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We explore the interplay between renormalization, charge independence and charge symmetry breaking
(CIB and CSB) in S-wave nucleon-nucleon scattering. The renormalizability requirement generates universality
functions, that is, correlations between the low-energy scattering observables in the neutron-neutron, neutron-
proton, and proton-proton systems. The universality functions only depend on the (known) form of the nucleon-
nucleon potential at long distances and, in particular, they do not require any assumptions about short-range CIB
and CSB effects. In addition, the inclusion of Coulomb effects is trivial for the particular case of proton-proton
scattering, allowing us to relate strong and Coulomb scattering observables. Within this approach, and using a
one-boson-exchange potential, the previous correlations are shown to be phenomenologically satisfied without
the need to introduce further parameters.
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I. INTRODUCTION

The understanding of charge dependence of strong interac-
tions has been a crucial issue in nuclear physics (for reviews
see, e.g., [1–4]). In fact, the simplest place where this issue
can be studied is in the nucleon-nucleon interaction. As is
well known, isospin invariance is not an exact symmetry of
strong interactions. As a consequence nuclear forces have a
small, but net, charge-dependent component. By definition,
charge independence means invariance under any rotation in
isospin space. A violation of this symmetry is referred to as
charge independence breaking (CIB) and it means in particular
that, in the isovector (T = 1) state, the proton-proton (T3 =
+1), neutron-proton (T3 = 0), or neutron-neutron (T3 = −1)
strong interactions are different. A particular case, known
as charge symmetry breaking (CSB), only considers the
difference between proton-proton (pp) and neutron-neutron
(nn) interactions. Further corrections are expected when, in
addition, Coulomb forces are added to the proton-proton
system [pp(c)].

However, which is the length scale governing charge
independence and charge symmetry breaking? Actually, CIB
and CSB are important in S-wave nucleon-nucleon scattering,
where the unnaturally large value of the scattering length
in the 1S0 partial wave1 triggers a strong short-distance
sensitivity. The result is the amplification of the effects related
to variations in the short-range interaction, that is, precisely
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1The large value is caused by the presence of a virtual state, that is,

a pole in the second Riemann sheet in the negative-energy axis.

in the region where the nuclear potential, and hence the
mechanisms behind CIB and CSB, may be less reliable. The
current understanding is that CIB, and in particular CSB, are
due to a mass difference between the up and down quarks
and electromagnetic interactions. On the hadronic level and,
in particular, in the meson exchange description of the nuclear
forces (see. e.g., [5,6] for reviews on these models), major
causes of CIB and CSB [2–4] are effects explicitly related
to (i) electromagnetic effects (mainly Coulomb), (ii) mass
splitting of the isovector π and ρ mesons and different coupling
constants, (iii) mass splitting between the different �-isobar
charge states, and (iv) unknown short-distance effects which
are usually described by models. Traditionally, the difference
between the charge and neutral pion masses is believed to
account for a big contribution to CIB, while the difference
between the masses of the neutron and the proton represents
the most basic cause for CSB. In fact, pion mass differences
have been shown to account for 80% of the np-pp scattering
length difference [7]. Some recent phenomenological analyses
consider the differences coming from nucleon mass splitting
and kinematical effects [8–10] but do not extract nn properties.
In Ref. [11] 2π -exchange contributions, πρ diagrams, and
other multimeson exchanges, including the � isobar as an
intermediate state, were considered to explain the empirical
CSB value accurately. In a similar line, in Ref. [12] the
empirical CIB value is explained in terms of 2π -exchange
contributions with � excitations, while the 3π and 4π

exchanges are found to generate a negligible effect. The
difficulties arising in multimeson exchange diagrams, and
in particular the energy dependence that they create, were
avoided in the Bonn potential [5] by introducing two effective
scalar-isoscalar σ mesons simulating 2π + πρ exchanges. In
the CD-Bonn potential [13], CSB was included at the simplest
one-boson-exchange diagrams.
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Many authors have also proposed ρ-ω mixing as a key
ingredient to understand CSB [14,15]. In Ref. [14], ρ-ω mixing
is identified as the major source of CSB, while proton and
neutron mass differences are considered to produce a minor
effect. However, it should be noted that such a calculation
might be hampered by the fact that the gωNN coupling constant
occurring in the CSB piece of the interaction is about 40%
larger than expected value from SU(3) symmetry (gωNN =
3gρNN ∼ 9) and also from the actual value taken for the CSB
potential. Fixed-s dispersion relations [16] yielded gωNN =
5.7 ± 2.0 and Vector-Meson-Dominance (VMD) ω → e+e−
decays prefer gωNN ∼ 10. η-π0 mixing has been shown to be
of some relevance as well [17].

The high sensitivity to short-range mechanisms underly-
ing CIB and CSB has been a major motivation to pursue
experimental determinations of the neutron-neutron scattering
length by indirect methods (for a review see, e.g., Ref. [18]
and references therein). A recent measurement of the nn

scattering length using the π -d capture reaction yields (see
also [19] for a review) ann = −18.69(4) fm when corrected
for magnetic interactions. The CSB analysis of the reaction
dd → π0α [20] uses also the large and SU(3)-violating gωNN

constant. A recent effective field theory (EFT) analysis yields
ann = −22.9 ± 4.1 fm [21].

The purpose of the present work is to approach the problem
from the renormalization point of view. We do not attempt a
high-precision calculation; rather, our goal is to gather some
insight onto how to relate different two-nucleon channels.
In this regard, while we consider the long-distance potential
between the nucleons to be known, we use physical low-
energy parameters, such as the scattering length, to encode
the unknown short-distance physics. An interesting aspect
of renormalization in the context of the one-boson-exchange
(OBE) model [22,23] is that we can employ the natural SU(3)
value of gωNN without spoiling the phenomenological descrip-
tion of nucleon-nucleon scattering at low energies. However,
a problematic feature of the OBE model is that it generates
divergences in the physical observables, the scattering length in
particular, when we try to correlate the np, nn, and pp systems.
The solution we propose to this problem is a short-distance
renormalization condition, featuring charge independence,
which guarantees the finiteness of the correlations. As we
will see, this renormalization condition works quite well on
the phenomenological level. This approach differs from the
traditional point of view, which we have briefly reviewed in the
previous paragraphs, and from the EFT framework [24–29], in
which the scattering lengths in the nn, np, and pp systems
are simply assumed to be basically unrelated. In contrast,
we pursue here the possible connection between the three
two-nucleon isovector states from a new perspective which
actually lies in between the traditional and the EFT approaches.
In particular, we assume one of the scattering lengths to be
known and then exploit the EFT concept of short-distance
insensitivity2 to determine all other scattering lengths and

2From a renormalization point of view, by short-distance insensitiv-
ity we refer both to cutoff and regulator dependence. Clearly, when
the cutoff is removed we expect regulator independence. However, we

phase shifts from the requirement of finiteness of the scattering
amplitude (that is, renormalizability).

The paper is organized as follows: in Sec. II we motivate the
use of renormalization in the context of the NN interactions
with or without Coulomb forces (see also Appendix A). This
serves as preparatory material for the further developments
in this work. In Sec. III we study CIB and CSB effects
for np, nn, and pp (strong and Coulomb) systems, and we
formulate universality relations which correlate the previously
mentioned systems. In Sec. IV, by requiring finiteness, we
propose a short-distance connection which allows us to
correlate the np, nn, pp(s), and pp(c) scattering lengths.
A further application of this approach, which we present in
Appendix B, is the correlation of the Gamow-Teller matrix
elements employed in np radiative capture and the pp fusion
process. Finally, in Sec. V we present our conclusions.

II. STANDARD AND RENORMALIZATION APPROACHES

A. The OBE potential

In this section we briefly review the main ideas behind
renormalization in coordinate space for the OBE potentials (for
a more detailed account see, e.g., Ref. [22]) since they play a
fundamental role in what follows. To provide a comprehensive
perspective we compare it with the more traditional viewpoint
of regulating the singular meson-exchange potentials. The
crucial distinction lies in the sensitivity to short-distance
details: from the renormalization point of view we expect
complete insensitivity to these details. In contrast, a regular-
ization procedure only guarantees the finiteness of the results.
For definiteness, let us analyze as an illustrative example the
phenomenologically successful 1S0 OBE potential [5,13]

V (r) = −g2
πNNm2

π

16πM2
N

e−mπ r

r
− g2

σNN

4π

e−mσ r

r

+ g2
ωNN

4π

e−mωr

r
− f 2

ρNNm2
ρ

8πM2
N

e−mρr

r
, (1)

where gσNN is a scalar-type coupling, gπNN is a pseudo-scalar
coupling, gωNN is a vector coupling, and fρNN is a tensor
derivative coupling (see [5] for notation). We neglect for sim-
plicity nucleon mass effects and a tiny η contribution. We take
mπ = 138 MeV, MN = 939 MeV, mρ = 770 MeV, mω =
783 MeV and gπNN = 13.1, which seem firmly established.
The OBE potential, Eq. (1), corresponds to a long-distance
expansion of the potential. On the other hand, NN scattering
in the elastic region below the pion production threshold
involves c.m. momenta p < pmax = 400 MeV. Given the fact
that 1/mω = 0.25 fm � 1/pmax = 0.5 fm we expect heavier
mesons to be irrelevant and ρ and ω themselves to be of
marginal importance. This naive expectation is, however, not
fulfilled in the traditional approach [5,13].

face the impossibility of checking all possible regulators, but still it
is natural to expect that most of the regulator dependence is covered
by fixing a regulator and varying the cutoff. This interpretation is
the common practice within renormalization theory in quantum field
theory.
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TABLE I. Fits to the 1S0 phase shift of the Nijmegen group [9] using the OBE potential with a charge-dependent OPE part. We take
mπ0 = 134.97 MeV, mπ+ = 139.57 MeV, gA = 1.29, and fπ = 92.4 MeV [31]. DOF stands for degrees of freedom. We neglect the CSB
coming from the ρ meson and take mρ = mω = 770 MeV fitting mσ , gσNN , and g∗

ωNN . We use the value αnp = −23.74 MeV as an input (in
boldface) when renormalizing.

BC rc (fm) mσ (MeV) gσNN g∗
ωNN χ 2/DOF α0 (fm) r0 (fm)

Regular solution I 0 498.2(7) 9.488(11) 7.94(2) 0.480 −23.737 2.678
Regular solution II 0 550.72(4) 13.87(13) 20.10(24) 0.674 −23.738 2.679
Renormalizing 0 490(17) 8.7(6) 0(5) 0.289 −23.74 2.672

In the following we will make the approximation mρ = mω,
especially when making fits of the coupling parameters to the
1S0 phases. Under the previous approximation it is convenient
to define

g∗
ωNN =

√
g2

ωNN − f 2
ρNNm2

ρ

2M2
N

(2)

in such a way that the combined ω-ρ potential reads

g2
ωNN

4π

e−mωr

r
− f 2

ρNNm2
ρ

8πM2
N

e−mρr

r
� (g∗

ωNN )2

4π

e−mωr

r
. (3)

The previous simplification is useful since it avoids correla-
tions between gωNN and fρNN in the 1S0 channel. For SU(3)
values of gωNN ∼ 9 or VMD ω → e+e− electromagnetic
decays of gωNN ∼ 10.5 and typical ρ-tensor values fρNN ∼
14–18, one has g∗

ωNN ∼ 0–7.

B. Standard approach

In the traditional approach [5,13] the problem is essentially
handled by solving the reduced Schrödinger equation, which
for the S-wave case reads

− u′′
k (r) + MN V (r)uk(r) = k2uk(r), (4)

with k = √
MNE the c.m. momentum, MN the nucleon mass,

and V (r) the OBE potential of Eq. (1). The Schrödinger
equation is a second-order differential equation and it has
two linearly independent solutions. The physical solution is
usually determined by the regularity condition at the origin,
i.e.,

uk(0) = 0. (5)

This boundary condition for the Schrödinger equation implic-
itly assumes that we are taking the potential seriously all the
way down to the origin.3

The asymptotic behavior of the reduced wave function for
r 	 1/mπ is given by

uk(r) → sin[kr + δ0(k)]

sin δ0(k)
, (6)

where δ0(k) is the S-wave phase shift. For the potential
described by Eq. (1), the phase shift is an analytic function of

3Of course, in a more conventional setup, strong form factors
accounting for the finite nucleon size should be included but they
play a marginal role in the discussion of CSB.

k with branch cuts located at k = ±imπ/2, ±imσ /2, etc. This
means in particular that for momenta below the first branch
cut, |k| � mπ/2, we can expand the phase shift by means of
the effective range expansion [30]

k cot δ0(k) = − 1

α0
+ 1

2
r0k

2 +
∞∑

n=2

vnk
2n, (7)

where α0 is the scattering length, r0 is the effective range, and
the vn are shape parameters.

In the traditional approach [5,13] everything is obtained
from the potential, which is assumed to be valid for 0 � r <

∞. In practice, strong form factors are included, mimicking the
finite nucleon size and reducing the short-distance repulsion
of the potential, but the regular boundary condition is always
kept. One of the difficulties with this point of view has to do
with the fact that the 1S0 scattering length is unnaturally large,
α0 = −23.74(2) fm, while the effective range is natural, r0 =
2.77(4) fm (approximately twice the pion Compton wave-
length, ∼ 2/mπ ). This has dramatic consequences regarding
the short-distance sensitivity, as we will show below.

A fit to the np averaged data of Ref. [9] in the 1S0 channel
yields two possible solutions (see Table I).4 Thus, we have two
good incompatible fits. A remarkable aspect is the fact that the
vector meson coupling constant is accurately well determined.
Actually, if we assume that we have fitted the potential, Eq. (1),
to reproduce α0, a tiny change in the potential V → V + �V

has a dramatic effect on α0, since one obtains

�α0 = α2
0MN

∫ ∞

0
�V (r)u0(r)2dr, (8)

a quadratic effect in a large α0. As a result, potential parameters
must be fine tuned, as can be deduced from the previous fits.
Thus, despite the undeniable success in fitting the data, this
sensitivity to short distances fixes in particular gωNN to high
precision and actually to a very different value than expected
from other sources. We identify this fine-tuning mechanism as
the reason underlying the large gωNN coupling quoted in the
OBE potential models (see, e.g., [5,13]).

However, it is worth mentioning that the two different sce-
narios correspond to selecting a potential possesing spurious
bound states or not. The spurious-bound-state problem has

4To keep the analysis as simple as possible we choose the
average value of the Nijmegen potentials [9] which reproduce the
Partial-Wave-Analysis (PWA) [8] with χ 2/DOF ∼ 1 and take the
corresponding standard deviation as an error estimate.

024002-3
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FIG. 1. Zero-energy wave function for the singlet np 1S0 channel
as a function of distance (in femtometers) and for the different
scenarios with large and small ω couplings. This wave function
goes asymptotically to u0(r) → 1 − r/α0, with α0 = −23.74 fm, the
scattering length in this channel. The zero at about r = 0.5 fm signals
the existence of a spurious bound state.

been discussed in Ref. [22] at length; the number of inner
zeros of the zero-energy wave function provides the number
of bound states. For illustration we represent the zero-energy
wave function in Fig 1. In the regular case, the OBE potential
with a big g∗

ωNN is free of bound states. However, if a small
g∗

ωNN is chosen, then one has to deal with a bound state which
does not exist and it is hence spurious.5

C. Renormalization approach for finite-range interactions

The previous results do not comply with the intuitive
expectation of insensitivity of low-energy physical observables
with respect to the specific details of the potential in the
short-distance region. Otherwise, where should one stop?
This is the basic motivation of the renormalization viewpoint.
The way to proceed is to impose renormalization conditions
which eliminate the short-range sensitivity at the expense
of treating low-energy parameters as independent variables
from the potential. An example of a renormalization condition
(RC) is to fix the scattering length, with the consequence of
avoiding the fine-tuning problem summarized by Eq. (8). In
other words, we trade the explicit dependence of the results
on the short-range parameters of the potential for low-energy
observables.

In principle there are several ways in which one can
impose renormalization conditions (see, e.g., the discussion in
Refs. [32,33]). Here we use the boundary conditions approach,
which fits our needs perfectly. The idea is to substitute the
regularity condition of the Schrödinger equation, uk(0) = 0,
by an arbitrary boundary condition at the origin:

Lk(0) = u′
k(0)

uk(0)
. (9)

5Note that regular solution II corresponds to a stronger short-
distance repulsion than solution I. Thus in the classically forbidden
region the wave function is accordingly much smaller in case II than
in case I, as can be seen in Fig. 1.
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FIG. 2. Dependence of the effective range with respect to g∗
ωNN

in the regular case with a small coupling constant and in the
renormalized one.

The regularity condition uk(0) = 0 corresponds to taking the
limit Lk(0) → ∞; by changing the precise value and energy
dependence of Lk(0), the values of low-energy observables
can be fixed. Here we will consider an energy-independent
boundary condition, which ensures orthogonality of states.
This restriction implies that there is only one free parameter.
For example, if we want to fix the scattering length, we will
solve the corresponding equation for the zero-energy wave
function u0(r), with a suitable asymptotics,

− u′′
0(r) + MN V (r)u0(r) = 0, (10)

u0(r) → 1 − r

α0
, (11)

but, instead of solving the previous equation from r = 0 to r →
∞, we solve it downward from infinity to the origin. Using
the superposition principle one gets the following correlation
between r0 and α0:

r0 = A0 + B0

α0
+ C0

α2
0

, (12)

where A0, B0, and C0 are numbers depending only on the
potential (see Ref. [22] for details). The interesting feature
is that the dependence of the effective range with respect to
short-range parameters of the potential is greatly diminished.
The short-distance sensitivity can be vividly seen in Fig. 2,
where the regular (parabolalike curve) and the renormalized
(flat curve) effective range for the OBE potential are shown
as a function of g∗

ωNN . For simplicity, only the solution with
small g∗

ωNN (Regular solution I) is represented.
The finite-energy solutions and the phase shifts can be

obtained from an orthogonality condition [22], which after
introducing a short-distance cutoff radius, rc, implies

lim
rc→0

u′
k(rc)

uk(rc)
= lim

rc→0

u′
0(rc)

u0(rc)
, (13)

providing the initial boundary conditions for the finite-energy
Schrödinger equation, Eq. (4). We normalize the scattering
wave function as follows:

uk(r) → sin(kr + δ0)

sin δ0
. (14)
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If we use the superposition principle [22] and the orthogonality
constraint, Eq. (13), the phase shift depends on the scattering
length explicitly: k cot δ0 is a bilinear mapping of α0,

k cot δ0 = α0A(k) + B(k)

α0C(k) + D(k)
, (15)

where the functions A, B, C, and D are even functions
of k which depend solely on the potential and not on
the scattering length, α0. Actually, by making a systematic
expansion of the wave function as a power series of k,
uk(r) = u0(r) + k2u2(r) + . . . one may relate the effective
range expansion in Eq. (7) and the corresponding low-energy
threshold parameters. In particular, Eq. (12), is reproduced
with a suitable identification of the functions A(k), B(k), C(k),
and D(k).

Finally, we can use the previous procedure to fit the np

averaged data of Ref. [9] in the 1S0 channel (once we have
fixed the scattering length to its experimental value), yielding
the values in Table I. We can see the large uncertainty on the
value of g∗

ωNN , which shows that there is a greater insensitivity
to shorter distances after renormalizing. This agrees with the
previous remarks on the sensitivity of the effective range on
g∗

ωNN , illustrated in Fig. 2. Let us note further that, as discussed
in Ref. [22], the renormalization scenario also has a spurious
bound state as in the small-g∗

ωNN regular solution case (see
Fig. 1). The current discussion would be modified by the
inclusion of form factors which incorporate the finite nucleon
size. However, because of the short-distance insensitivity,
form factors turn out to play a marginal role [22] after
renormalization.

D. Renormalization with Coulomb interactions

The extension of the previously discussed renormalization
approach to the case of proton-proton scattering, where the in-
finite range of the Coulomb interaction plays a role, is straight-
forward. The corresponding S-wave reduced Schrödinger
equation is

− uC
k

′′ + Mp

(
Vpp(r) + α

r

)
uC

k = k2 uC
k , (16)

where Mp is the proton mass, Vpp(r) is the strong proton-
proton potential, and α � 1/137 is the fine-structure constant.
Actually, the discussion is tightly linked to the corresponding
one for the two potential formula presented by two of us [35].

The definition of the phase shifts in the presence of the
Coulomb potential is related to the behavior of the wave
function at long distances, which is given by

uC
k (r) → cot δC

0 (k)F0(η, ρ) + G0(η, ρ), (17)

where δC
0 (k) is the Coulomb-modified proton-proton phase

shift and F0(η, ρ) and G0(η, ρ), with η = 1/kaB and ρ = kr ,
are the S-wave Coulomb wave functions [36]. The uC

k wave
function is the solution to the reduced Schrödinger equation,
Eq. (16). The F0(η, ρ) and G0(η, ρ) wave functions behave
asymptotically (r → ∞) as

F0 → sin (kr − η log(2kr) + σ0), (18)

G0 → cos (kr − η log(2kr) + σ0), (19)

with σ0 the Coulomb phase shift, which is defined as

e2iσ0 = �(1 + iη)

�(1 − iη)
. (20)

The phase shift in the presence of the infinite-ranged
Coulomb force does not obey the usual effective range
expansion, which is valid for short-ranged potentials, but obeys
a Coulomb-modified effective range expansion, given by

k cot δC
0 C2(η) + 2

aB

h(η)

= − 1

α0,C

+ 1

2
r0,C k2 +

∞∑
n=2

vn,Ck2n, (21)

with C(η) and h(η) defined as

C2(η) = 2πη

e2πη − 1
, (22)

h(η) = η2
∞∑

n=1

1

n(n2 + η2)
− log η − γE. (23)

After some manipulations (see Appendix A for details)
we obtain the following correlation between the Coulomb-
modified hadronic scattering length and effective range:

r0,C = AC
0 + BC

0

α0,C

+ CC
0

α2
0,C

, (24)

which is a direct generalization of Eq. (12) for the non-
Coulomb case. Likewise, for the finite-energy case it is
straightforward to obtain the correlation

k cot δC
0 C2(η) + 2

aB

h(η) = α0,CAC(k) + BC(k)

α0,CCC(k) + DC(k)
, (25)

where AC(k), BC(k), CC(k), and DC(k) are analytic functions
of the c.m. momentum and play a similar role as in Eq. (15).

E. Summary of the renormalization process

The renormalization procedure proposed in this section can
be summarized as follows:

(i) For a given scattering length α0, integrate in the zero-
energy wave function u0(r) with Eq. (10) down to the
cutoff radius rc. This is the renormalization condition.

(ii) Implement orthogonality at the cutoff radius through
the boundary condition as in Eq. (13).

(iii) Integrate out the finite-energy wave function uk(r) with
Eq. (4) and determine the phase shift δ0(p) from Eq. (6).

(iv) Remove the cutoff (take the limit rc → 0) to assure
model (regulator) independence.

This allows us to compute δ0 (and hence r0, v2) from
(i) the potential V (r) and (ii) the scattering length α0 as
independent information. Of course, this also applies to
the Coulomb case with suitable modifications. Note that
this is equivalent to considering, in addition to the regular
solution, the irregular one. In momentum space this can be
shown to be equivalent to introducing one counterterm in
the cutoff Lippmann-Schwinger equation (see Ref. [33] for a
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detailed discussion). Both Eq. (12) and Eq. (15) highlight this
decorrelation between the potential and the scattering length.
Contrary to common wisdom, but according to our intuitive
expectations, no strong short-range repulsion is essential. The
moral is that building α0 from the potential is equivalent to
absolute knowledge at short distances; as in the 1S0 channel
a strong fine tuning is at work. This example illustrates our
point that the renormalization viewpoint tells us to what extent
short-distance physics may be less well determined than is
assumed in the traditional approach. This leads to a new
perspective [22] to the phenomenology of OBE potentials
without a need for a strong ω repulsion.

III. CHARGE SYMMETRY BREAKING

In the previous sections we have shown how the renormal-
ization of the 1S0 two-nucleon system can be carried out. This
procedure allows us to determine the 1S0 phase shifts for np, nn,
pp, and pp(c) from their corresponding scattering lengths αnp,
αnn, αpp, and αC

pp, respectively. The previous computation can
be compared with the experimental values for these quantities
in order to test the renormalization procedure.

Admitted values of the scattering lengths are [2–4],

αC
0,pp = −7.8149(29) fm, α0,pp = −17.3(4) fm,

(26)
α0,nn = −18.8(3) fm, α0,np = −23.77(9) fm,

giving �αCIB ≡ (α0,pp + α0,nn)/2 − α0,np = 5.7(3) fm and
�αCSB ≡ α0,pp − α0,nn = 1.5(5) fm. For the effective range
we have [2–4]

rC
pp = 2.769(14) fm, rpp = 2.85(4) fm,

(27)
rnn = 2.75(11) fm, rnp = 2.75(5) fm,

with �r0,CIB = 0.05(8) fm and �r0,CSB = 0.1(1) fm. As can
be seen, the CIB and CSB are much larger for the scattering
length than for the effective range. This can be partially
explained by the unnaturally large value of the NN scattering
length.

Before going further it is interesting to mention that the
strong pp scattering observables are largely model-dependent
quantities. This was unveiled by Sauer long ago [34] by
carrying out a unitary short-range transformation, which,
while keeping the Coulomb interaction scattering observables
unchanged, allowed one to get almost any possible value for
the corresponding pp strong counterpart. This issue has been
also confirmed within the EFT approach [26] due to the onset
of logarithmic divergences (see also [35]). In Sec. IV we will
suggest a way to handle this difficulty.

To take into account the various physical effects which
generate charge symmetry breaking, we consider the neutron-
proton mass difference and the OPE reduced potentials,
U (r) = 2μV (r), defined as

U 1π
pp (r) = −Mp f 2

π

(
mπ0

mπ+

)2
e−mπ0 r

r
,

U 1π
np (r) = −Mnp f 2

π

[
2

e−mπ+ r

r
−

(
mπ0

mπ+

)2
e−mπ0 r

r

]
, (28)

U 1π
nn (r) = −Mn f 2

π

(
mπ0

mπ+

)2
e−mπ0 r

r
,

with mπ0 = 134.97 MeV and mπ+ = 139.57 MeV. Mn is the
neutron mass and Mnp is twice the reduced np mass, 2μnp =
2MpMn/(Mp + Mn). Therefore, for the OBE NN potential
we have

Vnp(r) = V 1π
np (r) + V 1σ (r) + V 1ρ

np (r) + V 1ω(r) + · · · ,

Vnn(r) = V 1π
nn (r) + V 1σ (r) + V 1ρ

nn (r) + V 1ω(r) + · · · , (29)

Vpp(r) = V 1π
pp (r) + V 1σ (r) + V 1ρ

pp (r) + V 1ω(r) + · · · .

Clearly, the potentials in the different channels are not very
different from one to another quantitatively. Actually, the
σ - and ω-exchange contributions coincide identically. On
the other hand, the π and ρ take into account the different
charged mesons which are exchanged. Obviously, one expects
the symmetry breaking effects coming from π exchange to
be more important than those from ρ exchange. Theoretical
computations seem to support the previous result, giving
�αCIB,π = 3.24 fm and �αCIB,ρ = −0.29 fm (see Ref. [12]).
As a consequence, ρ mass differences are negligible.

The long-distance correlation between the scattering length
and effective range looks like

r0,np = Anp + Bnp

α0,np

+ Cnp

α2
0,np

, (30)

r0,pp = App + Bpp

α0,pp

+ Cpp

α2
0,pp

, (31)

r0,nn = Ann + Bnn

α0,nn

+ Cnn

α2
0,nn

, (32)

rC
0,pp = AC

pp + BC
pp

α0,C,pp

+ CC
pp

α2
0,C,pp

, (33)

while the phase shifts are given by

k cot δ0,np = α0,npAnp(k) + Bnp(k)

α0,npCnp(k) + Dnp(k)
, (34)

k cot δ0,nn = α0,nnAnn(k) + Bnn(k)

α0,nnCnn(k) + Dnn(k)
, (35)

k cot δ0,pp = α0,ppApp(k) + Bpp(k)

α0,ppCpp(k) + Dpp(k)
, (36)

C2(η) k cot δC
0,pp + 2

aB

h(η) = αC
0,ppAC

pp(k) + BC
pp(k)

αC
0,ppCC

pp(k) + DC
pp(k)

. (37)

We remind the reader that in these formulas the scattering
lengths are independent of the potentials.

In Fig. 3 we show the universal functions A, B, C, and
D for the four cases considered. As can be seen, for nn,
np, and pp and in the range of relevant momenta p �
400 MeV they turn out to practically coincide numerically as a
consequence of the similarity of the corresponding potentials.
This means in particular that most of the CIB and CSB effects
for p � 400 MeV come solely from the difference in the
scattering length (since there are no genuine sizable effective
range effects). It is also interesting to see that the Coulomb
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FIG. 3. The universal functions A, B, C, and D defined by Eqs. (34)–(37) and Eq. (A4) in appropriate length units as a function of the c.m.
momentum p (in MeV) for the four 1S0 channels np, pp, nn, and pp(c). These functions depend on the potentials Vnp(r), Vnn(r), Vpp(r), and
V C

pp(r) only but are independent of the scattering lengths.

corrections to the pp(c) universal functions differ increasingly
for higher energies.

IV. THE SHORT-DISTANCE CONNECTION

As is well known, at large energies the np and pp(c)
phase shifts resemble each other more closely than at low
energies,6 suggesting that charge invariance works better at
short distances. Most of the charge invariance and charge
symmetry breaking effects only influence the low-energy
behavior, specifically the scattering lengths as given below
Eq. (26). When one considers the effective range, the symmetry
breaking effects are already one-tenth that in the scattering
length case, being of the order of a tenth of a fermi. The
problem is how to explain these differences.

In what follows we argue how this could be done without
going into all the details and intricacies of the NN interaction
precisely in the short-distance region where our lack of
knowledge is magnified due to the unnaturally large scattering
length. In the traditional approach all the CIB and CSB effects
are explained via the OBE potential, Eq. (1). The Schrödinger

6In the presence of Coulomb forces there is an additional effective
screening at larger momenta; for a maximum c.m. momentum, i.e., a
de Broglie wavelength of 0.5 fm, such a screening induces a difference
of about 1◦.

equation is integrated from the origin to infinity with reg-
ular boundary conditions and all the differences between
scattering observables must come from the potential. In the
renormalization approach things get more involved: there are
explicit contributions coming from short-distance operators
which are used to weaken the short-distance sensitivity. The
problem is how to implement either charge independence or its
breaking within this approach in a regulator-independent way.
If we assume that at lowest order all the charge-independence
breaking comes from the finite-range potential, one is tempted
to identify short-distance charge independence with identical
logarithmic boundary conditions. For example, if we relate the
nn and np problems with

u′
nn(rc)

unn(rc)
= u′

np(rc)

unp(rc)
, (38)

we will find that this relation produces log-divergent results
for any Yukawa potential in the limit rc → 0. Another option
is to regulate with a short-distance delta potential

VC(r; rc) = C0(rc)

4πr2
c

δ(r − rc), (39)

which corresponds to a specific regularization of the δ function
potential, and assume that charge independence at short
distance is equivalent to C0,nn(rc) = C0,np(rc) = C0,pp(rc) =
C0(rc). This choice leads to the following logarithmic
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boundary condition between nn and np:

1

Mn

(
u′

nn(rc)

unn(rc)
− 1

rc

)
= 1

Mnp

(
u′

np(rc)

unp(rc)
− 1

rc

)
. (40)

The counterterm conditions also run into the same cutof-
dependence problems as the logarithmic boundary condition.
This means in particular that the two previous proposals are
regulator dependent, and hence model dependent, and pose
a serious problem on what is meant by charge independence
of short-distance operators. We will show that, by using the
hypothesis of charge independence at short distances together
with finiteness, a relation between them can be established
which works rather satisfactorily at both a mathematical as
well as a phenomenological level.

At short distances all the pp (strong and Coulomb), np, and
nn potentials have an attractive Coulomb-like behavior

2μNN VNN (r) −−→
r→0

− 1

R r
, (41)

where NN either refers to pp (strong), pp (Coulomb), np, or
nn, and μNN and VNN are the corresponding reduced mass
and potential. The constant R depends on the problem; for the
OBE potential of Eq. (1) with the additional simplification of
taking mω = mρ and defining g∗

ωNN , we get the scales

1

Rnp

= Mnp

(
f 2

πNN + g2
σNN − g∗

ωNN
2)

, (42)

1

Rnn

= Mn

(
f 2

πNN + g2
σNN − g∗

ωNN
2)

, (43)

1

Rpp

= Mp

(
f 2

πNN + g2
σNN − g∗

ωNN
2)

, (44)

1

RC
pp

= Mp

(
f 2

πNN + g2
σNN − g∗

ωNN
2 − α

)
. (45)

As a consequence of the short-distance Coulomb singularity,
the wave function at short distances approximately behaves as
linear combinations of attractive Coulomb wave functions

uk,NN (r) → a
R

2

√
x J1(2

√
x) + b 2

√
x Y1(2

√
x)

+O(mr,mR, k2r2, r/R), (46)

where J1 and Y1 are Bessel functions. The constants a and b

determine the correct linear combination, R can be Rnn, Rnp,
or Rpp (strong and Coulomb), x = 2r/R, and m generically
denotes the mass of any of the exchanged bosons. The expected
mR contributions will only shift the irregular solutions by a
constant.

The previous behavior can be quite problematic as we can
see if we consider the log derivative of the wave function at
small enough cutoff radii, which behaves as

R
u′

k,NN (rc)

uk,NN (rc)
→ −2γE − π

4
R λ − log

rc

R
+ . . . , (47)

where γE = 0.57722 is the Euler-Mascheroni constant, λ =
a/b, and the dots refer to higher order terms, like mrc or
k2r2

c corrections. With this behavior, we can see that naively
identifying the log derivative at the cutoff radius in order to

obtain correlations between observables of the different two-
nucleon systems will yield divergent results. For example,
relating np and nn,

u′
k,nn(rc)

uk,nn(rc)
= u′

k,np(rc)

uk,np(rc)
, (48)

generates the singularity

1

Rnp

log

(
rc

Rnp

)
− 1

Rnn

log

(
rc

Rnn

)
. (49)

This singularity is indeed mild, as it can only be seen at very
short distances (depending on how small the difference is
between 1/Rnn and 1/Rnp), but sooner or later the irregular
Coulomb solution will ruin our results.

Under these circumstances there is a quantity that can be
constructed from the log derivative at short distance that is
finite in the rc → 0 limit. This quantity is the following:

S = R
u′(rc)

u(rc)
+ log

( rc

R

)
, rc � R, (50)

which is cutoff and energy independent. This suggests that
different scattering problems, having different short-distance
constants but the same logarithmic-scale dependence, can
be connected in such a way that the scale dependence is
eliminated. This is done by equating the corresponding S’s,

S1 = S2, (51)

where 1 and 2 refer to two different NN = nn, np, pp, pp(c),
cases.7

We can give here two examples of the adequacy of the
short-distance connection. The first one is to obtain the strong
pp scattering length from the experimental Coulomb one,
αC

0,pp = −7.8149 fm yielding α0,pp = −18.46 fm, a not un-
reasonable result [to be compared with the extraction α0,pp =
−17.3 fm; see values in Eq. (26), where the error comes
from model dependence]. The CD-Bonn potential gives a
value of α0,pp = −17.46 fm. The extracted effective ranges are
rC

0,pp = 2.735 fm and r0,pp = 2.789 fm. As a second example,
by taking the np scattering length as input, α0,np = −23.74 fm,
we can obtain all the NN low-energy parameters (LEP), giv-
ing α0,nn = −19.626 fm, α0,pp = −17.806 fm, and αC

0,pp =
−7.706 fm for the scattering lengths and r0,np = 2.672 fm,
r0,nn = 2.771 fm, r0,pp = 2.802 fm, and rC

0,pp = 2.747 fm for
the effective ranges. A remarkable aspect of the previous
computation is that one obtains �αCIB = 5.024 fm, �rCIB =
0.115 fm, �αCSB = 1.82 fm, and �rCSB = 0.031 fm, which
agree within error estimations with the expected values for
these quantities [2–4]. In Table II we summarize the results
obtained with the short-distance connection (renormalized)
and the one obtained by integrating upward with a regular

7Note that the result in the scattering lengths due to say two
potentials such as the Coulomb potential, VC , and the hadronic
(strong) potential, Vpp , is not additive; namely, αC

0,pp = α0,pp + �αC
0 ,

where �αC
0 would be the first-order correction due to the Coulomb

potential. This is because perturbation theory is not applicable to
either of the two potentials, even if distorted waves are used (see also
Ref. [35]).
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FIG. 4. The relationships between the predicted scattering lengths in the 1S0 channel for nn, pp, and pp(c) as a function of α0,np when the
successive π and π + σ contributions are included. We plot inverse scattering lengths. Note the small scale.

boundary condition (regular). We can see that in the case of a
big g∗

ωNN the regular solution does a poor job in calculating
the LEP in other channels. The CD-Bonn potential [13]
corresponds with this scenario, i.e., a big SU(3) breaking
coupling constant but with no spurious bound state. Looking
at this table one can understand why in this model a different
mass for a fictitious σ meson is used in each NN channel.
The strong fine tuning that appears in this situation hinders the
relations between different NN problems.

An important ingredient in obtaining such a large change
in the scattering length, and in particular large CIB, has to do
with the fine tuning of the interactions; indeed the changes
both in the (reduced) potential and in the zero-energy wave
function are small. However, since the scattering length is large
these tiny changes make dramatic differences in the scattering
length. Recall that α0 corresponds to the crossing of the
asymptotic wave function with the x axis; thus a small change
in a rather flat curve moves this crossing quite substantially.
Thus, if we consider the pp(s) channel versus the nn channel,
which correspond to the same potential but different masses,
we produce a big change in the scattering lengths [see, e.g.,
Eq. (8) with MN �V → �M V (r) with �M = Mp − Mn].
However, note that this big change does not occur for the
effective ranges (see Table II).

A further interesting example of the adequacy of the short-
distance connection is illustrated in Appendix B, where the
Gamow-Teller matrix element appearing in the proton-proton
fusion process is analyzed.

As can be seen from Table II the results depend on the
chosen starting condition, illustrating the limitations of this
short-distance connection. However, we have checked that
the CSB and CIB effects agree within error with expected
estimations in all cases. Moreover, note that the previous
choice, Eq. (51), is not the only possible covariant short-
distance connection, as we could have defined

S ′ = R
u′(rc)

u(rc)
+ log

(
λ rc

R

)
, rc � R, (52)

with λ some arbitrary constant, which depends on the specific
NN problem being considered. A natural choice is to take
λ of order unity, which does not lead to much difference

between different choices of S due to the weak logarithmic
behavior. It must be stressed though that the results are not
unique: arbitrary λ’s can be introduced to better connect
the different two-nucleon systems. As the hypothesis of the
charge dependence of short-distance operators cannot be
implemented in a completely model-independent way, we will
chose to take λnn = λnp = λpp at first order. We have already
seen that this simple condition generates quite accurate results,
meaning that corrections due to the naive estimate λ = 1 are
indeed small.

To clarify the implications of the short-distance connection,
let us consider two different problems A and B, which have
associated Coulomb length scales RA and RB . In other words,
we have the differential equations

− u′′
k,A + 2μA VA(r)uk,A(r) = k2uk,A(r), (53)

−u′′
k,B + 2μB VB(r)uk,B(r) = k2uk,B(r), (54)

where the reduced potentials behave as 1/r at short distances:

2μA VA(r) → − 1

RA r
, (55)

2μB VB(r) → − 1

RB r
. (56)

These two problems are related at short distances through
the boundary condition corresponding to the short-distance
connection SA = SB :

RB

u′
k,B(rc)

uk,B(rc)
= log

RA

RB

+ RA

u′
k,A(rc)

uk,A(rc)
. (57)

If we have only fixed the scattering length, the above condition
becomes energy independent when the cutoff is small enough,
which means that it can be evaluated with the zero-energy
wave functions of the two-body systems A and B. By using
the superposition principle, the previous zero-energy wave
functions can be written as

u0,A(r) = v0,A(r) − 1

αA

w0,A(r), (58)

u0,B (r) = v0,B(r) − 1

αB

w0,B(r). (59)
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TABLE II. NN low-energy parameters in the different scenarios. Renormalization only needs one scattering length (in bold face), np,
pp(c), or nn, as an input parameter, respectively. All the other parameters are calculated without ambiguities. Quoted errors reflect the input
uncertainty in the scattering length only. The OBE potential parameters have been fitted in the np case and kept the same in the other cases.
Here (c) means the Coulomb interaction is switched on.

NN LEP Ren. (np) Ren. [pp(c)] Ren. (nn) Reg. I Reg. II CD-Bonn [13] Exp. [13]
(g∗

ωNN ∼ 0) (g∗
ωNN ∼ 0) (g∗

ωNN ∼ 0) (g∗
ωNN ∼ 8) (g∗

ωNN ∼ 20)

np α0 [fm] −23.74(2) − 24.91(3) − 22.7(6) − 23.737 − 23.738 − 23.738 − 23.74(2)
r0 [fm] 2.6716(2) 2.6602(3) 2.683(6) 2.678 2.677 2.671 2.77(5)

pp α0 [fm] − 17.806(11) − 18.46(2) − 17.2(3) − 18.350 − 20.088 − 17.46 −
r0 [fm] 2.8022(2) 2.7895(3) 2.815(7) 2.799 2.768 2.845 −

pp(c) α0 [fm] − 7.706(2) −7.815(3) − 7.60(6) − 7.824 − 8.265 − 7.8154 − 7.8149(29)
r0 [fm] 2.7470(2) 2.7348(3) 2.759(7) 2.641 2.693 2.773 2.769(14)

nn α0 [fm] − 19.626(14) − 20.42(2) −18.9(4) − 19.486 − 20.493 − 18.968 − 18.9(4)
r0 [fm] 2.7709(2) 2.7585(3) 2.783(7) 2.780 2.763 2.819 2.75(11)

These wave functions can be included in Eq. (57), yielding the
following relation between the scattering lengths αA and αB

of the two different problems:

a

αA

= b

αB

+ c + d

αA αB

. (60)

Therefore, if we make the hypothesis of charge independence
at short distances,

Snp = Snn = Spp = SC
pp, (61)

and use the superposition principle, we can write

u0,np(r) = v0,np(r) − 1

α0,np

w0,np(r), (62)

u0,nn(r) = v0,nn(r) − 1

α0,nn

w0,nn(r), (63)

u0,pp(r) = v0,pp(r) − 1

α0,pp

w0,pp(r), (64)

uC
0,pp(r) = vC

0,pp(r) − 1

αC
0,pp

wC
0,pp(r), (65)

so we get bilinear relations between all scattering lengths:

ann

αnn

= bnn

αnp

+ cnn + dnn

αnn αnp

, (66)

app

αpp

= bpp

αnp

+ cpp + dpp

αpp αnp

, (67)

aC
pp

αC
pp

= bC
pp

αnp

+ cC
pp + dC

pp

αC
pp αnp

, (68)

etc. In Fig. 4 we show the dependence of the scattering
lengths as obtained from the np scattering length and the
previous correlations. As can be seen, the correlations work
rather well, confirming the idea that finiteness is a good
criterion to implement charge independence of short-distance
operators. Numerical values are listed in Table II when the
experimental value of α0,np is taken. Generally, one might
expect SC

pp = SS
pp + αS (1)

pp + . . . . Our results are consistent
with the expected smallness of the corrections.

We address now the interesting issue of how the errors in the
fitting procedure to the np potentials propagate to the values
of scattering lengths and effective ranges in the remaining

−20

−10

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300 350 400 450

P
ha

se
Sh

ift
s

[d
eg

]

pc.m. [MeV]

pp(c)-channel

α0 = −7.706 fm
r0 = 2.747 fm

(c)

π + σ-exch
CD-Bonn

−20

−10

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300 350 400 450

P
ha

se
Sh

ift
s

[d
eg

]

pc.m. [MeV]

nn-channel

α0 = −19.626 fm
r0 = 2.771 fm

(b)

π + σ-exch
CD-Bonn

−20

−10

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300 350 400 450

P
ha

se
Sh

ift
s

[d
eg

]

pc.m. [MeV]

np-channel

mσ = 490(17) MeV
gσNN = 8.7(6)

(a)

π + σ-exch
Nijmegen
CD-Bonn
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FIG. 6. Renormalized phase shifts for the OBE potential with
CSB OPE + σ as a function of the c.m. momentum in the singlet
1S0 channel. Upper panel: The fitted np phase shift to the Nijmegen
potentials results as well as the predicted pp(c) and nn compared
to the Nijmegen potentials results for np and pp(c) [8,9]. Lower
panel: The predicted difference between np and pp(c) phases (SDC)
compared to the Nijmegen PWA and potential results [8,9]. In both
cases the band and the error bars correspond to adding errors of np

and pp(c) in quadrature.

channels through the short-distance connection.8 We ob-
tain α0,nn = −19.5(8) fm, α0,pp = −17.8(3) fm, and αC

0,pp =
−7.7(1) fm for the scattering lengths and r0,np =
2.67(3) fm, r0,nn = 2.77(4) fm, r0,pp = 2.80(3) fm, and
rC

0,pp = 2.75(4) fm for the effective ranges. This shows that,
while we agree with experimental or recommended values [see
Eqs. (26) and (27)], our uncertainties are rather reasonable,
taking into account the simplicity of the approach. In fact,
these error estimates comply with the variations obtained by
varying the short-distance cutoff rc below 0.4 fm.

It is interesting to see how the short-distance connection
works at finite energy and, in particular, if a given specific NN

channel is able to predict the phase shifts for the remaining

8Actually, this requires taking into account the strong correlation
between gσNN and mσ found in Ref. [22] since otherwise errors
are largely overestimated. Of course, this does not account for the
intrinsic error in the short-distance connection itself.

channels. In Fig. 5 we plot the extracted nn and pp(c) phase
shifts when the OBE parameters have been fixed from the
1S0 Nijmegen np phase shifts. We have computed these phase
shifts by renormalizing in the np channel, i.e., by fixing α0,np

as input and integrating inward the Schrödinger equation, and
then using Eq. (61) we connect with the other channels. The
comparison with CD-Bonn estimates is satisfactory. Note that
the only explicit CSB effect we include when comparing nn

and pp(s) is just the baryon mass difference. We include
also our estimate of errors induced from the fit to np data,
similarly to what was done above for the low-energy-threshold
parameters. As a check we reproduce the errors from the fit in
the np case.9 In Fig. 6 we undertake a similar comparison with
Nijmegen results for np and pp(c) [8,9]. Note that our curve
describes properly the average Nijmegen potential results [9]
within the corresponding standard deviations. This complies
with the fact that we use primarily the np channel to deduce
our OBE parameters from a fit but is also an indication of the
correctness of the short-distance connection from which our
pp(c) phase is predicted. On the other hand, the PWA [8],
while compatible with the Nijmegen potentials, is about 2σ

away from zero. Certainly, a more sophisticated analysis would
be required to reach conclusions at this level of accuracy.

In any case, all implicit effects are contained in the
corresponding scattering lengths α0,nn and α0,pp. This is
actually the remarkable feature about our renormalization
construction. In case of having the same potential and kinetic
energies, of course scattering lengths coincide. Again, we
do not discriminate the short-distance origin of CIB or CSB
but rather relate different channels through the kinetic and
potential breaking at long distances. As we can see, the
short-distance connection can be used to predict the 1S0 phase
shifts for the rest of the channels with a high degree of accuracy.

At this point it is worth noting that the ambiguities raised by
Sauer [34] for pp(s) are largely limited by the short-distance
connection, since by construction short distances in pp(s) and
pp(c) are not independent. This is the reason why the short-
distance connection works.

V. CONCLUSIONS

In this paper we have analyzed the charge dependence and
charge symmetry breaking of the NN interaction. We have
used the OBE model with exchange of π , σ , ω, and ρ mesons
and we have implemented CIB and CSB by means of pion mass
splitting in the OPE potential with different nucleon masses. In
particular, and as in previous works [22,23], we have selected
the 1S0 np channel to fit scalar meson parameters, mσ and
gσNN , as well as vector meson couplings, gωNN and fρNN , to
the Nijmegen phase shifts [9]. A fine-tuning problem arises
when we use the customary regular boundary condition at the
origin u(0) = 0. This problem appears in all np, nn, pp, and
pp(c) channels and large (∼40%) violations of SU(3) values
of the gωNN coupling constant are needed. Traditionally, a

9Again, the consideration of statistical gσNN -mσ correlations in the
fit proves crucial; if correlations are ignored the errors become about
five times larger.
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great number of effects such as multimeson exchanges have
been essential for explaining the differences in phase shifts and
threshold parameters for all np, nn, pp, and pp(c) channels
[11–13] or the role played by ρ-ω [38–40] and/or π -η [17]
mixing were invoked. These standard approaches need very
precise information on the interaction at all distances.

However, once we admit incomplete knowledge of the inter-
action at short distances, it is possible to sidestep the problem
of fine tuning by imposing a renormalization condition; at any
stage of the calculation the scattering length is always kept
fixed. This renormalization approach embodies short-distance
insensitivity. As a consequence, in the charge-independent
case, one can comfortably take the experimental and/or SU(3)
values for vector meson couplings. For the same reason we
can only hope to quantitatively describe the relative changes
due to the charge symmetry breaking of the interaction at long
distances. These considerations alone allow us to extract some
universal information on the symmetry breaking pattern where
the np, nn, and pp channels look very much the same at all
energies even though the potentials are different and are indeed
CIB and CSB. We have used a short-distance condition to relate
the renormalized np channel with the others [nn, pp, and
pp(c)]. This short-distance connection is so far an assumption
based on finiteness but we have seen that reasonable results
are obtained for low-energy parameters and phase shifts. Our
predictions for (�αCIB, �rCIB) and (�αCSB, �rCSB) are
compatible with the empirical one within the error estimation.
This is in fact a remarkable result: all channels are generated
with just one scattering length, say np, with the long-distance
components of the potential where the CIB and CSB is, via
physical pion and nucleon masses, explicitly built in. By taking
into account the oversimplified NN OBE force used here, it
would be interesting to analyze how our conclusions change
with a more realistic NN force.
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APPENDIX A: SUPERPOSITION PRINCIPLE AND
UNIVERSALITY FUNCTIONS

For obtaining the Coulomb extension of Eq. (15) we use
the superposition principle to write uC

k in the following way:

C(η) uC
k (r) =

(
k cot δC

0 C2(η) + 2

aB

h(η)

)
uC

k,reg(r)

−uC
k,irr(r), (A1)

where uC
k,reg and uC

k,irr are solutions of Eq. (16), which obey the
asymptotic boundary conditions

uC
k,reg(r) → F0(η, ρ)

kC(η)
, (A2)

uC
k,irr(r) → −C(η) G0(η, ρ) + 2ηh(η)

C(η)
F0(η, ρ), (A3)

for r → ∞. These two solutions have been normalized in
such a way that the they become analytical around the limit
k → 0. With these definitions and using orthogonality to the
zero-energy state we obtain

AC(k) = uC
0,irr(rc)uC

k,irr
′
(rc) − uC

0,irr
′
(rc)uC

k,irr(rc),

BC(k) = uC
0,reg

′
(rc)uC

k,irr(rc) − uC
k,irr

′
(rc)uC

0,reg(rc),
(A4)

CC(k) = uC
0,irr(rc)uC

k,reg
′
(rc) − uC

0,irr
′
(rc)uC

k,reg(rc),

DC(k) = uC
0,reg

′
(rc)uC

k,reg(rc) − uC
0,reg(rc)uC

k,reg
′
(rc),

where the limit rc → 0 is understood. Finally, Eq. (24) can be
obtained from a low-energy limit of Eq. (15) (see also [35]).

APPENDIX B: PROTON-PROTON FUSION

In this Appendix, we analyze further the consequences
of the short-distance connection assumed by Eq. (61). An
interesting process is the proton-proton fusion reaction pp →
d e+νe, which is of central importance to stellar physics and
neutrino astrophysics. The temperature in the Sun core is
around Tc = 15 × 106 K, which means that we have protons
of momentum p ∼ (2mpTc)1/2 ∼ 1.1 MeV. At these low
energies, the reaction is dominated by the 1S0 → d nuclear
transition. The Gamow-Teller (GT) matrix element [without
Meson-Exchange-Currents (MECs)] reads

ASMGT =
∫ ∞

0
dr uγ (r)u0,pp(r), (B1)
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FIG. 7. Dependence of the pp fusion Gamow-Teller matrix
element (in femtometers) depending on the singlet np inverse
scattering length 1/α0 (in fm−1) using the short-distance connection,
Eq. (61).
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where u0,pp is the zero-energy reduced wave function for the
pp(c) system, which can be related to the np problem by
Eq. (61). Then taking α0,np as input and integrating inward
we can calculate u0,pp. For the deuteron we take as a first
approximation the normalized bound state, uγ (r) → ASe

−γd r

with γd = 0.2316 fm−1 and integrate inward the Schrödinger
equation with negative energy E = −γ 2

d /Mnp. We obtain a
value MGT = 5.189 fm to be compared to a more sophisticated

one [37] using Argonne V 18 wave functions, MGT |AV 18 =
4.859 fm.

In Fig. 7 we show the GT matrix element correlation with
the np scattering length compared with the AV18 calculation.
Of course, we have not included the tensor force which mixed
S and D waves in the calculation of the deuteron. However,
we can appreciate that our numbers are not very far from those
obtained from much more elaborate calculations [37].
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