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A new generation of local three-body potentials providing an excellent description of the properties of light
nuclei, as well as of the neutron-deuteron doublet scattering length, has been recently derived. We have performed
a comparative analysis of the equations of state of both pure neutron matter (PNM) and symmetric nuclear matter
(SNM) at zero temperature obtained using these models of three-nucleon forces. In particular, we have carried
out both variational and auxiliary field diffusion Monte Carlo calculations of the equation of state of PNM,
while in the case of SNM we have only the variational approach has been considered. None of the considered
potentials simultaneously explains the empirical equilibrium density and binding energy of symmetric nuclear
matter. However, two of them provide reasonable values of the saturation density. The ambiguity concerning the
treatment of the contact term of the chiral inspired potentials is discussed.
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I. INTRODUCTION

The definition of the potential describing three-nucleon
interactions is a central issue of nuclear many-body theory.
Three-nucleon forces (TNFs) have long been known to provide
a sizable contribution to the energies of the ground and
low-lying excited states of light nuclei and play a critical
role in determining the equilibrium properties of symmetric
nuclear matter. In addition, their effect is expected to become
large, or even dominant, in high-density neutron matter,
the understanding of which is required for the theoretical
description of compact stars.

Ab initio nuclear many-body approaches are based on the
premise that the dynamics can be modeled studying exactly
solvable systems, having mass number A � 3. This is a most
important feature because, owing to the complexity of strong
interactions and the prohibitive difficulties associated with
the solution of the quantum mechanical many-body problem,
theoretical calculations of nuclear observables generally in-
volve a number of approximations. Hence, models of nuclear
dynamics extracted from analyses of the properties of complex
nuclei are plagued by the systematic uncertainty associated
with the use of a specific approximation scheme.

Highly realistic two-nucleon potentials, either purely phe-
nomenological [1–4] or based on chiral perturbation theory
(ChPT) [5,6], have been obtained from accurate fits of the
properties of the bound and scattering states of the two-nucleon
system [7–13]. Unfortunately, however, the extension to the
case of the three-nucleon potential is not straightforward.
Phenomenological models, such as the Urbana IX (UIX)
potential, that reproduce the observed binding energy of 3H by
construction, fail to explain the measured nd doublet scattering
length, 2and [14], as well as the proton analyzing power in
p-3He scattering, Ay [15].

In recent years, the scheme based on ChPT has been
extensively employed to obtain three-nucleon potential models

[16,17]. The main advantage of this approach is the possibility
of treating the nucleon-nucleon (NN) potential and the TNFs
in a more consistent fashion, as the parameters c1, c3,
and c4, fixed by NN and πN data, are also used in the
definition of the TNFs. In fact, the next-to-next-to-leading-
order (NNLO) three-nucleon interaction only involves two
parameters, namely, cD and cE , that do not appear in the
NN potential and have to be determined fitting low-energy
three-nucleon (NNN) observables. Unfortunately, however,
πN and NN data still leave some uncertainties on the ci’s,
that cannot be completely determined by NNN observables.

A comprehensive comparison between purely phenomeno-
logical and chiral inspired TNFs, which must necessarily
involve the analysis of both pure neutron matter and symmetric
nuclear matter, is made difficult by the fact that chiral TNFs
are derived in momentum space, while many theoretical
formalisms are based on the coordinate space representation.

The local, coordinate space, form of the chiral NNLO
three-nucleon potential, hereafter referred to as NNLOL, can
be found in Ref. [18]. However, establishing a connection
between momentum and coordinate space representations
involves some subtleties.

The authors of Ref. [16] have shown that the NNLO
(momentum space) three-body potential obtained from the
chiral Lagrangian, when operating on a antisymmetric wave
function, gives rise to contributions that are not all independent
of one another. To obtain a local potential in coordinate space
one has to regularize using the momenta transferred among
the nucleons. This regularization procedure makes all the
terms of the chiral potential independent, so that, in principle,
all of them have to be taken into account. The potential
would otherwise be somewhat inconsistent, as it becomes
apparent in nuclear matter calculations, which involve larger
momenta.

A comparative study of different three-nucleon local in-
teractions [Urbana UIX (UIX), chiral inspired revision of
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Tucson-Melbourne (TM′), and chiral NNLOL three-body
potential], used in conjunction with the local Argonne v18

NN potential, has been recently performed [19]. The authors
of Ref. [19] used the hyperspherical harmonics formalism to
compute the binding energies of 3H and 4He, as well as the
nd doublet scattering length, and found that the three-body
potentials do not simultaneously reproduce these quantities.
Selecting different sets of parameters for each TNF they
were able to obtain results compatible with experimental data,
although a unique parametrization for each potential has not
been found. This problem is a consequence of the fact that
the three low-energy observables considered are not enough
to completely fix the set of parameters entering the definition
of the potentials.

The work described in this paper is aimed at testing
the different parametrization of the potentials in nuclear
matter. In the case of symmetric nuclear matter (SNM), a
realistic equation of state (EoS) is constrained by the available
empirical information on saturation density, ρ0, binding energy
per nucleon at equilibrium, E0, and compressibility, K .
Furthermore, the recent observation of a neutron star of about
two solar masses [20] puts a constraint on the stiffness of the
EoS of β-stable matter, closely related to that of PNM.

Nuclear matter calculations are carried out using a va-
riety of many-body approaches. The scheme referred to as
FHNC/SOC, based on correlated basis functions and the
cluster expansion technique, has been first used to perform
accurate nuclear-matter calculations with realistic three-body
potentials in Ref. [21]. This analysis included early versions of
both the Urbana (UIV, UV) and the Tucson-Melbourne (TM)
three-body interactions with the set of parameters reported in
Ref. [22]. The results indicate that the UV model, the only
one featuring a phenomenological repulsive term, provides a
reasonable nuclear-matter saturation density, while the UIV
and TM potentials fail to predict saturation. In addition, none
of the considered models yields reasonable values of the SNM
binding energy and compressibility.

The findings of Ref. [21] are similar to those obtained in
Ref. [23], whose authors took into account additional diagrams
of the cluster expansion and used the UVII model. The
state-of-the-art variational calculations discussed in Ref. [24],
carried out using the Argonne v18 [3] and UIX [25] potentials,
also sizably underbinds SNM. While the authors of Ref. [24]
ascribed this discrepancy to deficiencies of the variational
wave function, the analysis of Refs. [26,27] suggests that
this problem can be largely attributable to the uncertainties
associated with the description of three-nucleon interactions,
whose contribution turns out to be significant.

Momentum space chiral three-body interaction have been
also employed in nuclear matter [28–30]. In these studies,
the NNNLO chiral two-body potential has been evolved
to low-momentum interaction Vlow k , suitable for standard
perturbation theory in the Fermi gas basis. The results, showing
that the TNF is essential to obtain saturation and realistic
equilibrium properties of SNM [28,29], exhibit a sizable cutoff
dependence. At densities around the saturation point this effect
is ∼4 MeV. In addition, different values of the constants ci lead
to different equations of state for SNM [29] and pure neutron
matter (PNM) [30].

FIG. 1. TPE, OPE, and NNN contact interactions of the chiral
three-body force at NNLO.

The main features of the chiral inspired TNFs are briefly
reviewed in Sec. II, while in Sec. III we analyze the coordinate
space form of the TNFs derived in Ref. [19], and discuss
several issues related to the calculation of their contributions
in nuclear matter. We have carried out both FHNC/SOC and
auxiliary field diffusion Monte Carlo (AFDMC) calculations
of the EoS of cold PNM, while in the case of SNM only the
variational approach has been used. The numerical results of
these calculations are discussed in Sec. IV. Finally, in Sec. V
we summarize our findings and state the conclusions.

II. CHIRAL INSPIRED MODELS OF THREE
NUCLEON FORCES

In a chiral theory without � degrees of freedom, the first
nonvanishing three-nuclon interactions appear at NNLO in the
Weinberg power counting scheme [31,32]. The interaction is
described by three different physical mechanisms, correspond-
ing to three different topologies of Feynman diagrams, drawn
in Fig. 1 [16]. The first two diagrams correspond to two-pion
exchange (TPE) and one-pion exchange (OPE) with the pion
emitted (or absorbed) by a contact NN interaction. The third
diagram represents a contact three-nucleon interaction.

The full expression for the TNFs is obtained by summing
all possible permutations of the three nucleons. For this kind
of potential, it turns out that there are only three independent
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FIG. 2. (Color online) Radial dependence of the function Z0(r),
appearing in Eq. (27), plotted for different values of the cutoff �.

cyclic permutations, that is,

V χ (1, 23) = V χ (1 : 23) + V χ (2 : 13) + V χ (3 : 12). (1)

The Feynman diagrams of Fig. 1 refer to the permutation
(3 : 12), which can be written as

V χ (3 : 12) = c1V1(3 : 12) + c3V3(3 : 12) + c4V4(3 : 12)

+ cDVD(3 : 12) + cEVE(3 : 12). (2)

The first three terms V1, V3, and V4 come from the TPE diagram
and are related to πN scattering. In particular, V1 describes
the S-wave contribution, while V3 and V4 are associated with
the P wave. The other terms, VD and VE , are the OPE and
contact contributions, respectively. Their momentum space
expressions are [16]

Ṽ1(3 : 12) = −V0m
2
π τ12

(σ 1 · q1)(
q2

1 + m2
π

) (σ 2 · q2)(
q2

2 + m2
π

) ,

Ṽ3(3 : 12) = V0

2
τ12

(σ 1 · q1)(
q2

1 + m2
π

) (σ 2 · q2)(
q2

2 + m2
π

)q1 · q2,

Ṽ4(3 : 12) = V0

4
τ 3 · (τ 1 × τ 2)

(σ 1 · q1)(
q2

1 + m2
π

) (σ 2 · q2)(
q2

2 + m2
π

)
σ 3 · (q1 × q2), (3)

ṼD(3 : 12) = −V D
0 τ12

[
(σ 2 · q2)(
q2

2 + m2
π

) (σ 1 · q2)

+ (σ 1 · q1)(
q2

1 + m2
π

) (σ 2 · q1)

]
,

ṼE(3 : 12) = V E
0 τ12,

where σ i and τ i are the Pauli matrices describing the spin
and the isospin of particle i. With σij and τij we denote the
scalar product σ i · σ j and τ i · τ j , respectively. The strengths
of the TPE, OPE, and contact terms V0, V D

0 , and V E
0 are given

by

V0 =
(

gA

F 2
π

)2

, V D
0 = gA

8F 4
π�χ

, V E
0 = 1

F 4
π�χ

, (4)

where gA = 1.29 is the axial-vector coupling constant, Fπ =
92.4 MeV is the weak pion decay constant and �χ is the
chiral symmetry-breaking scale, of the order of the ρ meson
mass.

The low-energy constants (LECs) c1, c3, and c4 also appear
in the subleading TPE term of the chiral NN potential and
are fixed by πN [33,34] and/or NN [5] data. The parameters
cD and cE are specific to the three-nucleon interaction and
have to be fixed using NNN low-energy observables, such as
the 3H binding energy and the nd doublet scattering length
2and [16].

The many-body methods employed in our work, namely,
FHNC/SOC and AFDMC, require a local expression of the
three-body potential in coordinate space, that can be obtained
performing the Fourier transform [18]

V χ (3 : 12) =
∫

d3q1

(2π )3

d3q2

(2π )3
Ṽ χ (3 : 12)

×F�

(
q2

1

)
F�

(
q2

2

)
eiq1·r13 eiq2·r23 , (5)

where the cutoff functions F�, defined as

F�

(
q2

i

) = exp

(
− q4

i

�4

)
, (6)

can depend on the momenta transferred among the nucleons,
qi , only. This feature has important consequences for the OPE
and contact terms, which will be discussed at a later stage.

The cutoff � in the previous equation, while not being
required to be the same as �χ , is of the same order of
magnitude. Choosing the fourth power of the momentum in
Eq. (6) is therefore convenient, as the regulator generates
powers of q/� that are beyond NNLO in the chiral expansion.

The Fourier transform can be readily computed and
provides the following coordinate-space representation of the
chiral three-body potential:

V1(3 : 12) = W0 τ12(σ 1 · �r13)(σ 2 · �r23)y(r13)y(r23),

V3(3 : 12) = W0 τ12[σ12y(r13)y(r23)

+ (σ 1 · �r23)(σ 2 · �r23)t(r23)y(r13)

+ (σ1 · �r13)(σ2 · �r13)t(r13)y(r23)

+ (�r13 · �r23)(σ1 · �r13)(σ2 · �r23)t(r13)t(r23)],

V4(3 : 12) = W0 (τ 3 · τ 1 × τ 2)[(σ 3 · σ 2 × σ 1)y(r13)y(r23)

+ (σ 3 · �r23 × σ 1)(σ 2 · �r23)t(r23)y(r13)

+ (σ 2 · �r13 × σ 3)(σ 1 · �r13)t(r13)y(r23)

+ (σ 3 · �r23 × �r13)(σ1 · �r13)(σ2 · �r23)t(r13)t(r23)],

VD(3 : 12) = WD
0 τ12[σ12y(r23)z0(r13)

+ (σ 1 · �r23)(σ 2 · �r23)t(r23)z0(r13)

+ σ12y(r13)z0(r23)

+ (σ 2 · �r13)(σ 1 · �r13)t(r13)z0(r23)],

VE(3 : 12) = WE
0 τ12z0(r13)z0(r23), (7)

where W0, WD
0 and WE

0 are obtained multiplying the corre-
sponding V0, V D

0 , and V E
0 by a factor m6

π/(4π )2. The radial
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functions appearing in the above equations are defined as

y(r) = z′
1(r)

r
,

(8)

t(r) = 1

r2

[
z′′

1(r) − z′
1(r)

r

]
= 1

r
y ′(r),

while zn, proportional to Zn introduced in Ref. [22], is given
by

zn(r) = 4π

m3
π

∫
d3q

(2π )3

F�(q2)(
q2 + m2

π

)n eiq·r

= 2

πm3
π

∫
dqq2 F�(q2)(

q2 + m2
π

)n j0(qr), (9)

with j0(x) = sin(x)/x. Note that, owing to the form of the
cutoff function of Eq. (6), the radial functions are not known
in analytic form and must be obtained from a numerical
integration.

Recently, the authors of Ref. [19] have studied the low-
energy NNN observables using the hyperspherical harmonics
formalism and a nuclear Hamiltonian including the NNLOL
potential and the Argonne v18 [3] two-body interaction.

This mixed approach requires a fit of all the LECs appearing
in the chiral three-body interaction, not cD and cE only.
Hence consistency in the treatment of two- and three- nucleon
interactions, which would be achievable using a Hamiltonian
in which all potentials are derived from chiral effective theory,
is lost. Nevertheless, it is possible to exploit ChPT to assess
the importance of the different terms contributing to the
TNFs. This procedure allows one to select the most relevant
spin-isospin structures entering the three-nucleon potential, as
well as the shape of the corresponding radial functions.

Within the chiral approach, to obtain a potential yielding
a fit to the experimental data of accuracy comparable to that
achieved by the Argonne v18 model, one has to include terms
up to NNNLO [9,10]. As a consequence, a fully consistent
calculation, in principle, requires a NNNLO three-body inter-
action, the expression of which has been only recently derived
in Ref. [35]. It turns out that some of the terms appearing at
NNNLO can be taken into account shifting the constants ci of
about 20%–30% with respect to their original values [17]. This
procedure has been followed in precision studies of TNFs. By
fitting all the LECs of the NNLOL interaction, the authors
of Ref. [19] have improved upon the NNLO approximation,
as they have effectively included the corrections to the ci

appearing at NNNLO level.
The best-fit parameters for the 3H and 4He binding energies

and for the nd scattering length, 2and , are listed in Table I. For
all the different parametrizations, denoted by NNLOLi , c1 and

TABLE I. Parameters of the NNLOL interactions of Ref. [19].

Potential c3 (MeV−1) c4 (MeV−1) cD cE

NNLOL1 −0.00448 −0.001963 −0.5 0.100
NNLOL2 −0.00448 −0.002044 −1.0 0.000
NNLOL3 −0.00480 −0.002017 −1.0 −0.030
NNLOL4 −0.00544 −0.004860 −2.0 −0.500

�χ have been fixed to their original values 0.00081 MeV−1

and 700 MeV, respectively [16]. The momentum cutoff of
Eq. (6) has been set to 500 MeV.

As noticed in Ref. [36], despite the different underlying
physical mechanisms, both TM and UIX three-nucleon inter-
actions can be written as a sum of terms of the same form as
those appearing in Eq. (7). The differences among NNLOL,
TM, and UIX lie in the constants and in the radial functions.

The TM′ potential only involves the V1, V3, and V4

contributions [37]. The cutoff function for this potential is
not the same as in Eq. (6), but

F�(q2) =
(

�2 − m2
π

�2 + q2

)2

. (10)

The above form allows for the analytical integration of Eq. (9),
yielding the radial functions

y(r) = e−r�

2m3
πr3

[
2 − m2

πr2 − 2(1 + mπr)er(�−mπ )

+ r�(2 + r�)
]
,

t(r) = e−r�

2m3
πr5

{−6 + 2
(
3 + 3mπr + m2

πr2)er(�−mπ )

+m2
πr2(1 + r�) − r�[6 + r�(3 + r�)]

}
. (11)

The TM′ potential corresponds to the following choice of
the strength constants [compare to Eq. (7)]:

W0 =
(

gmπ

8πmN

)2

m4
π (12)

and

c1 = a

m2
π

, c3 = 2b, c4 = −4d, (13)

a, b, and c being the parameters entering the definition of the
TM′ potential [37]. The authors of Ref. [19] have determined
the parameters of the TM′ potential fitting the same set
of low-energy NNN observables employed for the NNLOL
potential. To get a better description of the experimental data,
they introduced a repulsive three-nucleon contact term, similar
to the chiral VE , but with τ12 omitted,

VE(3 : 12) = WE
0 z0(r13)z0(r23), (14)

where

WE
0 =

(
gmπ

8πmN

)2 9m2
π

�χ

. (15)

The corresponding radial function can be computed analyti-
cally from Eq. (9):

z0(r) = e−r�

8π�

(
m2

π − �2
)2

. (16)

As in the original paper [22], in Ref. [19] the value of the
pion-nucleon coupling constant is set to g2 = 179.7 MeV, the
pion mass is mπ = 139.6 MeV and the nucleon mass is defined
through the ratio mN/mπ = 6.726. The symmetry breaking
scale �χ of Eq. (15) has the same value, 700 MeV, used for
the NNLOL potential.
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TABLE II. Parameters of the TM′ potential reproducing the low-
energy NNN experimental data with a = −0.87 m−1

π [19].

Potential b(m−3
π ) d(m−3

π ) cE �(mπ )

TM′
1 −8.256 −4.690 1.0 4.0

TM′
2 −3.870 −3.375 1.6 4.8

TM′
3 −2.064 −2.279 2.0 5.6

The parameters of the TM′ potentials, TM′
i , that according

to Ref. [19] reproduce the binding energies of 3H and 4He
and 2and , are listed in Table II. It turns out that V1, gives a
very small contribution to the low-energy NNN observables.
Therefore, the parameter a has been kept to its original value
of −0.87 m−1

π .
The Fujita Miyazawa term [38] of the UIX potential

[25], V 2π , describing the process whereby two pions are
exchanged among nucleons and a � resonance is excited in
the intermediate state, is conveniently written as

V̂ 2π (3 : 12) = A2π {X̂13, X̂23}{τ13, τ23}
+C2π [X̂13, X̂23][τ13, τ23], (17)

where

X̂ij = Y (mπr)σij + T (mπr)Sij , (18)

and

Sij = 3(r̂ij · σ i)(r̂ij · σ j ) − σij (19)

is the tensor operator. The radial functions associated with the
spin and tensor components read

Y (x) = e−x

x
ξY (x), (20)

T (x) =
(

1 + 3

x
+ 3

x2

)
Y (x)ξT (x), (21)

and the ξ (x) are short-range cutoff functions defined as

ξY (x) = ξT (x) = 1 − e−cx2
. (22)

In the original derivation of the UIX potential the ratio
C2π/A2π was fixed to 1/4 and the cutoff parameter was c =
2.1 fm−2, the same value as in the cutoff functions of the OPE
term of the Argonne v18 two-body potential.

It can be shown that the anticommutator and commutator
terms correspond to V3 and V4 of Eq. (7), provided the relations
between the constants

bW0 = 4A2π ,
(23)

dW0 = 4C2π

and the radial functions

Y (r) = y(r) + r2

3
t(r),

T (r) = r2

3
t(r)

(24)

are satisfied.
The repulsive term of the UIX potential,

V R(3 : 12) = U0T
2(mπr13)T 2(mπr23), (25)

is equivalent to the VE term appearing in the TM′ potential
and (aside from the τ12 factor) in the NNLOL chiral potential
if the following relations hold:

T 2(mπr) = z0(r), U0 = cEWE
0 . (26)

The UIX potential was not designed to reproduce low-
energy NNN observables only. While the parameter A2π was
obtained from the fit of the observed binding energy of 3H, the
strength U0, was indeed adjusted to reproduce the empirical
saturation density of SNM, ρ0 = 0.16 fm−3.

In Ref. [19] it has been found that the original parametriza-
tion of the UIX potential underestimates 2and and slightly
overbinds 4He.

The authors of Ref. [19] have calculated the differential
cross section and the vector and tensor analyzing powers of p-d
scattering at Elab = 3 MeV for the different parametrizations
of NNLOL and TM′ potentials. They found that all of them
lead to underestimating Ay (the so-called Ay puzzle remains
unsolved) and T11, while the central minimum in T21 is
always overestimated. However, the NNLOL model provides
a slight improvement with respect to the UIX potential in
the description of the polarization observables. However, no
substantial modifications from the UIX results are given by
the TM′ interactions.

III. THREE-NUCLEON POTENTIALS
IN NUCLEAR MATTER

The investigation of uniform nuclear matter may shed light
on both the nature and the parametrization of the TNFs,
although the quantitative description of this system cannot
be achieved within a mere generalization of the approaches
developed for light nuclei. In this section, we analyze the
structure of the contact term of the NNLOL potential of
Ref. [19] and discuss the calculation of the TNF contribution
to nuclear-matter energy.

A. NNLOL contact term issue

While the NNLOL chiral interactions provide a fully
consistent description of the binding energies of 3H and 4He, as
well as of the scattering length 2and , some ambiguities emerge
when these interactions are used to calculate the nuclear-matter
EoS.

For our purposes, it is convenient to rewrite the NNLOL
chiral contact term of Eq. (7) in the form

V τ
E (3 : 12) = V E

0 τ12Z0(r13)Z0(r23), (27)

where the superscript τ has a meaning that will be soon clar-
ified. The radial function Z0(r) = m3

π/(4π )z0(r) approaches
the Dirac δ function in the limit of infinite cutoff, as shown in
Fig. 2. Strictly speaking, the local version of VE is a genuine
“contact term” in this limit only, while for finite values of the
cutoff it acquires a finite range.

In addition to V τ
E of Eq. (27), the chiral expansion leads

to the appearance of five spin-isopin structures in the contact

024003-5



LOVATO, BENHAR, FANTONI, AND SCHMIDT PHYSICAL REVIEW C 85, 024003 (2012)

term. For example, the scalar contribution is

V I
E (3 : 12) = V E

0 Z0(r13)Z0(r23). (28)

Within this context, the superscripts τ and I identify the τ12

and scalar contact terms, respectively.
In Ref. [16] it has been shown that, once the sum over

all cyclic permutation is performed, all contributions to the
product between the potential and the antisymmetrization
operator A123 have the same spin-isospin structure. Therefore,
it is convenient to take into account just one of the contact
terms. This result was obtained in momentum space, without
the cutoff functions F�. As a consequence, in coordinate space
it only holds true in the limit of infinite cutoff. In particular,
for V τ

E (3 : 12) and V I
E (3 : 12), it turns out that∑

cycl

V E
0 δ(r13)δ(r23)τ12A123 = −

∑
cycl

V E
0 δ(r13)δ(r23)A123,

(29)

making these two terms equivalent. The limit of infinite cutoff
is crucial, because the radial part of the exchange operator,
when multiplied by the Dirac δ functions, is nothing but the
identity

eikij ·rij δ(rij ) = δ(rij ). (30)

After the regularization, that is, with the δ function replaced
with Z0, the proof is spoiled and the six different structures
are no longer equivalent.

In PNM contact terms involving three or more neutrons
vanish because of the Pauli principle. However, the expectation
value of the contact terms of the NNLOL potential can be
different from zero.

Let us assume that reproducing the binding energies of light
nuclei and 2and require a repulsive VE . Then one has to choose
either c

τ12
E < 0 or cI

E > 0. In PNM, as

〈τ12〉PNM = 1, (31)

it turns out that V τ
E is attractive and V I

E is repulsive. This
means that fitting the binding energies and the nd scattering
length with either V τ

E or V I
E alone leads to an ambiguity in the

expectation value of the potential.
By expanding the cutoff function

F�(q2) = e−q4/�4 ∼ 1 − q4

�4
+ O

(
q8

�8

)
, (32)

one finds

V τ
E (3 : 12) = V E

0 τ12

[
δ(r13)δ(r23) + O

(
q4

�4

)]
,

(33)

V I
E (3 : 12) = V E

0

[
δ(r13)δ(r23) + O

(
q4

�4

)]
,

implying that in PNM

〈
V

I,τ
E (3 : 12)

〉
PNM = O

(
q4

�4

)
. (34)

From the above equation it becomes apparent that the expec-
tation value of the three-nucleon potential, as well as its sign
ambiguity, is nothing but a a cutoff effect. Hence, it should

be regarded as a theoretical uncertainty. Note that, because
�χ � �, 〈VE〉PNM is of the same order of the next term in
chiral expansion.

To clarify this issue, let us consider a simple system: a Fermi
gas of neutrons, in which correlations among particles are not
present. The expectation value of the contact interaction reads〈

V
I,τ
E

〉FG
PNM

A
= ρ2

2
V E

0

∫
d3r12d

3r13Z0(r12)Z0(r13)

×
[

1 − �(r12)2

2
− �(r13)2

2
− �(r23)2

2

+ �(r12)�(r13)�(r23)

2

]
, (35)

where A is the number of neutrons. The factor 1/2 includes
the 1/3! arising from the unrestricted sum over particle indices
123, multiplied by a factor 3 from the cyclic permutations of the
potential, all giving the same contribution. The Slater function
�(rij ), for a system of fermions with degeneracy d is given by

�(rij ) = d

N

∑
|k|<kF

e−ikn·ri eikn·rj

= 3

[
sin(kF rij ) − kF rij cos(kF rij )

(kF rij )3

]
, (36)

where kF = ( 6π2ρ

d
)1/3 is the Fermi momentum. It can be easily

seen that, if V
I,τ
E (1 : 23) ∝ δ(r12)δ(r13), then〈

V I
E

〉FG
PNM

A
= 0 . (37)

Consider now a Fermi gas with equal numbers of protons
and neutrons, where〈

V τ
E

〉FG
SNM

A
= ρ2

2
V E

0

∫
d3r12d

3r13Z0(r12)Z0(r13)

×
[
−3

4
�(r23)2 + 3

8
�(r12)�(r13)�(r23)

]
(38)

and 〈
V I

E

〉FG
SNM

A
= ρ2

2
V E

0

∫
d3r12d

3r13Z0(r12)Z0(r13)

×
[

1 − �(r12)2

4
− �(r13)2

4
− �(r23)2

4

+ �(r12)�(r13)�(r23)

8

]
. (39)

In the limit of infinite cutoff the above equations imply〈
V

τ12
E

〉FG
SNM

A
= − 3

16
ρ2V E

0 ,

(40)〈
V I

E

〉FG
SNM

A
= 3

16
ρ2V E

0 .

As expected from Eq. (29), the two contributions have opposite
signs.

024003-6



COMPARATIVE STUDY OF THREE-NUCLEON POTENTIALS . . . PHYSICAL REVIEW C 85, 024003 (2012)

TABLE III. Cutoff dependence of the expec-
tation values of the three body contact term of
the NNLOL potential in noninteracting PNM.

� (MeV) 〈V I,τ12
E 〉FG

PNM/A (MeV)

300 9.15
400 5.95
500 3.60
600 2.15
700 1.30
800 0.81
∞ 0

We have computed the expectation values of Eqs. (35), (38),
and (39) for different values of the cutoff � and density ρ =
0.16 fm−3. The results listed in Table III show that for PNM
the larger the cutoff the smaller is the expectation value of the
three-nucleon contact term. Note that for � = 500 MeV, the
expectation value is still sizably different from the asymptotic
limit.

As far as SNM is concerned (see Table IV), as the cutoff
increases the possible choices of the three-nucleon contact
term tend to the asymptotic values of Eq. (40). As in the
case of PNM, the results corresponding to � = 500 MeV are
significantly different from the asymptotic values.

We emphasize that the parameter cE has not been included
in this analysis, even though it is itself cutoff dependent. Unfor-
tunately, the authors of Ref. [19] kept � fixed to 500 MeV. Had
this not been the case, their fit to the experimental data would
have resulted in a set of different constants cE , corresponding
to different values of �. It would have been interesting to
extrapolate the expectation value of VE to the limit of infinite
�, where the cutoff effects associated with the regularization
procedure are expected to vanish.

B. FHNC/SOC calculations

The diagrams involved in the FHNC/SOC calculation of
the expectation values of the V 2π and V R terms of the UIX
potential are depicted in Figs. 3 and 4, respectively. The thick
lines represent the potential, while dashed and wavy lines
correspond to generalized scalar and operatorial correlations,
denoted by Zc and Zp in Ref. [21], respectively. Double wavy
lines represent single operator rings (SORs), while vertex
corrections, although included in the calculations, are not

TABLE IV. Same as in Table III, but for SNM.

� (MeV) 〈V τ12
E 〉FG

SNM/A (MeV) 〈V I
E 〉FG

SNM/A (MeV)

300 −2.61 10.21
400 −3.61 8.15
500 −4.37 6.93
600 −4.87 6.30
700 −5.15 5.98
800 −5.30 5.81
∞ −5.55 5.55

FIG. 3. Cluster diagrams contributing to the expectation value of
V 2π .

shown. The definitions of all these quantities can be found
in Refs. [39,40].

Note that, because of the symmetry properties of the wave
function, we can restrict our analysis to the permutation
(3 : 12). Taking into account the other permutations results
in the appearance of a multiplicative factor.

The computation of diagrams 3(a), 3(b), and 3(c) and all
diagrams of Fig. 4 is outlined in Ref. [21], while the contri-
bution of digram 3(d), involving three noncentral correlations
was first taken into account by the authors of Ref. [23].

Using the relations for the constants and the radial functions
given in Eqs. (23) and (24), the computation of the diagrams of
Fig. 3 with the V3 and V4 terms of both the TM′ and NNLOL
potentials is the same as that of V̂ 2π reported in Ref. [21].

Thanks to the identity

(σ 1 · r̂13)(σ 2 · r̂23)(r̂13 · r̂23) = 1
18 {σ13 + S13, σ23 + S23},

(41)

the term V1 of Eq. (7), appearing in both the TM′ and the
NNLOL potentials, can be written in the form

V1(3 : 12) = W0

36
{τ13, τ23}{σ13 + S13, σ23 + S23}

× r13r23

(r̂13 · r̂23)
y(r13)y(r23). (42)

Aside from the radial function, V1 is completely equivalent to
V3, the anticommutator term of the UIX potential. Therefore,
we were allowed to use again the results of Ref. [21].
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FIG. 4. Same as in Fig. 3, but for V R .

Furthermore, exploiting the identities

(σ 1 · �r23)(σ 2 · �r23) = r2
23

6
{S23 + σ23, σ13},

(43)

(σ 2 · �r13)(σ 1 · �r13) = r2
13

6
{σ23, S13 + σ13},

we can rewrite the VD term in a form that has again the same
spin-isospin structure as the anticommutator contribution of
the UIX potential,

VD(3 : 12) = WD
0

4
{τ13, τ23}

[{σ13, σ23}V YY
D (r13, r23)

+{S13, σ23}V T Y
D (r13, r23)

+{σ13, S23}V YT
D (r13, r23)

]
, (44)

where

V YY
D (r13, r23) = Y (r13)z0(r23) + z0(r13)Y (r23),

V YT
D (r13, r23) = z0(r13)T (r23), (45)

V T Y
D (r13, r23) = T (r13)z0(r23).

In conclusion, including VD amounts to properly adding the
above radial functions to those already appearing in V3.

The VE term of TM′ is completely equivalent to VR [see
Eq. (26)]. This allowed us to use the results of Ref. [21] for
the diagrams of Fig. 4. The same holds true for the chiral
contact term VE in PNM, as 〈τij 〉PNM = 1, while in SNM the
calculation of VE requires the evaluation of the diagrams of
Fig. 3.

The expression of diagram 3(a) is

(3a) = cE

2
ρ2

∑
ex

∑
p

∫
d3r12d

3r13Z
c
xy,13Z

c
x ′y ′,23

×Z
p

x ′′y ′′,12C
[
VE(3 : 12)Op

12

]
. (46)

As pointed out in Ref. [21], integrating and tracing over the
radial and spin-isospin variables of particle 3 leads to the
appearance of an effective density-dependent interaction

∑
p

V
p

E,yy ′,12(ρ)Op

12 = ρ
∑
ex

∫
d3r13Z

c
xy,13Z

c
x ′y ′,23

× C3[VE(3 : 12)], (47)

such that

(3a) = cE

2
ρ

∑
ex

∑
p

∫
d3r12A

pZ
p

x ′′y ′′,12V
p

E,yy ′,12(ρ). (48)

The subscripts xy label exchange patterns at the ends of the
generalized correlation lines. In particular, dd stands for direct-
direct, de for direct-exchange, ee for exchange-exchange, and
cc for incomplete circular exchange. The matrix Ap is defined
through [40]

C
(
O

p

ijO
q

ij

) = δpqAp, (49)

implying Ap = 1, 3, 3, 9, 6, 18 for p = 1, . . . , 6.
It turns out that the only nonvanishing term of the density

dependent potential is

V τ
E yy ′,12(ρ) = WE

0 ρ
∑
ex

∫
d3r13Z

c
xy,13Z

c
x ′y ′,23z0(r13)z0(r23).

(50)

The contribution of diagram 3(b) is given by

(3b) = cE

2
ρ2

∑
ex

∑
p,p′

∫
d3r12d

3r13Z
p

xy,13Z
p′
x ′y ′,23

×Zc
x ′′y ′′,12C

(
VE(3 : 12)

1

2

{
O

p

13,O
p′
23

})
. (51)

From the above expression, it clearly follows that only τ -type
generalized correlation lines contribute. Hence,

(3b) = 3

2
cEWE

0 ρ2
∑
ex

∫
d3r12d

3r13Z
τ
xy,13Z

τ
x ′y ′,23

×Zc
x ′′y ′′,12 z0(r13)z0(r23). (52)

Diagram 3(c) does not contribute to VE , while for diagram
3(d), with three generalized operatorial correlation, we find

(3d) = cE

2
ρ2

∑
ex

∑
p,p′,p′′

∫
d3r12d

3r13Z
p

xy,12Z
p′
x ′y ′,13

×Z
p′′
x ′′y ′′,23C

[
VE(3 : 12)

3!

(
O

p

12

{
O

p′
13,O

p′′
23

}
+O

p′
13

{
O

p

12,O
p′′
23

} + O
p′′
23

{
O

p

12,O
p′
13

})]
. (53)
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The calculation of the spin-isospin traces yields

(3d) = cE

2
WE

0 ρ2
∫

d3r12d
3r13

(−2Zτ
12Z

τ
13Z

τ
23 + 9Zστ

12 Zσ
13Z

σ
23

+ 9Zσ
12Z

στ
13 Zστ

23 − 6Zστ
12 Zστ

13 Zστ
23 + 18ξσ tt

231Z
t
12Z

tτ
13Z

στ
23

− 12ξσ tt
231Z

tτ
12Z

tτ
13Z

στ
23 + 18ξ tσ t

231Z
t
12Z

στ
13 Ztτ

23

+ 18ξ tσ t
231Z

tτ
12Z

σ
13Z

t
23 − 12ξ tσ t

231Z
tτ
12Z

στ
13 Ztτ

23

+ 9ξ ttσ
231Z

σ
12Z

tτ
13Z

tτ
23 + 9ξ ttσ

231Z
στ
12 Zt

13Z
t
23

− 6ξ ttσ
231Z

στ
12 Ztτ

13Z
tτ
23 − 12ξ ttt

231Z
tτ
12Z

tτ
13Z

tτ
23

+ 18ξ ttt
231Z

t
12Z

tτ
13Z

tτ
23 + 18ξ ttt

231Z
tτ
12Z

t
13Z

t
23

+ 18ξσ tt
231Z

tτ
12Z

t
13Z

σ
23

)
z0(r13)z0(r23). (54)

The matrices ξ
pqr

231 , depending on the angles formed by the
vectors r1, r2, and r3, are defined in Ref. [40]. Following
Ref. [23] we have considered only the direct term of the
generalized operatorial correlations. As a consequence, in the
previous equation Z

p

ij = Z
p

dd,ij .
To find the optimal values of the variational parameters, we

have employed a procedure similar to simulated annealing, the
details of which are explained in Ref. [26].

The authors of Ref. [26] constrained the difference between
the Pandharipande-Bethe (PB) and the Jackson-Feenberg (JF)
kinetic energies to be less than 10% of the Fermi energy
TF and required the sum rule involving the scalar two-body
distribution function, gc(r12), to be fulfilled with a precision of
3%. In variational calculations of SNM we have imposed the
further condition, first considered in Ref. [23], that the sum
rule of the isospin component of the two-body distribution
function,

ρ

∫
d�r12g

τ (r12) = −3, (55)

be also satisfied to the same accuracy.
Using also the sum rules for the spin and spin-isospin two-

body distribution functions leads to a sizable increase of the
variational energies, which turn out to be much higher than
those obtained releasing the additional constraints, as well as
the AFDMC results. The same pattern is observed in the results
of variational calculations not including TNFs. For this reason,
we have enforced the fulfillment of the sum rules for gc(r12)
and gτ (r12) only.

For potentials other than UIX, it turns out that the variational
energies of PNM resulting from our optimization procedure
are lower than the AFDMC values at ρ > ρ0. By carefully
analyzing the contributions of the cluster expansion diagrams,
we realized that the value of diagram 3(a) was unnaturally
large. In particular, we have found that a small change in
the variational parameters leads to a huge variation of the
value of the diagram. Moreover, the minimum of the energy
in parameter space was reached in a region where the kinetic
energy difference was very close to the allowed limit.

To cure this pathology, we have constrained the PB-JF
kinetic energy difference to be less than 1 MeV, regardless
of density. The variational energies obtained imposing this
new constraint are always larger than the corresponding
AFDMC values and the value of diagram 3(a) is brought
under control. For the sake of consistency, the same constraint
on the kinetic energies has been also applied to SNM. In

addition, the variational energy minimum does not correspond
to the maximum allowed violation of the constraints. As
a consequence, it would be largely unaffected by a slight
modification of the constraints.

C. AFDMC calculations

We have computed the EoS of PNM using the AFDMC
approach [41] with the TM′ and NNLOL chiral potentials
combined with the Argonne v′

8NN interaction.
The agreement between Green’s function Monte Carlo

(GFMC) and AFDMC energies of neutron drops, obtained
using the Argonne v′

8 plus UIX hamiltonian, discussed in
Ref. [42], supports the validity of PNM calculations carried
out within AFDMC with the Argonne v′

8 model. The highly
accurate GFMC method has been used to study neutron matter
properties in both the normal [43] and the superfluid [44]
phases. However, for interactions involving the spin coupling
σ i · σ j , such as Argonne v′

8, the computational cost of GFMC
calculations grows exponentially with the number of neutrons.
Hence, so far, GFMC simulations have only been carried out
using periodic boxes with at most 14 neutrons.

An efficient procedure for performing AFDMC calculations
with three-body potentials is described in Ref. [45]. Because
V3 is equivalent to the anticommutator term of the UIX model
(while the commutator, V4, is zero in PNM), and in PNM the
VE terms of both the TM′ and the NNLOL potentials do not
show any formal difference with respect to the repulsive term
of UIX, the inclusion of these terms reduces to a replacement
of constants and radial functions. The authors of Ref. [45] also
described how to handle the V1 for the TM model, and no
further difficulties arise in the case of the NNLOL potential.

As the VD term has never been encompassed in AFDMC, it
is worthwhile showing how the calculation of this term reduces
to a matrix multiplication. The expectation value of VD is given
by

〈VD〉 =
∑

i<j<k

[VD(i : jk) + VD(j : ik) + VD(k : ij )], (56)

with VD(i : jk) = VD(i : kj ) (otherwise, all six permutations
need to be summed). Thanks to this property one can write

〈VD〉 =
∑
i<k,j

VD(j : ik). (57)

It is possible to write VD(j : ik) of Eq. (44) in terms of
Cartesian components operators

VD(j : ik) = (Yαi;βjZγj ;δk + Zαi;βjYγj ;δk + Tαi;βjZγj ;δk

+Zαi;βjTγj ;δk)
{
σα

i σ
β

j , σ
γ

j σ δ
k

}
, (58)

where

Yαi;βj = Y (rij )δαβ,

Zαi;βj = z0(rij )δαβ, (59)

Tαi;βj = T (rij )
(
3r̂α

ij r̂
β

ij − δαβ
)
.
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The anticommutation relation {σα
i , σ

β

j } = 2δαβ makes the
expectation value of VD a sum of 3N × 3N matrix multi-
plications

〈VD〉 = 2
∑
i<k,j

(Yαi;βjZβj ;δk + Zαi;βjYβj ;δk

+ Tαi;βjZβj ;δk + Zαi;βjTβj ;δk)σα
i σ δ

k

= 2
∑
i<k

({Y,Z} + {T ,Z})αi;δk σ α
i σ δ

k , (60)

analogous to those of Ref. [45]. To compute the expectation
value of VD the former expression has been added to the
Cartesian matrices associated with the two-body potential.

Following Ref. [26], we simulated PNM with A = 66
neutrons in a periodic box, as described in Refs. [46,47],
using the fixed-phase approximation. For 66 neutrons finite-
size effects on the kinetic energy have been found to be
small, as its value is very close to the thermodynamic limit.
Moreover, as shown in Ref. [47], the energy per particle
obtained with 66 neutrons imposing the periodic box condition
(PBC) differs by no more than 2% from the asymptotic
value calculated with twist-averaged boundary conditions
(TABCs).

Finite-size effects are expected to be larger when the
density is bigger, as the dimension of the box decreases.
To check the validity of our calculations, at ρ = 0.48 fm−3

we have repeated the calculation with 114 neutrons. For all
the potentials, the energies per particle obtained with 114
neutrons are higher than those obtained with 66 neutrons.
The authors of Ref. [47] found a similar behavior for PNM
at ρ � 0.32 fm−3 in the case of the v′

8 plus UIX Hamiltonian
and ascribed part of this difference to the Fermi gas energy,
amounting to 72.63 MeV and at 74.15 MeV for 66 and
114 neutrons, respectively. However, the difference of the
energy per particle obtained with 66 and 114 neutrons is
always within 4 MeV. It is worth noting that once finite-size
effects on the Fermi gas energy are accounted for, the residual
finite-size effects do not exceed 4% of the energy per particle.
Finally, as the free-gas value obtained with 66 neutrons
turns out to be very close to the thermodynamic limit of
73.00 MeV, the finite size corrections for 66 neutrons tend to be
small.

IV. NUCLEAR-MATTER EOS

A. TM′ potential

The results of Fig. 5, showing the density dependence of
the energy per nucleon in PNM, indicate that, once the new
constraint on the difference between PB and JF kinetic energies
is imposed, the agreement between FHNC/SOC (solid line)
and AFDMC (triangles) results is very good.

The most striking feature of the results displayed in Fig. 6 is
that, despite the parameters of the three-body potentials being
different, all SNM EoS obtained from the TM′ potential turn
out to be very close to each other. This is probably attributable
to the fact that these potentials are designed to reproduce not
only the binding energies of 3H and 4He, but also the nd

doublet scattering length 2and .
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FIG. 5. (Color online) Equation of state of PNM obtained using
the AFDMC (triangles) and FHNC/SOC (solid lines) approaches with
the TM′

1 (a), TM′
2 (b), and TM′

3 (c) plus v′
8 Hamiltonian.

It is remarkable that although the parameters of TM′ poten-
tials were not adjusted to reproduce nuclear-matter properties,
the EoS saturates at densities only slightly lower than ρ0 =
0.16 fm−3, and the compressibilities are in agreement with
the experimental value K ≈ 240 MeV. However, the binding
energies are larger than the empirical value E0 = −16 MeV
and rather close to the one obtained from the UIX potential,
∼10 MeV [26]. The numerical values of all these quantities
are listed in Table V.
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FIG. 6. (Color online) Equation of state of SNM resulting
from FHNC/SOC variational calculations with the TM′ plus v′

8

Hamiltonian.

B. NNLOL chiral potentials

The results displayed in Fig. 7 show that, as in the case
of the TM′ potentials, the EoS of PNM computed within the
AFDMC and FHNC/SOC schemes are very close to each other
over the entire density range.

TABLE V. Saturation density, binding energy per particle, and
compressibility of SNM corresponding to the TM′ EoS displayed in
Fig. 6.

TM′
1 TM′

2 TM′
3

ρ0 (fm−3) 0.12 0.13 0.14
E0 (MeV) − 9.0 − 8.8 − 9.4
K (MeV) 266 243 249

The EoS of Fig. 7 are softer than those obtained from both
the TM′ (compare to Fig. 5), and UIX (see, e.g., Fig. 12 of
Ref. [26]) potentials. This is attributable to the ambiguity in
the term VE , discussed in Sec. III A.

In the NNLOL2, NNLOL3, and NNLOL4 models the
constant cE is negative. Therefore, the contribution of VE is
attractive, making the EoS very soft. When VE is repulsive (i.e.,
cE is positive), as in the NNLOL1 potential, its contribution
is very small and the resulting EoS, while being stiffer than
those corresponding to the other NNLOL potentials, remains
very soft.

The recent astrophysical data of Ref. [20] suggest that
the EoS of PNM be at least as stiff as the one obtained
with a readjusted version of the effective density-dependent
potential of Lagaris and Pandharipande in combination with
the Argonne v′

6 two-body interaction [48]. Therefore, the
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FIG. 7. (Color online) Same as Fig. 5, but for NNLOL1 (a), NNLOL2 (b), NNLOL3 (c), and NNLOL4 (d) plus v′
8 Hamiltonian.
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FIG. 8. (Color online) Same as Fig. 6, but for NNLOL plus v′
8

Hamiltonian.

EoS resulting from chiral NNLOL potentials are not likely
to describe a neutron star of mass around 2M�.

The SNM EoS corresponding to the NNLOL potentials
are displayed in Fig. 8. The fact that the NNLOL4 potential
provides the stiffest EoS, while in PNM provided the softest,
is not surprising. As discussed in Sec. III A, when the contact
term is attractive in PNM, it is repulsive in SNM, and vice
versa. A large cancellation between the repulsive core of the
Argonne v′

8 and the strong attractive contact term contribution
of the NNLOL4 potential is observed. This could influence the
variational results, which for this particular three-body force
could be less accurate than for the other interactions. As the
corresponding AFDMC results do not show a similar behavior,
giving a simple physical interpretation to the inflection point
at ρ � 0.24 fm−3 resulting from the FHNC/SOC calculations
turns out to be difficult.

The results listed in Table VI show that none of the chiral
NNLOL potentials fulfills the empirical constraints on the
SNM EoS. All potentials overestimate the saturation density,
while the compressibility is compatible with the empirical
value only for the NNLOL2 and NNLOL3 models. As for the
binding energies, they are closer to the experimental value than
those obtained using both the UIX and TM′ potentials.

As a final remark, it has to be noticed that using the scalar
repulsive term V I

E instead of V τ
E provides more repulsion,

resulting in a stiffer EoS. As stressed in Sec. III A, this issue
needs to be addressed, taking into account all terms that
become equivalent in the limit of infinite cutoff only. Moreover,
because the discrepancies among these terms are of the same
order as the NNNLO term of the chiral expansion, other contact
terms have to be included [49].

TABLE VI. Saturation density, the binding energy per particle,
and the compressibility related to the NNLOL EoS displayed in Fig. 8.

NNLOL1 NNLOL2 NNLOL3 NNLOL4

ρ0 (fm−3) 0.21 0.20 0.19 0.17
E0 (MeV) − 15.2 − 14.6 − 14.6 − 12.9
K (MeV) 198 252 220 310

V. CONCLUSIONS

A new generation of chiral inspired three-nucleon potentials
in coordinate space, suitable for carrying out nuclear-matter
calculations, is now available. We have carried out a compar-
ative analysis of the EoS of PNM and SNM obtained using
the different parametrizations of the NNLOL potential, as
well as the improved versions of the TM model discussed in
Ref. [19].

The calculation of the SNM EoS has been been performed
within the variational FHNC/SOC approach. In the case of
PNM we have also used the AFDMC computational scheme,
the results of which turn out to be in close agreement with the
variational FHNC/SOC estimates.

Our analysis shows that the transformation from momen-
tum to coordinate space brings about a cutoff dependence,
leading to sizable effects in nuclear matter. As discussed in
Sec. III A, the contribution of the contact term, which in PNM
would vanish in the � → ∞ limit, cannot be fully determined
fitting the low-energy observables. Moreover, the NNN contact
terms of the NNLOL2 and NNLOL3 models turn out to be
attractive in PNM, leading to a strong softening of the EoS.

An illustrative example of the uncertainty associated with
the local form of the NNN contact term is provided by the
results of Fig. 8 and Table VI. The NNLOL4 model largely
overestimates the empirical value of the compressibility
modulus of SNM, thus yielding a stiff EoS. However, as
pointed out in Sec. IV B, it predicts a soft EoS of PNM. The
impact of this is ambiguity is large, because compressibility
is a most important property of the EoS. The recent discovery
of a ∼2M� neutron star appears, in fact, to rule out dynamical
models yielding a soft EoS of β-stable matter.

None of the considered three-nucleon potential models
simultaneously explains the empirical equilibrium density
and binding energy of SNM. However, among the different
parametrization that we have analyzed, the NNLOL4 and TM′

3
provide reasonable values of ρ0. It has to be emphasized that
this is a remarkable result, as, unlike the UIX model, these po-
tentials do not involve any parameter adjusted to reproduce ρ0.

To resolve the inconsistencies involved in the contact term,
one should include all contributions to this term arising from
the chiral expansion at NNLO. Moreover, as pointed out by
the authors of Ref. [49], owing to the choice of the regulator
function [see Eq. (6)], a fully consistent treatment should also
take into account NNNLO contact contributions.

As a final remark, it must be mentioned that the TM′ and
NNLOL potentials discussed in this paper can be used to obtain
two-body density-dependent effective interaction within the
formalism developed in Ref. [26]. At present, this is the only
approach allowing for the inclusion of three-nucleon potentials
involving a term of the form of V4 of Eq. (7) in AFDMC
calculations of SNM.
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