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Total nucleon-nucleon cross sections in large Nc QCD
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We use contracted spin-flavor symmetry which emerges in the large Nc limit of QCD to obtain relations
between proton-proton and proton-neutron total cross sections for both polarized and unpolarized scattering. The
formalism used is valid in the semiclassical regime in which the relative momentum of the incident nucleons
is much larger than the inverse size of the nucleon, provided that certain technical assumptions are met. The
relations should be phenomenologically useful provided that Nc = 3 is sufficiently large so that the large Nc

results have at least semiquantitative predictive power. The relations are model independent in the sense that
they depend on properties of large Nc QCD only and not on any particular model-dependent details of the
nucleon-nucleon interaction. We compare these model-independent results to the experimental data. We find the
relation for spin-unpolarized scattering works well empirically. For the case of polarized scattering, the data are
consistent with the relations, but the cross sections are too small to make sharp predictions.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is the fundamental
theory of the strong interaction. However, since standard
perturbation theory breaks down at low momentum transfers, it
is important to develop nonperturbative techniques to analyze
hadronic and nuclear properties. One such method, proposed
by ’t Hooft, is based on a 1/Nc expansion around the limit
in which the number of colors Nc is taken to infinity and the
ratio gs/

√
Nc is kept constant [1]. The large Nc limit and 1/Nc

expansion has proven to be useful in our understanding of
hadrons.

The description of mesons and baryons in the large-Nc

limit requires different techniques. A key consequence of
large-Nc counting rules in the meson sector is that leading
order contributions to the observables come from planar
Feynman diagrams [1]. This allows one to analyze the Nc

dependence of correlation functions with quark-antiquark
quantum numbers and deduce the Nc scaling of observables.
In particular, large-Nc scaling of meson masses and n-meson
couplings are N0

c and N
1−n/2
c , respectively [1]. The latter

scaling validates the Okubo-Zweig-Iizuka (OZI) rule. The
dominance of planar diagrams is not, however, enough to
describe the baryon sector of the large-Nc QCD. The reason
for this is that unlike mesons which have quantum numbers of
quark-antiquark pairs, baryons in the large-Nc limit contain
Nc quarks. As a result, the baryon observables receive
contributions from Feynman graphs with an ever increasing
number of quark lines. Thus a nucleon is a many-body state and
contributions from n-body quark forces to nucleon observables
are of order Nc. As noted by Witten, these are precisely the
conditions of applicability of mean-field methods [2]. The
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mean-field equations were only explicitly derived in the case
of nonrelativistic heavy quarks in which each quark moves in
an average potential created by Nc − 1 quarks and the Hartree
mean-field framework is valid. The solutions to these equations
were explored only recently [3]. While the explicit equations
are unknown for the case of light quarks, Witten argued that
large Nc scaling of various observables remains the same.
Witten also noted that baryons at large Nc behave analogously
to semiclassical solitons. This solitonic nature of baryons in
the large-Nc limit will play a crucial role in our treatment of
the nucleon-nucleon scattering observables.

A key feature of the baryon sector in the large-Nc limit of
QCD is the emergence of a contracted SU (2NF ) spin-flavor
symmetry of the ground state band of baryons [4]. In this
paper we focus on the implications of this symmetry on
the strong interaction between two nucleons—a subject of
critical importance in nuclear physics. There has been a
certain amount of study of this problem over the years, much
of it focused on the nucleon-nucleon potential [5]. While
these studies are interesting and the patterns predicted from
large Nc can be identified in phenomenological potentials,
there are a few conceptual issues that cloud these predictions.
The first is simply that the nucleon-nucleon potential is not a
true observable, but rather is a theorist construct so the “data”
used in the comparisons are not directly data. Moreover, in the
large Nc limit, the � becomes stable and degenerate with
the nucleon and this means that the potential one uses in
the two-nucleon problem should be the one appropriate for a
coupled channel problem including explicit � baryons, while
the phenomenological potentials to which they are compared
have the � baryons integrated out. A final concern is simply the
scales in the problem. Note that in the analysis it is implicitly
assumed that Nc is large enough to justify the approach for
nuclear obseravbles for Nc = 3. However, it seems likely
that while the expansion may be useful for typical hadronic
observables, the nuclear scales are much smaller for reasons
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unconnected to large Nc and the expansion may not be valid.
To see the possible difficulty with treating the physical world
as being similar to the large Nc world, note that the potential
scales as Nc (as does the baryon mass), which implies that at
large Nc the binding energy of nucleons is also of order Nc. In
practice, however, the deuteron is barely bound with a binding
energy of 2.2 MeV. In contrast, the nucleon-� mass splitting is
neglected in the analysis as a 1/Nc effect but is about 300 MeV.
It seems problematic to neglect the nucleon-� mass splitting
as small while taking seriously a “large” potential yielding a
2 MeV binding.

In any event, it is interesting to consider whether one can
use the contracted SU (2NF ) symmetry implicit at large Nc

to learn anything directly about observables associated with
the nucleon-nucleon interaction. In this article we consider the
implications of large-Nc scaling rules and of contracted SU (4)
symmetry on the nucleon-nucleon scattering observables. At
first sight it may seem that this task is hopeless. As noted by
Witten, the natural large Nc description of baryon-baryon scat-
tering is given in terms of time-dependent mean-field theory
(TDMFT) with the velocity as opposed to the momentum held
fixed as Nc is taken to be large. Note that this implies that the
scattering is essentially semiclassical in nature at large Nc—the
relative momenta are much larger than the inverse size of
the interaction region. As we will discuss below, the restriction
to the semiclassical scattering regime will ultimately compli-
cate the quest for testable predictions. However, TDMFT de-
scribes averages over processes and thus there is apparently no
way to compute S-matrix elements directly in the mean-field
framework [6]. The contracted SU (2NF ) symmetry relates
observables for baryons with different spins and isospins.
Since in TDMFT one has no access to the S-matrix elements
any mean-field treatment will have no sensitivity to the spin
and isospin of the final baryons after the scattering, and hence
no way to impose the symmetry properties on the final state
baryons.

However, despite the above limitations, it is possible to use
the emergent symmetry to make testable predictions associated
with nucleon-nucleon scattering [7,8]. These predictions be-
come exact as Nc → ∞ with the relative velocity of the initial
baryons held fixed. There are certain inclusive observables
that are in principle calculable from TDMFT and which
correspond to weighted averages over the sum of the square of
certain S-matrix elements. The most basic observable we can
compute in TDMFT is the net collective flow of a conserved
quantity such as energy density or baryon density [7]. These
observables sum over many physical final states. While one
cannot exploit the contracted SU (2NF ) symmetry on the final
state, one can for the initial state. As a result, one can relate the
flow observables for different spin and isospin configurations
for the initial state in a model-independent way [7].

It would be of interest to directly test these predictions.
Data exist for the various initial spin and isospin channels.
However, the data are not conventionally presented in the
form of flow observables making it cumbersome to do such
a test. An alternative approach would be to use kinematics
to simplify the analysis [8]. One could ask what happens for
small velocities. At sufficiently small velocities, there is not
enough kinetic energy for any inelastic processes to occur.

The inelastic threshold at large Nc given in terms of relative
velocity is

vt =
√

4mπ

MN

∼
√

1

Nc

. (1)

For v < vt the only allowed processes are elastic and plenty of
elastic scattering data are available that in principle can be used
to test the predictions. Of course, there is a restriction as to how
small one could go while remaining in the regime of validity
of TDMFT. Witten noted long ago that a smooth large Nc limit
holds for v held fixed as Nc → ∞ and it has been conventional
to regard such scaling as necessary [2]. With such a scaling rule
one finds that as Nc → ∞, vt < v for any nonzero velocity
and thus it looks as though the elastic region is excluded at
large Nc. However, this is not really the case. One can ask
what happens if the velocity at large Nc approaches zero, but
does so in a way that keeps the system in the regime of validity
of TDMFT, which is ultimately the semiclassical regime. The
condition for being in this regime is that the momentum is
much larger than the range of the interaction. In terms of the
velocity this amounts to the condition that relative velocity is
parametrically larger than a quantity of order 1/Nc. Thus at
large Nc there exists a regime where v is large enough to be in
the regime of validity of TDMFT while still being below the
elastic threshold.

Thus to the extent that Nc = 3 is large enough, one can test
the model-independent relations by using elastic scattering
data just below the threshold for pion production. At a
phenomenological level these relations fail badly indicating
that Nc = 3 is not large enough [8]. This is not surprising for
two reasons. The first is that in this regime it is not N−1

c that
acts as the expansion parameter but N

−1/2
c ; for Nc as small

as 3 this is a rather dubious expansion even for the purpose
of qualitative studies. The problem is compounded by the fact
that the pion is a pseudo-Goldstone boson and thus has a mass
that is anomalously light on the scale of QCD. This means
that the elastic threshold is anomalously light for reasons that
have nothing to do with large Nc which restricts the domain
of validity. Given these two facts it is understandable why
the prediction for a truly large Nc for these elastic scattering
observables is not relevant at Nc = 3.

This paper seeks a method to test model-independent results
in a regime in which the natural expansion parameter is 1/Nc,
which has no unnaturally light scales and for which there
exists a set of analyzed data. Total nucleon-nucleon scattering
cross sections would seem ideal for this purpose except for
an apparently fatal flaw: the semiclassical approach on which
the analysis is based is known to fail for scattering at nearly
forward angles [9]. Since the total cross section includes
these forward angles, it would seem that it is unsuitable for
a mean-field treatment. Indeed, the classical cross sections
diverge due to the contributions of nearly forward scattering
and thus one cannot compare the classically computed infinite
total cross sections with the finite cross sections obtained from
an experiment. The reason the classical total cross section
is divergent is quite simple and can be easily illustrated for
nonrelativistic point-particle scattering. In classical dynamics
there is a contribution to the scattering from any impact
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parameter since, no matter how large it is, it will lead to some
(albeit very small) deflection of the particle and hence will
contribute to nearly forward scattering.

The purpose of this paper is to show that despite the
fact that the semiclassical approach implicit in the large Nc

analysis cannot be used to directly compute the total cross
section—even in principle—that it is nevertheless entirely
suitable for deducing the spin and isospin dependence of the
total cross section, provided that certain technical assumptions
hold. In addition, we will analyze the total cross-section data
to test the large Nc predictions arising from the spin-flavor
symmetry. The critical observation underlying this analysis
is that the inclusive differential cross section at large Nc is

computable in TDMFT except for very forward scattering.
Now the total cross section is obtained by integrating the
inclusive differential cross section over all angles. Suppose that
the integral for the exact quantum mechanical theory at large
but finite Nc is dominated by a region that excludes the very
forward angles where the semiclassical analysis breaks down.
This is very plausible since, at large Nc, the angular region
where the semiclassical region breaks down becomes very
small. If this is true, then the spin-flavor relations controlling
the inclusive differential cross section go over to the total cross
section up to small corrections that vanish at large Nc.

With this insight we obtain predictions relating proton-
proton with proton-neutron scattering for the unpolarized,
longitudinally, and transversely polarized total cross section,
which should be valid at large Nc at sufficiently high
momentum so that the semiclassical analysis holds. The
prediction works quite well for the unpolarized cross section
where the data show that the proton-proton and proton-neutron
cross sections are very similar. For the longitudinally and
transversely polarized cases, the proton-proton cross sections
are quite small on the natural scale of the problem (the
unpolarized cross section). This means that the coefficient of
the leading-order term in the 1/Nc expansion is unnaturally
small and we can make no sharp predictions. However, we
can make a qualitative prediction. Since the same leading
order term controls proton-neutron scattering, a small proton-
proton polarized total cross section implies a small proton-
neutron polarized total cross section—a fact borne out by the
experiment.

This paper is organized as follows. In the next section we
briefly review the application of TDMFT, which is used to
deduce spin-flavor relations for the inclusive differential cross
section. In Sec. III we present a detailed argument for why the
semiclassical treatment and the spin-flavor symmetry applies
to the total cross section. Finally, in Sec. IV, we discuss the
large-Nc predictions in light of the experimental data.

II. TIME-DEPENDENT MEAN-FIELD FRAMEWORK

In this section we review the analysis of the authors of
Ref. [7] on the TDMFT framework for the description of
the spin-flavor dependence of the inclusive differential cross
section. As is the case of a single baryon in the large-Nc limit,
the dynamics underlying the baryon-baryon interaction is that
of many quarks and gluons interacting among themselves.

An appropriate description in this case is the time-dependent
mean-field theory at a fixed baryon velocity [2]. In this
framework each quark and gluon moves in an average time-
dependent field created by all other particles. This mean-field
treatment is essentially classical in nature.

One important fact is that there are classically flat directions
in the dynamics [10,11]. These are associated with collective
degrees of freedom. The dynamics of these are slow compared
to the typical degrees of freedom in the problem (typically
down by 1/Nc and this scale separation allows one to isolate
the dynamics of the collective degrees of freedom from the
full problem). This allows one to treat the intrinsic degrees of
freedom classically while requantizing the collective degrees
of freedom. This is critical since the mean-field treatment
always breaks symmetries and these breakings always lead
to collective degrees of freedom. The requantization of these
restores the symmetries and allows one to compute observables
associated with states with good quantum numbers.

The Skyrme model [12,13], while unrealistic in detail,
is a good paradigm for how this works. It has long been
known [14] that there are relations between observables in the
Skyrme model that follow entirely from the collective degrees
of freedom and are independent of all details of the model
[15]. It was subsequently shown that these model-independent
relations follow from a contracted SU (2Nf ) symmetry, which
emerges for baryons in the large Nc limit of QCD [4].

At present, the large-Nc TDMFT equations for baryon-
baryon scattering in QCD are unknown. However, as was dis-
cussed in Ref. [7], one can exploit the spin-flavor structure of
the collective degrees of freedom to obtain model-independent
relations between some observables. Again, a simple way to
illustrate this is through the Skyrme model. While there have
been numerical simulations of skyrmion-skyrmion scattering
in TDMFT [16], these are not of direct interest here as they
depend on the model details. The focus here is on those features
that are independent of the model details and that are a direct
consequence of the large Nc structure built into the model.

To obtain the model-independent relations between rele-
vant nucleon-nucleon scattering observables these observables
should be, at least in principle, calculable in TDMFT. Thus an
important question is what class of observables can be defined
in TDMFT and what do they correspond to in the full quantum
theory? To apply TDMFT for skyrmion-skyrmion scattering
one needs to start with initial conditions corresponding to two
skyrmions moving with a velocity v/2 toward each other
separated by an impact parameter b. Skyrmions, however,
are not nucleons—they are hedgehogs corresponding to
classical field configurations which, up to collective space
and isospace rotations given by an SU (2) matrix-valued
field, describe pion degrees of freedom Uh(�r) = exp(i �τ n̂F (r)).
These configurations correspond to superpositions of nucleon
and � states (as well as other baryons from a ground state
band with spin-isospin I = J = 5/2, . . . , Nc/2 in the large
Nc limit). Since these states become degenerate at large Nc,
the space and isospace rotation of the hedgehog is slow.
One can therefore associate an adiabatic collective degree of
freedom A(t) ∈ SU (2) describing slowly rotating hedgehog
configurations U (r, t) → A†(t)Uh(r)A(t). The key to the rest
of this analysis is that the two initial hedgehogs can have
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different values of the collective degrees (i.e., have a different
orientation in space and isospace). Thus in a fully quantal
setting the initial conditions correspond to spatial wave packets
of hedgehog superpositions with some initial orientation in
space moving toward each with an impact parameter b. An
ability to construct appropriate initial states is not enough,
however, to extract meaningful quantal information from
TDMFT calculations. Since at large-Nc the nucleon-nucleon
scattering at fixed velocity is in a semiclassical regime,
the mean-field framework corresponds to the semiclassical
treatment. Moreover the nature of TDMFT is such that one
can only obtain information associated with average flows of
quantities such as energy or baryon number, but not particular
s-matrix elements.

To determine the spin-flavor structure of various total
cross sections in TDMFT one needs to construct operators
that depend on collective degrees of freedom and which
after quantization will correspond to appropriate inclusive
observables. Using semiclassical quantization techniques one
can extract information about nucleons with particular spin
orientations from calculations based on rotated hedgehogs. For
a generic scattering observable this was done by the authors
of Ref. [7] where a corresponding operator was obtained
from a conserved current. In the Skyrme model the conserved
current is topological in nature and is associated with a baryon
number. In addition to collective coordinates the conserved
current is a function of other (intrinsic) degrees of freedom
which determine its time evolution. The value of the current
depends on the initial conditions, which as discussed above
correspond to two well-separated hedgehogs moving toward
each other. In addition to two matrices A1,2 determining the
orientation of hedgehogs, the separation between them, their
impact parameter, and their relative velocity serve to specify
the collective degrees of freedom. As a result, at the classical
level we have a function Bμ(�r, t ; �b, n̂, v, A1, A2) where the
initial separation between hedgehogs is suppressed since it is
irrelevant in the following analysis.

Since scattering describes the long time behavior of the
system an appropriate observable at long times corresponds to
the outward flow of the baryon number. This outward net flow
of a baryon number at a fixed solid angle � is given by

dNB(v, b,A1, A2; θ, φ)

d�

= lim
R→∞

R2
∫ ∞

0
dt r̂(θ, φ) · �B(t, Rr̂(�); �b, n̂, v, A1, A2) ,

(2)

where polar angles θ and φ specify the direction of the outgoing
current and by construction the time t = 0 corresponds to
the time at which the total baryon density has the smallest
RMS radius (i.e., when the two baryons are the closest). The
restriction to positive times enforces the condition that we are
tracking the outgoing motion of the baryons. The observable
defined in Eq. (2) is designed to track the outgoing direction of
the baryons and it gives the net baryon number flow outward
through a given differential element of a solid angle d�. It is
normalized so that

∫
d�(dNB/d�) = 2 since the net number

of outgoing baryons is 2.

However, dNB/d� is not a cross section. It depends on
the impact parameter b as well as on the collective spin-flavor
variables A1 and A2. Nevertheless, it is trivial to convert it
into a certain type of inclusive differential cross section by
integrating over impact parameter space

dσinc(v,A1, A2; θ, φ)

d�

=
∫ ∞

0
db (2πb)

dNB(v, b,A1, A2; θ, φ)

d�
. (3)

Physically, dσinc/d� corresponds to the cross section for one
baryon to emerge in a cone of angular size d� about a specific
direction integrating over all other variables—the energy of
the baryon, the number, and kinematics of outgoing mesons,
the energy of and direction of the other baryon, as well as the
isospin and other baryon quantum numbers.

It is important to stress that the inclusive differential cross
section defined in Eq. (3) describes not the nucleon-nucleon
but rather a hedgehog-hedgehog scattering since it depends on
the collective variables A1 and A2. The hedgehog-hedgehog
scattering is a well posed problem in the large Nc limit
where the various baryons composing the two hedgehogs
become degenerate and two hedgehogs are sensible as an
asymptotic state. To turn this cross section into a corresponding
nucleon-nucleon one, all that needs to be done is to evaluate
A1 and A2 from parameters specifying the quantum collective
variables and then calculate the expectation value of the
cross section in Eq. (3) in the quantum state appropriate for
particular nucleon spin-isospin quantum numbers. Since in
the initial state the hedgehogs are well separated they can be
quantized independently. To evaluate the above expectation
value one needs a nucleon wave function in the space of
collective rotations parameterized by the parameters of A

matrices. As is well known [14], these wave functions are
given in terms of Wigner D matrices, namely D

1/2
m,mI (A).

Accordingly, the inelastic differential cross section for the
two-baryon initial states with spin and isospin projections
Jz1 = m1, Iz1 = mI

1, Jz2 = m2, Iz2 = mI
2 can now be found by

integrating over the SU (2) measure

dσ (m1,m
I
1,m2,m

I
2)(v, θ, φ)

d�

=
∫

dA1dA2

∣∣D1/2
m1,m

I
1
(A1)

∣∣2∣∣D1/2
m2,m

I
2
(A2)

∣∣2

× dσinc(v,A1, A2; θ, φ)

d�
. (4)

Integration over the impact parameter space in Eq. (3)
and over the SU (2) measure in Eq. (4) can be done using
time reversal and parity invariance and exploiting the fact
that (DJ

m,n)∗ = (−1)m−nDJ
−m,−n. This yields the following

structure:

dσ (m1,m
I
1,m2,m

I
2)(v, θ, φ)

d�

= 〈
m1,m

I
1,m2m

I
2

∣∣a0(v, θ, φ) + bI (v, θ, φ) (�σ1 · �σ2) (�τ1 · �τ2)

+ cI (v, θ, φ) (�σ1 · �n)(�σ2 · �n) (�τ1 · �τ2)
∣∣m1,m

I
1,m2m

I
2

〉
, (5)
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where the σ and τ matrices are the standard Pauli matrices that
act on two-baryon states of the form |m1,m

I
1,m2m

I
2〉, and the

functions a0, bI , and cI encode the leading order behavior at
large Nc.

Note that the form of Eq. (5) is completely determined by
large-Nc consideration and the spin-flavor symmetry implicit
therein. It is independent of the details of the Skyrme model
and thus one expects that it is a consequence of large-Nc

QCD itself. The detailed form of the functions a0, bI , and
cI are, of course, model dependent and one cannot deduce
them from general considerations alone. However, the form
of Eq. (5) contains important information. It is not the most
general form one can write consistently with parity and time
reversal. For example, there is no term of the form aI (�τ1 · �τ2).
This means that one can make concrete predictions based on
the form. Of course, in doing so one needs to remember two
key things. First, that this is only the leading term in the 1/Nc

expansion and thus predictions based on the form are not exact
due to 1/Nc corrections. Second, the result only applies in the
semiclassical regime.

III. APPLICABILITY TO TOTAL CROSS SECTIONS

In the previous section we derived an expression for the
inclusive differential cross section Eq. (5), which is valid in the
semiclassical regime at large Nc. The purpose of this section is
to argue that an analogous result holds for total cross sections,
namely

σ (m1,m
I
1,m2,m

I
2)(v)

= 〈
m1,m

I
1,m2,m

I
2

∣∣A0(v) + BI (v) (�σ1 · �σ2) (�τ1 · �τ2)

+CI (v) (�σ1 · �n)(�σ2 · �n) (�τ1 · �τ2)
∣∣m1,m

I
1,m2,m

I
2

〉
. (6)

Note that the total cross section is related to the inclusive
differential cross section through

σ (m1,m
I
1,m2,m

I
2)(v) = 1

2

∫
d�

dσ (m1,m
I
1,m2,m

I
2)(v, θ, φ)

d�
, (7)

where the angular integral is over 4π and factor of 1/2 comes
from the normalization of dNB/d� in Eq. (2) and accounts for
the fact the baryon number of the system is 2. Integrating both
sides of Eq. (5) over angles and exploiting Eq. (7) immediately
yields Eq. (6) with

A0(v) =
∫

d�a0(v; θ, φ),

BI (v) =
∫

d�bI (v; θ, φ), (8)

CI (v) =
∫

d� cI (v; θ ) .

Unfortunately, there is a problem with this. Equation (5) only
holds in the semiclassical limit and that excludes very forward
angles while the integration in Eq. (7) is over all angles
including forward and backward ones. Note forward scatter-
ing contributes at both forward and backward angles since
dσ (m1,m

I
1,m2,m

I
2)/d� includes both of the outgoing baryons.

The problem of forward scattering, however, need not
invalidate Eq. (6) (as a result valid at leading order in 1/Nc).

Suppose that for the full quantum problem at large but finite
Nc, the angular integral in Eq. (7) is dominated by angles that
are valid in the semiclassical regime. If this were to happen
then one would expect that Eq. (6) would hold up to small
corrections. It is important to make this statement somewhat
more precise. To to do so we introduce the following quantity:

σ θ0 = π

∫ π−θ0

θ0

dσ (θ, φ)

d�
sin(θ )dθ, (9)

which corresponds to the total cross section excluding scat-
tering where an outgoing nucleon passes through a cone of
angular width θ0 about the scattering axis. It is easy to see that
Eq. (6) holds at large Nc and some fixed v, provided that there
exists some function θ0(Nc, v) that satisfies two conditions.

(i) Scattering with nucleons emerging with θ0(Nc, v) <

θ < π − θ0(Nc, v) is sufficiently semiclassical that
Eq. (5) is accurate [in the sense that corrections to
Eq. (5) go to zero as Nc → ∞ at fixed v for all angles
in this window].

(ii) The full quantum cross sections satisfy

lim
Nc→∞

σ θ0(Nc,v)

σ
→ 1 . (10)

The issue is whether a function θ0(Nc, v) satisfying these
two conditions exists. The following argument suggests that
it is highly plausible that it does. To begin, note that in
the semiclassical regime the outgoing angle at which the
baryon emerges is determined by the impact parameter with
forward angles associated with large impact parameters. Thus
condition (i) translates into a question of how large can the
impact parameter be at given v and Nc while still being in
the semiclassical limit. Now for any fixed value of v and any
fixed b, Witten’s [2] reasoning implies there must be some
value of Nc for which the scattering is semiclassical. Because
the interaction strength falls off like a Yukawa potential at large
distances, as b increases beyond the characteristic range of the
interaction, the value of Nc needed to be in the semiclassical
regime will grow very rapidly with b. Nevertheless, one
can always go to sufficiently large Nc so that any given b

(and hence any fixed scattering angle) is accurately described
semiclassically. This in turn implies that there must exist a
function θ0(Nc, v) that satisfies condition (i) and also has the
property that limNc→∞ θ0(Nc, v) → 0. That is, as Nc goes to
infinity, the angular region of validity of the semiclassical
region approaches 4π . This in turn implies that condition (ii)
is met unless the scattering becomes so forward peaked at large
Nc that the dominant scattering occurs in the infinitesimally
small region of angles less than θ0(Nc, v). This would require
an exceptionally forward peaked cross section dominated by
elastic scattering. In this paper, we will assume that such
extreme forward peaking does not occur at large Nc. We base
this conclusion on phenomenology since in the regime we
study elastic scattering as a small fraction of the total. The
theoretical question of whether this assumption is correct in
the formal large Nc limit is interesting and will be pursued in
future work. We note here, however, that for the assumption to
be wrong the cross section would have to be extremely forward
peaked to a degree that seems a priori implausible.
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IV. COMPARISON WITH EXPERIMENTAL DATA

In this section we compare the leading order form of
the total nucleon-nucleon cross section at large Nc, Eq. (6),
with data from nucleon-nucleon scattering for center-of-mass
momenta of a few GeV. This is the energy scale for which
the system is in the semiclassical regime for all but the most
forward angles.

The data for the total cross sections are usually quoted for
particular isospin channels. Using isospin projection operators
(1 − �τ1 · �τ2)/4 and (3 − �τ1 · �τ2)/4 one can extract from Eq. (6)
the cross sections for isosinglet and isotriplet channels

σ (I=0) = (A0 − 3BI (�σ1 · �σ2) − 3CI (�σ1 · �n)(�σ2 · �n)),
(11)

σ (I=1) = (A0 + BI (�σ1 · �σ2) + CI (�σ1 · �n)(�σ2 · �n)) .

Since reactions p p → X, n n → X receive a contribution
only from the isotriplet channel σpp = σnn = σ I=1, while
the reaction np → X receives equal contributions from both
channels σnp = 1

2 (σ I=1 + σ I=0), it follows from Eq. (11) that
at leading order in 1/Nc expansion

σ (pp) = σ (nn) = A0 + BI (�σ1 · �σ2) + CI (�σ1 · �n)(�σ2 · �n),
(12)

σ (np) = A0 − BI (�σ1 · �σ2) − CI (�σ1 · �n)(�σ2 · �n) .

Data exist for both spin-averaged and polarized nucleon-
nucleon scattering cross sections [17]. A general form of a
total cross section for two spin-1/2 particles as a function of
the initial particle polarizations is

σ = σ0 + σ1( �PB · �PT ) + σ2( �PB · n̂)( �PT · n̂) , (13)

where �PB and �PT are polarizations of a beam and target
particles, respectively, n̂; �PB · �PT = 〈�σ1 · �σ2〉 and ( �PB · �n)( �PT ·
�n) = 〈(�σ1 · �n)(�σ2 · �n)〉. In Eq. (13), σ0 is the spin-averaged total
cross section.

It follows from Eqs. (12) and (13) that the spin-averaged
total cross section at leading order in 1/Nc for all three
reactions is the same

σ
(pp)
0 = σ

(nn)
0 = σ

(np)
0 (1 + O(1/Nc)) . (14)

Note that while the first equality is due to isospin invariance,
the second equality is a prediction of large-Nc QCD.

The above large-Nc result is well satisfied by the data as
shown in Fig. 1.

One can also obtain large-Nc predictions for polarized
cross sections. In polarized scattering experiments the beam
and target nucleons can have either transverse or longitudinal
polarization relative to the the incident beam direction n̂. In
addition, the nucleons can be polarized in the same or opposite
relative direction.

It is customary to combine two cross sections for trans-
versely polarized nucleons, σ (↑↑) and σ (↑↓), into an observ-
able referred to as delta sigma transverse defined as

�σT = −(σ (↑↑) − σ (↑↓)) = −2σ1 , (15)

where the last equality follows from Eq. (13). Using Eq. (12)
we obtain at leading order in 1/Nc, �σ

(pp)
T = �σ

(nn)
T = −2BI ,

and �σ
(np)
T = 2BI . Thus, up to 1/Nc corrections we have the
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FIG. 1. (Color online) Spin-averaged proton-proton and neutron-
proton total cross section as a function of beam momentum (Bugg
et al., 1996).

following prediction

�σ
(pp)
T = �σ

(nn)
T = −�σ

(np)
T (1 + O(1/Nc)) . (16)

Data for this observable are shown in Fig. 2.
At first sight the data appear to violate the relation in

Eq. (16) badly. However, this is misleading. Recall that this
prediction is only valid to leading order at large Nc. If it
happens that the leading order coefficients are anomalously
small for reasons not associated with Nc, then one does not
expect the leading terms to dominate at Nc = 3. In the present
case, the leading order coefficients are small. Note that the the
characteristic size of cross sections in the problem are those
of the total cross section, Fig. 1, and one sees that �σ

(pp)
T is

smaller than σ (pp) by a large factor. This means that the system
is likely to be outside of the range of validity of the 1/Nc

expansion for this observable, and one does not expect the
relation to hold quantitatively. As a result, it does not provide a
sharp quantitative test of the 1/Nc expansion. However, there
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FIG. 2. (Color online) Spin-dependent neutron-proton (Fonteine
et al., 1991) and proton-proton (Ditzler et al., 1983; Lesikar, J. D.
1981) total cross section differences as a function of beam momentum.
�σT is defined in Eq. (15).
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FIG. 3. (Color online) Spin-dependent proton-proton (Auer et al.,
1978), and neutron-proton (Sharov et al., 2008) total cross section
differences as a function of beam momentum. �σL is defined in
Eq. (17).

is a qualitative prediction that we can test. In particular, if
�σ

(pp)
T is much less than the unpolarized cross section then

so is �σ
(pn)
T since both follow from the leading order term in

the 1/Nc expansion for BI , which is small. This qualitative
prediction does indeed hold as seen in Fig. 2.

For longitudinal polarization two cross sections σ (
→→) and

σ (
→←) are combined to give

�σL = −(σ (
→→) − σ (

→←)) = −2(σ1 + σ2) , (17)

which is referred to as delta sigma longitudinal. Using Eq. (12)
we obtain at leading order in 1/Nc, �σ

(pp)
L = �σ

(nn)
L =

−2(BI + CI ), and �σ
(np)
L = 2(BI + CI ). Thus at leading

order in the 1/Nc expansion

�σ
(pp)
L = �σ

(nn)
L = −�σ

(np)
L (1 + O(1/Nc)) . (18)

Data for the above observable are shown in Fig. 3. Again, in
the region where data exist the cross sections are too small
for the relations to be expected to hold for Nc = 3. However,
there is a qualitative prediction that if �σ

(pp)
L is small then

so is �σ
(pn)
L . This qualitative prediction holds, as is shown in

Fig. 3.
In summary, we argue that the spin-flavor symmetry that

emerges in the large Nc limit of QCD allows for predictions
for total cross sections at sufficiently large initial momenta.
The prediction for the spin-averaged cross section works
well. The polarized cross sections appear to be too small to be
in the regime of validity of the 1/Nc expansion with Nc = 3.
However, this fact itself allows for a qualitative prediction that
does hold.
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