parameter is rather large. It has to be noted, however, that there
is nothing unusual about the magnitude of C

ρ�ρ

1 . Indeed, some

TABLE V. Parameters (t, x) of UNEDF0 and UNEDF1.

Parameters UNEDF0 UNEDF1 Units

t0 −1883.68781034 −2078.32802326 MeV·fm3

t1 277.50021224 239.40081204 MeV·fm5

t2 608.43090559 1575.11954190 MeV·fm5

t3 13901.94834463 14263.64624708 MeV·fm3+3γ

x0 0.00974375 0.05375692 —
x1 −1.77784395 −5.07723238 —
x2 −1.67699035 −1.36650561 —
x3 −0.38079041 −0.16249117 —
b4 125.16100000 38.36807206 MeV·fm5

b′
4 −91.2604000 71.31652223 MeV·fm5

γ 0.32195599 0.27001801 —
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TABLE VI. Coupling constants of UNEDF0 and UNEDF1 in normal
units and in natural units. Value � = 687 MeV was used.

Coupling constant UNEDF0 UNEDF1

Normal Natural Normal Natural
units units units units

C
ρρ

00 −706.38 −0.795 −779.37 −0.878
C

ρρ

10 240.26 0.271 288.01 0.324
C

ρρ

0D 868.87 0.901 891.48 0.937
C

ρρ

1D −69.77 −0.072 −201.37 −0.212
C

ρτ

0 −12.92 −0.176 −0.99 −0.014
C

ρτ

1 −45.08 −0.616 −33.52 −0.458
C

ρ�ρ

0 −55.26 −0.755 −45.14 −0.616
C

ρ�ρ

1 −55.62 −0.759 −145.38 −1.985
C

ρ∇J

0 −79.53 −1.086 −74.03 −1.011
C

ρ∇J

1 45.63 0.623 −35.66 −0.487
γ 0.3220 0.2700

examples of EDF parameterizations with similar or larger
values of C

ρ�ρ

1 can be found in Fig. 2 of [63].

C. Leptodermous expansion

To extract global properties of the energy functional and
relate them to the familiar constants of the liquid drop model
(LDM), one needs to carry out the leptodermous expansion.
The general strategy behind the expansion of nuclear EDF
was discussed in Ref. [64], where one can find the relevant
literature on this topic. The starting point is the LDM binding
energy per nucleon expanded in the inverse radius (∝ A−1/3)
and neutron excess I = (N − Z)/A:

E(A, I ) = avol + asurfA
−1/3 + acurvA

−2/3

+ asymI 2 + assymA−1/3I 2 + a(2)
symI 4. (9)

For any functional, our approach consists of combining nuclear
matter (NM) calculations with Hartree-Fock (HF) calculations
for a large set of spherical nuclei to extract by linear regression
the various parameters of the expansion (9) according to the
following procedure.

First, the bulk parameters avol and asym are directly obtained
from NM calculations. Second, the smooth energy per nucleon
Ē(A, I ) is extracted from the spherical HF calculations of
(A, I ) nuclei by removing the shell correction [64]. The
isoscalar coefficients of the expansion (9) can then be deduced
from the smooth energy by plotting

[Ē(A, 0) − avol]A
1/3 −→ asurf + acurvA

−1/3 (10)

as a function of A−1/3. The asurf coefficient is obtained as
the extrapolation of the curve to A−1/3 −→ 0. The curvature
coefficient acurv is then estimated from the slope of the line.

The determination of isovector coefficients starts with the
second-order symmetry coefficient a(2)

sym. It is easily estimated
by systematic calculations in asymmetric NM. Defining

a(eff)
sym (∞, I ) = [ENM(∞, I ) − ENM(∞, 0)]/I 2

−→ asym + a(2)
symI 2,

(11)
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FIG. 6. (Color online) Surface-symmetry coefficient (15) (upper
panels) and surface coefficient (lower panels) versus A−1/3 for
UNEDF0 (left) and UNEDF1 (right).

one can extract the second-order symmetry coefficient from
the slope of a(eff)

sym (∞, I ) versus I 2. Extracting the surface-
symmetry coefficient is more involved. We first introduce the
effective symmetry coefficient for a finite nucleus as

a(eff)
sym (A, I ) = [Ē(A, I ) − Ē(A, 0)]/I 2

−→ asym + assymA−1/3 + a(2)
symI 2.

(12)

In nuclear matter (A → +∞), the effective symmetry coef-
ficient reduces to (11). To avoid multidimensional regression
analysis, we introduce the reduced symmetry coefficient by
subtracting the I 2-dependent part of the NM limit to a(eff)

sym :

a(red)
sym (A, I ) = [Ē(A, I ) − Ē(A, 0)]/I 2 − a(2)

symI 2. (13)

At the perfect LDM limit, the quantity a(red)
sym (A, I ) should not

depend on the neutron excess. At small isospins, however,
numerical uncertainties in the shell-correction procedure are
amplified by the I 2 denominator. In practice, it is more efficient
to build an I -averaged reduced asymmetry coefficient,

a
(red)
sym = 1

b − a

∫ b

a

dI a(red)
sym (A, I ), (14)

where we choose a = 0.1 and b = 0.2 [64]. The surface-
symmetry energy is then obtained from

[
a

(red)
sym − asym

]
A1/3 = assym. (15)

Figure 6 illustrates the numerical accuracy of the method of
evaluation for the surface and surface-symmetry coefficients of
the LDM. The dashed blue lines indicate the fitting lines from
which the final values of asurf , acurv, and assym are deduced.
The case of UNEDF1 seems to be clear. The trend of the surface
energy for UNEDF0 is less clean. The two groups of nuclei, huge
and large, seem to follow slightly different slopes, and the fit
represents a compromise. The resulting surface and curvature
energy have to be taken with care.

The LDM parameters of UNEDF0 and UNEDF1 are given
in Table VII. As seen in Table I of Ref. [64] and Fig. 1
of Ref. [26], symmetry coefficients of phenomenological
LDM mass models cluster around asym = 30 MeV and
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TABLE VII. Liquid drop coefficients of UNEDF0 and UNEDF1 (all
in MeV).

avol asym a(2)
sym asurf acurv assym

UNEDF0 −16.056 30.543 4.418 18.7 7.1 −44
UNEDF1 −15.800 28.987 3.637 16.7 8.8 −29

assym = −45 MeV, and the UNEDF0 values are right in the
middle. This result is not surprising, as this EDF was optimized
primarily to nuclear masses. Indeed, the main difference
between UNEDF0 and UNEDF1 lies in surface properties.
Relatively low values of asurf and assym of UNEDF1 reflect the
new constraints on the FI data and the neglect of the c.m. term.
Again, comparing the LDM values of UNEDF1 with those in
Table I of Ref. [64], we note that the LDM parameters of
UNEDF1 are closest to those of the BSk6 EDF [65] (asurf =
17.3 MeV and assym = −33 MeV) and the LSD LDM [66]
(asurf = 17.0 MeV and assym = −38.9 MeV). In Sec. V C, we
shall see that the reduced surface energy of UNEDF1 with re-
spect to UNEDF0 has profound consequences for the description
of fission barriers in the actinides. To see this reduction more
clearly, we inspect the effective surface coefficient,

a
(eff)
surf = asurf + assymI 2. (16)

For 240Pu, the value of a
(eff)
surf is 15.33 MeV for UNEDF1,

16.63 MeV for UNEDF0, 15.87 MeV for SLy4, 15.75 MeV for
BSk6, 15.15 MeV for SkM∗, and 15.17 MeV for LSD.

V. PERFORMANCE OF UNEDF1

A. Global mass table

One of the key elements required from the universal EDF
is the ability to predict global nuclear properties, such as
masses, radii, and deformations, across the nuclear chart,
from drip line to drip line. We have calculated the g.s.
mass table with UNEDF1 for even-even nuclei with N,Z > 8.
Table VIII contains the rms deviations from experiment for
binding energies, separation energies, averaged three-point
odd-even mass differences, and proton radii. Because the set
of fit observables constraining UNEDF1 is biased toward heavy
nuclei, we also show rms deviations for light (A < 80) and
heavy (A � 80) subsets.

Figure 7 displays the binding energy residuals (i.e., de-
viations from experiment). From this figure and Table VIII,
we can see a couple of trends. First, the energy residuals
with UNEDF1 are larger than those for UNEDF0. This result
is not surprising, as the new data on FI and the removal of the
center-of-mass correction strongly disfavors the lightest nuclei
during the optimization process. Second, the characteristic
arclike behavior between the magic numbers is pronounced,
although this trend is much weaker than, for example, for the
SLy4 functional (see Fig. 7 of Ref. [25]).

In Fig. 8 we display the residuals of two-neutron and two-
proton separation energies. Again, the emphasis of UNEDF1

on heavy nuclei is clearly seen, and the corresponding rms
deviations in Table VIII quantify this feature. Notice that two-

TABLE VIII. Root-mean-square deviations from the experimen-
tal values for UNEDF0 and UNEDF1 for different observables calculated
in even-even systems: binding energy E, two-neutron separation
energy S2n, two-proton separation energy S2p , three-point odd-even
mass difference �̃(3)

n (all in MeV), and rms proton radii Rp (in fm).
Columns are observable, RMS deviation for UNEDF0 and UNEDF1,
and the number of data points.

Observable UNEDF0 UNEDF1 No.

E 1.428 1.912 555
E (A < 80) 2.092 2.566 113
E (A � 80) 1.200 1.705 442
S2n 0.758 0.752 500
S2n (A < 80) 1.447 1.161 99
S2n (A � 80) 0.446 0.609 401
S2p 0.862 0.791 477
S2p (A < 80) 1.496 1.264 96
S2p (A � 80) 0.605 0.618 381
�̃(3)

n 0.355 0.358 442
�̃(3)

n (A < 80) 0.401 0.388 89
�̃(3)

n (A � 80) 0.342 0.350 353
�̃(3)

p 0.258 0.261 395
�̃(3)

p (A < 80) 0.346 0.304 83
�̃(3)

p (A � 80) 0.229 0.248 312
Rp 0.017 0.017 49
Rp (A < 80) 0.022 0.019 16
Rp (A � 80) 0.013 0.015 33

proton separation energies are systematically overestimated.
The same trend is observed for the UNEDF0 functional. We
can speculate about sources for this effect: (i) Following the
arguments of Ref. [60], one may argue that the standard
Skyrme functionals, such as UNEDF0 and UNEDF1, lack the
capability to describe many-body Coulomb effects; (ii) the
explicit contribution of the Coulomb field to the pairing
channel [67,68] is not taken into account. It is expected that
separate pairing strengths for neutrons and protons, as in
UNEDF1, will partly account for this missing contribution [35].
However, the existence of nontrivial correlations between
pairing strengths and other parameters of the functional (see

UNEDF1
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FIG. 7. (Color online) Binding energy residuals between UNEDF1
results and experiment for 555 even-even nuclei. Isotopic chains of a
given element are connected by lines.
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FIG. 8. (Color online) Two-neutron (top) and two-proton (bot-
tom) separation energy residuals between UNEDF1 results and
experiment.

Table III) may have consequences for observables such as
two-proton separation energies.

To compare UNEDF0 and UNEDF1 quantitatively, we can
assess their performance on various observables listed in Ta-
ble VIII. It is expected that because new constraints on fission
isomers have been added when optimizing UNEDF1 while
keeping the same number of parameters optimized, the rms
deviations for masses and separation energies must increase.
Indeed, the rms deviation for the masses is slightly worse for
UNEDF1, for both light and heavy nuclei. Interestingly, the
quality of S2n values remains roughly the same in both cases,
as is true also for odd-even mass differences and proton radii.

B. Spherical shell structure

The nuclear shell structure has a substantial impact on many
nuclear properties. Notably, the single-particle levels close to
the Fermi surface affect many nuclear properties such as the
strength of pairing correlations and deformability. Compared
with our previous work [25], the s.p. energies that we report
here have been obtained from proper blocking calculations at
the HFB + LN level [69], instead of being the eigenvalues of
the HF Hamiltonian. This choice is motivated by the need to
stay within a logically consistent framework: Both UNEDF0 and
UNEDF1 have been optimized at the HFB + LN level, and hence
should be employed exclusively in this context. Moreover,
in the nuclear mean-field theory with effective interactions,
HF eigenvalues are a poor representation of s.p. energies; see

[70,71] for a recent study. In a DFT approach, however, it
is assumed that the generalized form of the energy density
may effectively account for beyond mean-field effects such
as particle-vibration couplings. In addition to this theoretical
argument, let us recall that s.p. energies are not observables
but model-dependent quantities extracted experimentally from
binding energies of excited states in odd nuclei. Systematic
errors can thus be reduced by working exclusively with binding
energies.

To this end, we computed a number of one-quasi-particle
(q.p.) configurations for the odd-mass neighbors of 16O,
40Ca, 48Ca, 56Ni, 132Sn, and 208Pb. Calculations were done
at the equal filling approximation, which is an excellent
approximation to the full time-reversal, symmetry-breaking
blocking scheme [69]. Blocking q.p. states induces a small
shape polarization [49], which in turn leads to a fragmentation
of spherical s.p. orbitals of angular momentum j into 2j + 1
levels � = −j, . . . ,+j . In principle, the “experimental” s.p.
energy should be the average energy over all the 2j + 1
blocking configurations. However, a state with the projection
� can belong to any spherical orbit j � |�|, which could
potentially complicate the identification for low-� values. We
therefore associate a spherical orbit with spin j to the blocking
configuration with the maximum projection � = +j . We have
verified that the amount of splitting in all these nuclei does
not exceed 150 keV: For the proton i13/2 orbit in 208Pb, it is
77 keV, and for the neutron 1f7/2 state in 40Ca, it is 124 keV.
This implies that the error induced by cherry-picking a single
state out of a 2j + 1 nondegenerate candidate instead of the
average is only on the order of 60 keV.

Figure 9 compares single-proton energies in 208Pb com-
puted with UNEDF0 and UNEDF1 with the experimental values.
Although the differences between these two functionals are
small, we note that UNEDF1 improves slightly the description
of several high-j levels except for a too low position of the
1h9/2 proton orbit that reduces the size of the Z = 82 proton
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FIG. 9. (Color online) Single-proton energies for 208Pb, calcu-
lated with UNEDF0 and UNEDF1 EDFs compared to the experimental
values of Ref. [72].
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gap. The situation is similar for the neutron single-particle
energies in 208Pb. For both UNEDF0 and UNEDF1 the effective
mass is close to one, which probably explains the fairly good
reproduction of the level density in 208Pb. In the lighter doubly
magic nuclei, differences between UNEDF0 and UNEDF1 s.p.
energies are somewhat larger. The magic gaps in Ca isotopes
are now better reproduced, although the N = 28 gap in 48Ca
is still too low.

C. Superdeformed states and fission barriers

Table IX lists the excitation energies of superdeformed (SD)
fission isomers in the actinide region and SD bandheads in the
mass A ∼ 190 region calculated with the UNEDF0 and UNEDF1
parameterizations. Contrary to fission isomers, SD bandheads
in neutron-deficient lead and mercury isotopes were not
included in the objective function, because the prolate-oblate
shape coexistence effects, not captured by current functionals,
are well known in these nuclei [73,74]. Indeed, calculations
with UNEDF1 predict an oblate ground state at β = −0.2 to
−0.15 in all the Hg-Pb isotopes considered, coexisting with a
slightly higher spherical minimum. By contrast, the ground
state of the three lead isotopes is spherical with UNEDF0.
The fact that the spherical configuration is disfavored in these
nuclei can be traced back to a too-low Z = 82 spherical proton
gap in UNEDF1, (Sec. V B).

All values listed in Table IX were obtained with the
HFBTHO code using the same large HO basis as used for the
optimization. In particular, the deformation of the basis was
spherical for the ground state, and was deformed with β2 = 0.4
for the FI; see Sec. III B. As can be seen from Table IX,
the optimization improves dramatically the rms deviation for
the actinide nuclei included in the fit, going from 3.02 MeV
in UNEDF0 to 0.23 MeV in UNEDF1. At the same time, the
optimization deteriorates the description of SD excitations in
the Hg and Pb isotopes. To understand this behavior, we again
compute the effective surface coefficient a

(eff)
surf (16) for 194Pb.

It is particularly low, 16.0 MeV, for UNEDF1. Indeed, it is
17.64 MeV for UNEDF0, 17.1 MeV for SLy4, 16.50 MeV for
BSk6, and 16.36 MeV for SkM∗. In addition, the reduced Z =
82 magic gap in UNEDF1 energetically favors deformed

TABLE IX. Excitation energies (in MeV) of fission isomers in
the actinides and superdeformed bandheads in the neutron-deficient
Hg and Pb nuclei calculated with HFBTHO. The values predicted with
UNEDF0 and UNEDF1 are compared with experiment.

Nucleus UNEDF0 UNEDF1 Expt. Ref.

236U 5.28 2.42 2.75 [50]
238U 5.73 2.71 2.557 [50]
240Pu 5.74 2.51 2.8 [50]
242Cm 5.27 1.85 1.9 [50]
192Hg 6.33 2.62 5.3 [75]
194Hg 7.27 3.79 6.017 [76]
192Pb 5.20 1.25 4.011 [77]
194Pb 5.99 1.99 4.643 [78]
196Pb 7.26 3.52 5.63 [79]

and SD states. Consequently, both bulk energy and shell
effects of UNEDF1 conspire to reduce the excitation energy
of SD states in the Pb isotopes. In view of the major shape
coexistence effects recalled earlier, this behavior is not too
worrisome.

In the A ∼ 190 region, the experimental uncertainty of the
SD bandhead comes from the extrapolation of the rotational
band down to spin 0+. The associated error is estimated to
be very small, around 5 keV. In the actinides, experimental
excitation energies of FI are usually determined with larger
uncertainties. Although the experimental error bar is only
about 5–10 keV for 236,238U, it grows to about 200 keV
for 240Pu and 242Cm. For the fission isomer of 240Pu, recent
measurements lower its excitation energy by about 500 keV
to roughly 2.25 MeV [84] compared with the standard
value [50] adopted in this work. Because of the relatively
large uncertainty, wi = 0.5 MeV, adopted for FI energies in
our objective function, these experimental uncertainties are
not going to significantly alter the final optimization. For
future work, however, better experimental determination of
FI bandheads should become a priority.

Our long-term goal is to develop an EDF that can
accurately predict and describe fission observables in heavy
and superheavy nuclei. We present here some results of
spontaneous fission pathway calculations with UNEDF1. All
fission calculations were done with version 2.49t of the code
HFODD [85] that can break all self-consistent symmetries
along the fission path. At each point along the collective
trajectory, the HO basis deformation and frequencies are
determined from a standard nuclear surface, parametrized by
surface deformations αλμ. The deformations were chosen to
minimize the energy as a function of the requested quadrupole
moment Q20, according to the following expressions:

α20 = AQ
3
20 + BQ

2
20 + CQ20,

(17)
α40 = 0.01,

with A = 3.16721 × 10−8 b−3, B = −2.75505 × 10−5 b−2,
C = 0.00954925 b−1, and all remaining deformations

FIG. 10. (Color online) Fission pathway for 240Pu along the mass
quadrupole moment Q20 calculated using HFODD with SkM∗, UNEDF0,
and UNEDF1 EDFs. The ground-state energies have been normalized
to zero. EII , EA, and EB indicate, respectively, the experimental
energy of fission isomer and the inner and outer barrier heights [80].
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TABLE X. Empirical and theoretical inner barrier heights EA (in MeV) for selected actinide nuclei. The rms deviations from experiment
�EA are shown in the last row.

Nuclide Expt. [80] HFB + Fit [81] ETFSI [82] FRLDM [83] HFB-14 [31] SkM∗ UNEDF1

236U 5.00 5.52 5.20 4.45 5.52 6.93 6.39
238U 6.30 5.80 5.70 5.08 5.93 7.25 6.50
238Pu 5.60 5.57 5.40 5.27 5.96 7.39 6.83
240Pu 6.05 5.89 5.80 5.99 6.49 7.51 6.77
242Pu 5.85 6.02 6.20 6.42 6.81 7.44 6.59
244Pu 5.70 — 6.40 6.59 6.85 7.82 6.10
242Cm 6.65 6.20 6.10 6.56 6.75 8.76 7.12
244Cm 6.18 6.18 6.40 6.92 7.10 8.81 6.99
246Cm 6.00 6.00 6.50 7.01 7.31 8.41 6.69
248Cm 5.80 — 6.50 6.80 7.25 7.94 6.12
�EA 0.47 0.75 0.87 1.97 0.79

αλμ = 0. The basis contains up to N = 31 shells and up to
N = 1140 states. Such an extended basis was previously
applied in the systematic study of fission barriers in the
transfermium region and yielded excellent convergence [8,86].
We have checked that HFODD, with a reduced HO basis as
compared with HFBTHO calculations, reproduces the HFBTHO

energies of FI bandheads in Table IX with an accuracy
of 100–200 keV. We consider this agreement satisfactory
considering other uncertainties involved.

As an example, Fig. 10 displays the potential energy curve
of 240Pu as a function of the mass quadrupole moment Q20.
Triaxiality and reflection asymmetry effects are included for all
calculations. The large-deformation behavior of the potential
energy curve obtained by UNEDF0 is typical in this region,
so that the outer barrier heights obtained by UNEDF0 are
systematically much higher than empirical values. We note
that the UNEDF1 functional yields both the inner and outer
barrier in 240Pu fairly close to experiment. Both UNEDF0 and
UNEDF1 functionals also yield the g.s. binding energy that is
close to the empirical value.

The UNEDF1 results for fission barrier heights in selected
actinide nuclei are listed in Tables X (inner barrier) and XI
(outer barrier). For comparison, we also list the empirical
barrier heights from the Reference Input Parameter Library
(RIPL-3) [80]; the HFB fission barriers obtained by fitting the

neutron-induced fission cross section [81]; and predictions of
ETFSI [82], FRLDM [83], and HFB-14 [31] models, together
with HFODD calculations with the SkM∗ EDF. (For SkM∗
predictions including the energy correction from the rotational
zero-point motion; see Ref. [6].) Overall, the description of
experimental data by UNEDF1 is very reasonable, with the rms
deviations from experimental values of EA and EB comparable
to the values obtained in more phenomenological models. One
can thus conclude that fission barriers are reliably described
at the HFB level with the UNEDF1 functional. This result
is remarkable because it was obtained by adding only four
excitation energies to the data set.

There seems to exist an interesting relation between barrier
heights and the surface thickness. We have evaluated the
surface thickness in 208Pb from the charge form factor σch as
defined, for example, in Refs. [4,23] and found σch = 0.932 fm
for UNEDF0 and σch = 0.907 fm for UNEDF1. This is to be
compared with the measured value of σch = 0.913 fm [23]. It is
apparent that the EDF which does well on fission barriers also
performs well for surface thickness. The functionals SV-min
and SV-bas which included σch in the fit, and yield values
around 0.91 fm for this quantity, happen to perform well
concerning barrier heights [48]. The relation between fission
barriers and surface thickness deserves closer inspection in
future work.

TABLE XI. Similar to Table X except for the outer barrier heights EB (in MeV).

Nuclide Expt. [80] HFB + Fit [81] ETFSI [82] FRLDM [83] HFB-14 [31] SkM∗ UNEDF1

236U 5.67 6.03 4.00 5.03 6.03 6.70 5.56
238U 5.50 6.17 4.90 5.64 6.48 7.36 6.42
238Pu 5.10 5.35 2.90 4.47 5.24 5.99 4.62
240Pu 5.15 5.73 3.40 4.91 5.61 6.40 5.42
242Pu 5.05 5.61 3.60 5.72 6.02 6.90 6.20
244Pu 4.85 — 3.90 6.47 6.25 7.49 6.50
242Cm 5.00 4.90 1.70 4.45 4.51 6.31 4.08
244Cm 5.10 5.10 2.10 5.07 4.83 7.00 5.03
246Cm 4.80 4.80 2.40 5.87 5.23 7.42 5.51
248Cm 4.80 — 2.60 6.65 5.25 7.32 5.55
�EB 2.11 0.94 0.70 1.89 0.84
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FIG. 11. (Color online) Comparison of UNEDF0 and UNEDF1
predictions for the energy N -neutron drops trapped in an HO potential
with h̄ω = 5 MeV and 10 MeV with the AFDMC ab initio results of
Ref. [88].

D. Neutron drops

Recently, there has been a considerable interest in studies of
inhomogeneous neutron matter by considering finite systems
of N neutrons, specifically, neutron drops [87,88]. Because
neutron drops are not self-bound [89], an external potential
must be used to confine them. By studying neutron drops, one
can test different ab initio approaches and their correspondence
to DFT calculations [87,88]; investigate the validity of the
density matrix expansion [90]; and develop a theoretical link
between neutron-rich nuclei and the neutron matter found in
the neutron star crust [91].

Figure 11 presents the results of UNEDF0 and UNEDF1
calculations for neutron drops confined by two external HO
traps with h̄ω = 5 MeV and 10 MeV. The DFT results are
compared with ab initio AFDMC benchmark calculations of
Ref. [88] employing the AV8′ nucleon-nucleon and Urbana
IX three-nucleon force. As can be seen, UNEDF0 reproduces
AFDMC results well, especially because the functional was
not constrained to finite neutron matter. The agreement with
UNEDF1 calculations is also good, especially for a softer trap
with h̄ω = 5 MeV.

In future EDF optimizations we shall include ab initio
predictions for neutron drops into the data set. By providing
unique constraints on finite neutron matter, such pseudodata
are expected to improve the description of very neutron-rich
nuclei and diluted neutron matter. The results shown in
Fig. 11 indicate that UNEDF0 and UNEDF1 functionals represent
excellent starting points for such optimizations.

VI. CONCLUSIONS

By performing nuclear energy density optimization at the
deformed HFB level, we have arrived at the new Skyrme
parameterization UNEDF1. Our main focus was to improve
the description of fission properties of the actinide nuclei

and to provide a high-quality functional for time-dependent
applications involving heavy systems. The only notable change
in the form of the energy density as compared with our previous
work [25] was the removal of the center-of-mass correction.
For the χ2 minimization, we used the derivative-free POUNDerS

algorithm. Compared with UNEDF0, the data set was enlarged
by adding ground-state masses of three deformed actinide
nuclei and excitation energies of fission isomers in 236,238U,
240Pu, and 242Cm. For the optimal parameter set, we carried
out a sensitivity analysis to obtain information about the
standard deviations and correlations among the parameters.
We conclude that UNEDF1 remains as robust under a change of
individual data as UNEDF0.

Overall, UNEDF1 provides a description of global nuclear
properties that is almost as good as that of UNEDF0. Not
surprising, the quality of data reproduction is slightly de-
graded: By adding a new type of data (fission isomers), one
is likely to worsen the fit for other observables. The most
striking feature of UNEDF1 is its ability to reproduce the
empirical fission barriers in the actinide region. We find it
encouraging that, by including only a handful of fission isomer
bandheads, deformation properties of the functional seem well
constrained. Another unanticipated property of UNEDF0 and
UNEDF1 is their ability to reproduce ab initio results for trapped
neutron drops. This is significant because such pseudodata will
be used in future EDF optimizations.

In addition to imposing new constraints on neutron drops,
in the next step we intend to improve the spectroscopic quality
of UNEDF functionals by considering the experimental data
on spin-orbit splittings and shell gaps. We shall also improve
the density dependence of the kinetic term by adding new
constraints on giant resonances. Meanwhile, the functional
UNEDF1 developed in this work will be the input of choice for
microscopic studies of the nuclear fission process.
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