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Lattice QCD calculation of nuclear parity violation
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We present a lattice QCD calculation of the leading-order momentum-independent parity-violating coupling
between pions and nucleons, h1

πNN . The calculation performs measurements on dynamical anisotropic clover
gauge configurations, with a spatial extent of L ∼ 2.5 fm, a spatial lattice spacing of as ∼ 0.123 fm, and a pion
mass of mπ ∼ 389 MeV. While this calculation does not include nonperturbative renormalization of the bare
parity-violating operators, a chiral extrapolation to the physical pion mass, or contributions from disconnected
(quark-loop) diagrams, these are expected to result in systematic errors within the quoted statistical error. We find
a contribution from the “connected” diagrams of h

1,con
πNN = (1.099 ± 0.505+0.058

−0.064) × 10−7, consistent with current
experimental bounds and previous model-dependent theoretical predictions.
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Quantum chromodynamics (QCD) is the fundamental field
theory that describes the dynamics and interactions of quarks
and gluons, and the combination of QCD and electroweak
interactions underlies all of nuclear physics. However, a
quantitative understanding of nuclear observables directly
from QCD has proved elusive due to the nonperturbative
nature of the theory at low energies. Lattice QCD remains
the sole avenue for theoretical explorations of observables
in the nonperturbative regime with quantifiable errors. This
is particularly meaningful for processes which are poorly
understood experimentally, such as the neutral current parity-
violating (PV) weak interaction between quarks, which is the
least understood portion of the standard model. In this work we
report on a calculation directly from QCD of the leading-order
momentum-independent parity-violating coupling between
pions and nucleons, h1

πNN , using nf = 2 + 1 lattice QCD
calculations on configurations with a pion mass of mπ ∼
389 MeV.

Parity-violating interactions have been known since the late
1950s, [1–3] and their discovery radically changed perceptions
of the role of fundamental symmetries in particle physics.
While these interactions can be studied in flavor-changing
decays, the effects of the PV neutral current in such decays
are tiny, because the tree-level coupling between quarks and
the Z boson are flavor diagonal and radiative corrections
are suppressed by the Glashow-Iliopoulos-Maiani mechanism.
[4,5] This leaves PV flavor conserving interactions as the only
laboratories for studying the weak neutral current, with the
nucleon-nucleon (NN) PV interaction as the only accessible
case. Isolation of the hadronic weak neutral current occurs in
the �I = 1 NN channel, and this component is thought to be
dominated by long-range pion exchange. [4,6]

At hadronic scales the weak interaction can be considered
as a pointlike four-quark interaction which gives rise to a pion
that mediates long-range interactions. Experiments to uncover
this effect are technically demanding, however, because the
ratio of the weak to strong contributions to the NN interaction
is approximately 10−7. In the decades since the discovery
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of parity violation, a heroic series of experiments (see
Refs. [4,15,16] and references therein) have sought to uncover
the value of h1

πNN , defined in modern effective field theory
language by [6]

LπNN
PV = h1

πNN (p̄π+n − n̄π−p), (1)

with a proton field p, neutron field n, and pion fields π+/π−.
The most precise of these experiments are plotted with dashed
lines in Fig. 1, with the combined 1σ error ellipse shown
in grey. The coupling h1

πNN dominates the long-range parity-
violating NN potential as it is not suppressed by powers of mo-
mentum. Although lacking precision, experimental results thus
far suggest that while the isoscalar PV interaction is of natural
size, the isovector interaction h1

πNN is suppressed. Early results
from the most recent experimental collaboration to examine
nuclear parity violation, the NPDGamma Collaboration, [17]
have thus far not provided any significant constraint on h1

πNN .
However, the experiment is currently being reinstalled at the
Spallation Neutron Source at Oak Ridge National Laboratory
and should soon be able to reach its design precision.

Because QCD is nonperturbative, how the PV four-quark
interactions build up into the composite interactions of the
hadrons is not analytically known. Several model-dependent
attempts have been made to calculate h1

πNN in such a way that
the nonperturbative effects are included. The earliest of these
used the quark model and symmetry considerations to make
the first theoretical predictions of h1

πNN [14] (the DDH result).
Despite tremendous effort, the remaining systematic uncer-
tainties from the nonperturbative sector of QCD prevented the
authors [14] from specifying a result, and instead the outcome
of the calculation was presented as a “best guess” with an
accompanying range of values. Subsequent calculations using
the quark model, [9,10] chiral solitons, [7,8] and QCD sum
rules [11–13] have obtained greatly varying values of h1

πNN ,
but all have remained within the original DDH range. The DDH
range and the results of each model calculation are shown at
the top of Fig. 1.

The lattice QCD calculation presented here uses anisotropic
clover gauge configurations with two light quark flavors (the
u and d quarks in the isospin limit, mu = md ) and one heavier
quark flavor (the s quark), at a pion mass of 389 MeV, spatial
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FIG. 1. (Color online) Model estimates [7–14] (solid line and
triangles at top) and experimental results [dashed lines with labels and
1σ error ellipse in grey from Refs. [4,15,16] and references therein]
for h1

πNN vs the dominant isoscalar PV coupling combination, along
with the results of this work (solid vertical line and error band).

lattice spacing of 0.123 fm, and a temporal lattice spacing
of 0.035 fm. [18,19] The lattices have total dimensions of
(2.5 fm)3 × 9 fm. Three-point correlation functions of the form

C
ij

A→B(t, t ′) = 〈0|OB,j (t)O�I=1
PV (t ′)O†

A,i(0)|0〉 (2)

are constructed, with t the sink time slice and t ′ the operator
insertion time slice. In Eq. (2), the interpolating operator O†

A,i

(OB,j ) is used to create the initial state A (destroy final state
B) with the quantum numbers of either the proton or the
neutron-pion. The proton operator is εabcua(dT

b Cγ5uc), with
color indices a, b, c. Similarly the operator εabcγ5ua(dT

b Cγ5uc)
creates a neutron-pion state (nπ ) in an S wave. [20–23]

Using a three-quark interpolating operator to create the nπ

state greatly simplifies the contractions and removes the need
to calculate expensive quark-loop contributions at the sink
which would arise from separate n and π operators. For
large Euclidean times t ′ and t − t ′ the higher energy states
induced by these interpolating operators will decay away
[as determined from analysis of the two point functions of
the form CA,B(t) = 〈0|OA,B(t)O†

A,B(0)|0〉], leaving only the
proton or nπ S-wave state desired. Sandwiched between
these operators in Eq. (2) is the four-quark operator for the
�I = 1 PV interaction. A ratio of the three-point functions to
a combination of the two-point functions will plateau to the
constant value of the desired parity-violating matrix element.

The four-quark �I = 1 PV operator can be constructed
directly from the standard electroweak interaction Lagrangian
[5] at the scale of the weak gauge bosons by integrating
out the Z boson [the contributions from the exchange of
the W± bosons are neglected, since they are suppressed by
sin2(θC) ≈ 0.05, where θC is the Cabibbo angle]. One can
then use continuum one-loop QCD perturbation theory to
run the operator coefficients to the scale of the hadronic
interactions (�χ = 1 GeV) integrating out the heavier b and
c quarks along the way. [6,24] During the course of this

(a) (b)

FIG. 2. The (a) connected and (b) quark-loop diagrams that
contract the parity-violating operator with the interpolating operators
for the source and sink. The filled circle and square represent the
three-quark interpolating operators used at the source and the sink,
respectively, with one positive party and the other negative parity.

running, mixing between operators with the same quantum
numbers will occur, leaving a total of eight operators at the
hadronic scale. There is no mixing with lower-dimension
operators, because the �I = 1 PV operator also conserves the
combined charge-parity symmetry, precluding quark bilinear
operators from contributing with divergent inverse powers of
the lattice spacing. The full four-quark �I = 1 PV operator at
the hadronic scale can then be expressed as

O�I=1
PV = −GF sin2(θW )

3
√

2

4∑
i=1

∫
d3x

(
Ciθ

q

i + Siθ
s
i

)
, (3)

where GF = 1.16637 × 10−5 GeV−2 is the Fermi coupling
and sin2(θW ) = 0.231 is the weak mixing angle. [25] The
four-quark operators that contain only light (u and d) quarks
are θ

q

i , while the θs
i contain s quarks along with light quarks.

The coefficients Ci and Si of these operators and the specific
operator forms used for θi in this work can be found in
Ref. [26].

Performing the quark contractions in the three-point cor-
relation function of Eq. (2) using the above operators, one
arrives at three possible diagrams for the quark propagators.
The first type connects two of the quarks from both the
source and sink operators to the weak operator, with the
third quark going directly between the source and sink. This
type is drawn in Fig. 2(a) and is called the “connected”
case. The second, “quark-loop” type of Fig. 2(b) contains a
quark loop at the weak operator insertion while connecting
only one quark each from the source and sink to the weak
operator. The final type contains a weak operator where all
four quarks are contracted with each other, leading to an
entirely “disconnected” contribution. However, in the isospin
limit the contributions from this type of diagram will sum
to zero, saving considerable computational expense. Because
the interpolating operators consist entirely of light quarks, the
operators θ

q

i will have contributions to both the connected and
quark-loop diagrams, while the operators θs

i will contribute
only to the quark-loop diagrams, since the s quarks will be
required to be contained in the quark loop itself.

Typically three-point correlation functions are computed
on the lattice using an efficient technique known as sequential
inversion, whereby the quark propagators calculated from the
source to the sink are contracted into a new “source” which
is inverted to obtain the propagator backward to the operator
insertion. However, this technique fails for this calculation
both in the case of the connected diagrams (due to the need
for two propagators between the operator and the sink) and in
the case of the quark-loop diagrams (as the quark-loop would
remain to be calculated). Instead, this calculation performs two
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separate quark propagator inversions, one at the source and
one at the weak operator insertion. This method unfortunately
restricts the measurements to a single spatial site on the
operator time slice (all spatial sites are sampled over the course
of the calculation), but allows for maximum flexibility and
computational efficiency (as the propagators may be used for
both the connected and the quark-loop diagrams, and for any
of the weak operators). With this method, the time slice on
which the weak operator is placed (t ′) must be large enough
that the excited states of the source operator are exponentially
small, and for this calculation t ′ = 24.

As previously mentioned, to extract the desired matrix
element a ratio of three-point and two-point functions must be
formed such that in the limit of large t ′ and t − t ′ contamination
from excited states dies off and the ground-state overlap factors
are canceled, allowing the ratio to plateau to the value of the
matrix element. This ratio is given by

R
ij

A→B = C
ij

A→B(t, t ′)

C
jj

B (t)

(
Cii

A (t − t ′)Cjj

B (t)Cjj

B (t ′)

C
jj

B (t − t ′)Cii
A (t)Cii

A (t ′)

) 1
2

, (4)

where the smearings i and j used in the two-point functions
must match that used for the corresponding state in the three-
point function in order to have the correct cancellation of
overlap factors. However, as discussed in Ref. [26] the differing
energy levels of the proton and the nπ states will cause an
insertion of energy by the weak operator to occur, modifying
Eq. (1) to

LπNN
PV =h1

πNN (p̄π+n − n̄π−p) + hEDt (p̄π+n − n̄π−p),

(5)

with some unknown coefficient hE , making the long-time
behavior of Eq. (4)

Rij
p→nπ → h1

πNN + [Enπ − Ep]hE,
(6)

Rij
nπ→p → −(

h1
πNN + [Ep − Enπ ]hE

)
,

with Ep and Enπ the energy levels of the proton and nπ

states, respectively. However, while the energy injection term
is present in both the forward (p → nπ ) and backward (nπ →
p) interactions, it can be eliminated with an antisymmetric
combination of Eq. (6), leading to a plateau region given by

Hij = 1
2

(
Rij

p→nπ − Rij
nπ→p

) → h1
πNN . (7)

A total of 100 871 measurements of each of the smearing
combinations of Hij are performed, where i, j can be
either point- or shell-smearing. These measurements are then
blocked on each configuration and bootstrapped. One can
enhance the plateau region for Eq. (7) by taking appropriately
normalized linear combinations of the different smearing
combinations, using the matrix-Prony [27] method on the
bootstrapped ensemble to determine the optimal linear combi-
nation. This is done for both the connected and the quark-loop
contractions. In the case of the quark-loop diagrams the
signal-to-noise ratio remains far too small to recover any
reliable result, and we do not attempt to extract a signal. It
is expected that improvements in both contraction algorithms
and overall calculation run time will be needed to overcome
this difficulty and reliably extract the quark-loop contribution.
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FIG. 3. (Color online) Lattice results for the contribution of
connected quark diagrams to h1

πNN , as a function of Euclidean lattice
time from the operator insertion. The solid line is the fully correlated
fit value over the plateau region with the grey rectangle the statistical
plus fit window systematic uncertainty.

For the connected contributions the analysis returns the data
shown in Fig. 3, revealing not only a well-defined plateau
region, but a robust nonzero contribution to h1

πNN .
In Fig. 3, a fully correlated χ2 minimizing fit to a constant is

performed over the plateau region, with additional systematic
error due to the choice of plateau region determined by shifting
the ends of the region ±2 time slices. The quoted systematic
error is one-half of the maximum minus the minimum of these
shifted fits. The fit result and statistical plus systematic error
are shown in Fig. 3 with the solid line and grey band. The
contribution of the connected diagrams to h1

πNN is then found
to be

h
1,con
πNN = (

1.099 ± 0.505+0.058
−0.064

) × 10−7, (8)

where the first and second uncertainties are statistical and
systematic, respectively. The fit result is plotted in Fig. 1 as
the vertical line and error band, and it is consistent with both
experimental bounds and previous model calculations.

Nonperturbative renormalization of the bare PV operators
at the lattice scale and subsequent matching to a perturbative
scheme is not performed for this first calculation, though
results from other four-quark calculations (at similar pion mass
and lattice spacing) indicate that this should affect the result
by a value significantly below the quoted statistical error. [28]
With the clover action, lattice spacing errors are expected to
be O(a2

s �
2
QCD) ∼ 2%, also well below statistical uncertainty.

Because sequential propagators are not used, one largely elim-
inates excited-state contamination by choosing an operator
insertion time well into the two-point correlation function
ground-state plateaus (though this necessarily increases the
statistical uncertainty by pushing the sink operator farther into
the baryon noise). Finally, one expects from chiral perturbation
theory the next-to-leading-order contribution to be a pion loop
originating at the operator insertion, giving an expected finite
volume error of O[(mπf 2

π L3)−1] ∼ 7% (fπ = 132 MeV is
the pion decay constant). While future calculations must also
address these sources of systematic error, the uncertainties in
this work remain dominated by statistical uncertainty.

In conclusion, we have performed a calculation of the
quantity h1

πNN directly from the underlying theory of QCD.
Our calculation was performed on one ensemble of anisotropic
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clover configurations with a pion mass of mπ ∼ 389 MeV.
Future calculations will need to be performed at pion masses
closer to the physical point, with sufficient statistical reso-
lution to extract the contribution of the quark-loop diagrams
(expected to be on the order of 103× more measurements),
and include nonperturbative renormalization of the included
operators. While significant technical challenges remain in
the calculation of the full matrix element, this result clearly
shows that lattice QCD can make a significant contribution to
the theoretical, model-independent understanding of quantities
that are difficult to access experimentally. Our initial result
shows good agreement with current experimental bounds and
paves the way toward a complete extraction of h1

πNN at
a precision consistent with, or better than, the anticipated

results of the upcoming NPDGamma experiment at Oak
Ridge.
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