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Baryon number cumulants are invaluable tools to diagnose the primordial stage of heavy ion collisions if they
can be measured. In experiments, however, proton number cumulants have been measured as substitutes. In fact,
proton number fluctuations are further modified in the hadron phase and are different from those of the baryon
number. We show that the isospin distribution of nucleons at kinetic freeze-out is binomial and factorized. This
leads to formulas that express the baryon number cumulants solely in terms of proton number fluctuations, which
are experimentally observable.
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The order of the phase transition of quantum chromo-
dynamics (QCD) at nonzero temperature (T ) is believed to
change from crossover [1] to first order at a nonzero baryon
chemical potential (μB). The existence of the QCD critical
point is thus expected in the phase diagram on the T -μB plane
[2]. Experiments to explore the phase structure at nonzero
μB, especially the existence of the critical point, are now
ongoing in the energy scan program at the Relativistic Heavy
Ion Collider (RHIC) [3,4], and will also be performed in
future facilities [5,6]. Much attention has also been paid to
this problem from numerical experiments on the lattice [1,7].
The establishment of the QCD phase structure at nonzero μB

is an important issue, not only to deepen our knowledge of
the matter described by QCD, but also to gain understanding
of a wide array of topics in physics which share the concepts
of phase transitions and techniques to treat strongly correlated
many-body systems.

Fluctuations, which are experimentally measured by event-
by-event analyses in heavy ion collisions, are promising
observables to probe the properties of created fireballs [8],
as their behaviors are sensitive to the state of the matter.
For example, because of the singularity at the critical point,
fluctuations of various physical quantities, including skewness
and kurtosis, behave anomalously near the critical point
[9–11]. One can also argue that ratios between the cumulants
of conserved charges are sensitive to the magnitudes of the
charge carried by the quasiparticles composing the system, and
hence they behave differently in the hadronic and quark-gluon
phases [12–14]. Recently, it was also pointed out that some
higher-order cumulants of conserved charges change signs
around the phase boundary of QCD, which would serve as
clear experimental signatures to determine the location of the
matter in the phase diagram [15–17].

Among the fluctuation observables, those of conserved
charges can reflect fluctuations produced in earlier stages
during the time evolution of fireballs than non-conserved
ones [18]. This is because the variation of a conserved charge
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in a volume is achieved only through diffusion, which makes
the relaxation to equilibrium slower. In fact, it is argued that if
the rapidity range of a detector is taken to be sufficiently large,
whereas the range should be kept narrow enough so that the
rest of fireballs can be regarded as the heat bath, the effects of
diffusion are well suppressed and fluctuations produced in the
quark-gluon phase can be detected experimentally [12,13].

The dependences of the proton number fluctuations, cumu-
lants up to fourth order, on the beam energy

√
s, have been

recently measured by the STAR collaboration at RHIC [3,4].
The result appears to be almost consistent with the prediction
of the hadron resonance gas (HRG) model [19]; although the
experimental result shows some deviation from the prediction
at small

√
s, it is at most of the order of 20% [4]. The proton

number, however, is not a conserved quantity, and in fact
we will see later that its fluctuations significantly evolve in
the hadronic stage, which makes the experimentally measured
fluctuations close to those in the equilibrated hadronic matter.
The agreement between the experiments and the HRG model
in the proton number fluctuations [4] is in part due to
these effects, and hence it does not immediately exclude
the slow baryon number diffusion in the hadronic stage.
Although the measurement of the baryon number, which is a
conserved charge, is desirable to probe fluctuations generated
in earlier stages, its direct experimental measurement has
been considered to be impossible because of the difficulty
in detecting and identifying neutrons.

In this Rapid Communication, we show that the experimen-
tally measured proton number fluctuations are nevertheless
directly related to baryon number fluctuations in earlier stages,
and we present concrete formulas that relate the baryon
number cumulants and these experimental observables. The
key observation is that the distributions of (anti)proton and
(anti)neutron numbers in the final state are well described by
binomial distributions. As will be argued in detail later, this
observation is well justified at least for RHIC energy, and is
expected to hold for

√
s � 10 GeV.

Experimentally, the electric charge can be measured
directly. Electric charge fluctuations, however, contain the
contribution of isospin fluctuations, which are nonsingular at
the critical point, in addition to baryon number fluctuations
[10]. The signals of the phase transition in this observable thus
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generally become weak owing to the nonsingular contribution
(such a tendency, for example, in the third moments is seen
in Ref. [15]). In this sense, the baryon number fluctuations
are superior to the electric ones as probes of the QCD phase
structure.

Throughout this Rapid Communication, we use NX to
represent the number of particles X leaving the system after
each collision event, where X = p, n, and B represent proton,
neutron, and baryon, respectively, and their antiparticles, p̄,
n̄, and B̄. The net and total numbers are denoted as N

(net)
X =

NX − NX̄ and N
(tot)
X = NX + NX̄, respectively.

Before starting the main discussion on the cumulants of
baryon and proton numbers, let us briefly consider how the
proton number fluctuations evolve in the hadronic stage. The
most important process responsible for the variation of the
proton number is the charge exchange reactions with thermal
pions mediated by �+(1232) and �0(1232) resonances:

p(n) + π → �+,0 → n(p) + π. (1)

Because of the small energy required and the large cross
sections, these reactions proceed even after chemical freeze-
out, as we demonstrate later. We note that these reactions
do not alter the average abundances 〈Np〉 and 〈Np̄〉 if the
isospin chemical potential vanishes, while they modify the
fluctuations of Np and Np̄. Because chemical freeze-out is a
concept that describes ratios between particle abundances such
as 〈Np̄〉/〈Np〉, these reactions below the chemical freeze-out
temperature Tchem do not contradict the statistical model. The
success of the model, on the other hand, indicates that the
creation and annihilation of (anti)nucleons hardly occur below
Tchem.

The importance of reactions (1) below Tchem is confirmed by
evaluating the mean time of the nucleons for these reactions.
Provided that the pions have a thermal distribution, the mean
time τ that a proton at rest in the medium forms �+ or �0,
being scattered by a thermal pion, is evaluated to be

τ−1 =
∫

d3kπ

(2π )3
σ (Ec.m.)vπn(Eπ ), (2)

with the Bose distribution function n(E) = (eE/T − 1)−1,
pion velocity vπ = kπ/Eπ , Eπ = √

m2
π + k2

π , and the pion
mass mπ . σ (Ec.m.) is the sum of the cross sections for pπ

reactions producing �+ and �0, with a center-of-mass energy
Ec.m. = [(mN + Eπ )2 − k2

π ]1/2 with the nucleon mass mN. To
evaluate Eq. (2), we assume a cross section of Breit-Wigner
type, σ (Ec.m.) = σ�(�2/4)/[(Ec.m. − E�)2 + �2/4], which is
a sufficient approximation for our purpose, with hadron prop-
erties in the vacuum, mN = 940 MeV, mπ = 140 MeV, E� =
1232 MeV, � = 110 MeV, and σ� = 20 fm2 [20]. The mean
time is then evaluated to be 3–4 fm for T = 150–170 MeV.
One can also check that this mean time hardly changes even
for moving protons in the range of momentum p � 3T . On
the other hand, dynamical models for RHIC energy predict
that protons stay in the hadronic gas and continue to interact
for several tens of fm on average at midrapidity [21], which is
significantly longer than the mean time and the lifetime of �,
1/� � 1.8 fm. This result shows that nucleons in the fireball
indeed undergo this reaction several times on average in the

hadronic stage.1 The ratio of the probabilities that a proton in
the medium produces a �+ or �0 and then decays into p and
n is 5 : 4, which is determined by the isospin SU(2) algebra.
Whereas this probability is not even, after repeating the above
processes several times in the hadronic stage, the nucleons
tend to completely forget their initial isospin.

The above discussion shows that the evolution of proton
number fluctuations in the hadronic stage is dominantly made
via the exchanges of the two isospin states of the nucleons.
Now, we further assert that isospins of all nucleons in the final
state are uncorrelated. This statement is well justified when the
hadronic medium fulfills the following two conditions: (i) The
medium effects on the branching ratios and formation rates of
� are insensitive to the proton and neutron number densities np

and nn (and the same holds for the antiparticle sector as well),
and (ii) (anti)nucleon-(anti)nucleon interactions generating
correlations between two nucleons hardly occur. As we will
see later, these two conditions are well satisfied below Tchem

except for low-energy collisions. The probability distribution
of finding Np and Nn (Np̄ and Nn̄) particles in the final
state in each event then becomes binomial. Under the isospin
symmetry [19], this fact enables to factorize the probability
distribution P (Np,Nn,Np̄,Nn̄) having Np, Nn, Np̄, and Nn̄

particles in each event as

P (Np,Nn,Np̄,Nn̄) = F (NB, NB̄)B(Np; NB)B(Np̄; NB̄), (3)

where B(k; N ) = 2−NN !/[k!(N − k)!] is the binomial distri-
bution function with an equal probability. On the right-hand
side (RHS) of Eq. (3) we have used NB and NB̄ defined by
NB = Np + Nn and NB̄ = Np̄ + Nn̄. We will later elucidate
this notation to use the baryon numbers NB and NB̄ in place
of the nucleon numbers. Under the probability distribution
Eq. (3), the event-by-event average of a function f (Np,Np̄) is
given by

〈f (Np,Np̄)〉 =
∑

N{p,n,p̄,n̄}

P (Np,Nn,Np̄,Nn̄)f (Np,Np̄)

=
∑

NB,NB̄

F (NB, NB̄)
∑

Np,Np̄

f (Np,Np̄)

×B(Np; NB)B(Np̄; NB̄). (4)

The factorization Eq. (3) leads to〈
N (net)

p

〉 = 1
2

〈
N

(net)
B

〉
, (5)〈(

δN (net)
p

)2〉 = 1
4

〈(
δN

(net)
B

)2〉 + 1
4

〈
N

(tot)
B

〉
, (6)〈(

δN (net)
p

)3〉 = 1
8

〈(
δN

(net)
B

)3〉 + 3
8

〈
δN

(net)
B δN

(tot)
B

〉
, (7)

〈(
δN (net)

p

)4〉
c

≡ 〈(
δN (net)

p

)4〉 − 3
〈(
δN (net)

p

)2〉2
= 1

16

〈(
δN

(net)
B

)4〉
c
+ 3

8

〈(
δN

(net)
B

)2
δN

(tot)
B

〉
+ 3

16

〈(
δN

(tot)
B

)2〉 − 1
8

〈
N

(tot)
B

〉
, (8)

1We note that some event generators employed in Ref. [3] do not
take this reaction into account. As we will see later, however, it is
this reaction that is responsible for our main results, Eqs. (9)–(12),
expressing the baryon number fluctuations in terms of experimental
observables without introducing any models.

021901-2



RAPID COMMUNICATIONS

REVEALING BARYON NUMBER FLUCTUATIONS FROM . . . PHYSICAL REVIEW C 85, 021901(R) (2012)

where δNX = NX − 〈NX〉. To derive Eqs. (5)–(8), we have
used the fact that the sums over Np and Np̄ in Eq. (4) can
be taken separately with corresponding binomial functions,
e.g.,

∑
Np

NpB(Np; NB) = NB/2 and
∑

Np
N2

pB(Np; NB) =
N2

B/4 + NB/4.
Equation (3) also enables to represent the baryon number

cumulants by those of the net and total proton numbers as
〈
N

(net)
B

〉 = 2
〈
N (net)

p

〉
, (9)〈(

δN
(net)
B

)2〉 = 4
〈(
δN (net)

p

)2〉 − 2
〈
N (tot)

p

〉
, (10)〈(

δN
(net)
B

)3〉 = 8
〈(
δN (net)

p

)3〉 − 12
〈
δN (net)

p δN (tot)
p

〉 + 6
〈
N (net)

p

〉
,

(11)

〈(
δN

(net)
B

)4〉
c

= 16
〈(
δN (net)

p

)4〉
c
− 48

〈(
δN (net)

p

)2
δN (tot)

p

〉
+ 48

〈(
δN (net)

p

)2〉 + 12
〈(

δN (tot)
p

)2〉 − 26
〈
N (tot)

p

〉
,

(12)

where we have used relations for mixed cumulants such
as 〈δN (net)

B δN
(tot)
B 〉 = 4〈δN (net)

p δN (tot)
p 〉 − 2〈N (tot)

p 〉, which are
obtained with Eq. (3). Since the RHSs of Eqs. (9)–(12) consist
of only N (net)

p and N (tot)
p , which are experimentally observable,

these are formulas that express baryon number cumulants
solely in terms of the experimental observables. We remind
that no specific form of F (NB, NB̄) is assumed in deriving
these results.

We remark that N (net)
B (N (tot)

B ) in Eqs. (5)–(12) are interpreted
to be the sum of all net (total) baryon numbers entering a
region in the phase space in the final state of each event. If
the diffusion of the baryon number in the hadronic stage is
slow [12,13], the information on the primordial fluctuations
remains in F (NB, NB̄) in Eq. (3) and, as a result, in baryon
number cumulants.

Next, let us inspect the validity of Eq. (3) in more detail.
First, we consider the conditions (i) and (ii) introduced above
Eq. (3). In the medium, the decay rate of � acquires the
statistical factor

[1 − f (EN )][1 + n(Eπ )], (13)

where f (E) = (e(E−μB )/T + 1)−1 is the Fermi distribution
function and EN and Eπ are the energies of the nucleon
and pion produced by the decay, respectively. The first term
in Eq. (13) represents the Pauli blocking effect. At RHIC
energy, the Boltzmann approximation is well applied to
nucleons below Tchem since T � mN and |μB| � mN . Thus,
the Pauli blocking effect can be almost ignored. The Bose
factor [1 + n(Eπ )] in Eq. (13), on the other hand, has a
non-negligible contribution since mπ � Tchem. The density of
the pions, however, is more than one order larger than that
of the nucleons below Tchem. The Bose factor thus must be
insensitive to np and nn, while it leads to the enhancement
of the decay of � in the medium, which acts in favor of the
isospin randomization. The large pion density also means that
the mean time for a nucleon to form � is insensitive to np

and nn. Condition (i) is thus well satisfied below Tchem at
RHIC energy. The validity of condition (ii) is conjectured
from the success of the statistical model as follows. The

statistical model indicates that the pair annihilation of an N
and an N̄ terminates at Tchem. NN and NN̄ reactions are then
also expected to terminate there, because the elastic cross
section of NN̄ is significantly smaller than the inelastic one,
and the total cross section of NN behaves similarly to that
of NN̄ for Ec.m. < 1 GeV [20]. Condition (ii) thus should
also be satisfied for T < Tchem. Intuitively speaking, in a hot
medium the nucleons are so dilutely distributed that they do
not feel one another’s existence, while there are so many pions
which can be regarded as the heat bath when the nucleon
sector is concerned. The large pion density also enables to use
the binomial distribution independently of the initial nucleon
isospin density.

Second, while so far we have limited our attention to the
nucleon reactions mediated by �, other interactions can also
take place in the medium. It is also possible that � interacts
with a thermal pion to form another resonance before the
decay [22]. All these reactions with thermal pions, however,
proceed with a certain probability determined by the isospin
SU(2) symmetry as long as they are caused by the strong
interaction, and the reactions of a baryon make its isospin
random. Strange baryons, on the other hand, decay via the
weak or electromagnetic interaction outside the fireball. In
particular, � and 	 are important among them. � decays
into p and n with a branching ratio of 16 : 9. Provided that
the three isospin states of 	 are produced with an equal
probability in the medium, the ratio of probabilities that a
	 decays into p and n is about 1 : 1.6 [20]. Although these
ratios are not even, because the abundances of � and 	 are
small compared to the nucleons, to a first approximation it
is suitable for our purpose to regard these probabilities to be
equal and to incorporate nucleons produced by the decays of
� and 	 in Np and Nn in Eq. (3). This promotes the nucleon
numbers to those of the baryons in Eq. (3). The treatment of
strange baryons, however, may require more detailed argu-
ments, especially on their quantitative effects on higher-order
cumulants, which will be addressed elsewhere. Inclusion of
higher baryonic resonances and light nuclei such as deuterons
will not affect our conclusions owing to their negligible
abundances.

While the factorization Eq. (3) is fully established for RHIC
energy, the binomiality will eventually break down as the
beam energy is decreased. At very low beam energy, pions are
not produced enough and nucleons will not undergo charge
exchange reactions sufficiently below Tchem. We deduce that
this happens when Tchem � mπ . When the reactions hardly
occur, the isospin correlations generated at the hadronization
will remain until the final state. At low beam energy, also
the nucleon density becomes comparable with that of the
pions, and the latter can no longer be regarded as the heat
bath to absorb the isospin fluctuations of the former. From the√

s dependence of the chemical freeze-out line on the T -μB

plane [23], and considering the validity of these two conditions,
we deduce that Eq. (3) is well applicable to the range of beam
energy

√
s � 10 GeV.

In the argument to derive Eqs. (5)–(12), we have implicitly
assumed that the hadronic medium is isospin symmetric. While
the effect of nonzero isospin density should be well suppressed
for large

√
s where a large number of particles having nonzero

isospin charges are produced, at lower energies this effect gives
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rise to a non-negligible modification of Eqs. (5)–(12). When
the system has nonzero isospin density, the probability that
a nucleon at the early stage of the hadron phase becomes a
proton or a neutron in the final state is no longer even. This
effect is, as long as conditions (i) and (ii) introduced above
Eq. (3) hold, incorporated into our results by simply replacing
the binomial function B(Np; NB) in Eq. (3) with that having
a probability k = 〈Np〉/〈Np + Nn〉, and a similar replacement
to B(Np̄; NB̄). Our explicit analysis indicates that the effect
of nonzero isospin density on Eqs. (5)–(12) is relatively small
and well suppressed when Tchem > mπ and a sufficient number
of pions having isospin charges are produced at chemical
freeze-out. Since this modification requires a straightforward
but lengthy calculation, we will elucidate the analysis in a
forthcoming paper.

Now, let us apply our results to the latest experimental
data from STAR [3,4]. To estimate how the binomial nature
of nucleon isospins affects the proton number fluctuations,
we first consider Eqs. (5)–(8). In order to estimate the
contributions of terms including N

(tot)
B in these equations,

we temporarily postulate that NB and NB̄ have thermal
distributions fixed at chemical freeze-out as the statistical
model suggests, while the distribution of their combination,
N

(net)
B , deviates from the thermal one, reflecting the baryon

number conservation. Under this assumption, the distributions
of NB and Np are Poissonian, and hence the cumulants of the
baryon and proton numbers satisfy

〈NB〉 = 〈(δNB)2〉 = 〈(δNB)3〉 = 2〈Np〉HG

= 2〈(δNp)2〉HG = 2〈(δNp)3〉HG, (14)

and the same for antibaryon numbers, where 〈·〉HG is the
expectation value for free hadron gas (HG) composed of
mesons and nucleons at Tchem, i.e., a simplified version of
the HRG model [19]. Equations (6) and (7) are then expressed
as

〈(
δN (net)

p

)2〉 = 1
4

〈(
δN

(net)
B

)2〉 + 1
2

〈(
δN (net)

p

)2〉
HG, (15)

〈(
δN (net)

p

)3〉 = 1
8

〈(
δN

(net)
B

)3〉 + 3
4

〈(
δN (net)

p

)3〉
HG. (16)

To derive these results, we decomposed, for example, the
second term in Eq. (7) as〈

δN
(net)
B δN

(tot)
B

〉 = 〈(δNB)2〉 − 〈(δNB̄)2〉
= 2〈(δNp)3〉HG − 2〈(δNp̄)3〉HG

= 2
〈(
δN (net)

p

)3〉
HG, (17)

The results in Eqs. (15) and (16) show that the second terms
on the RHSs, which come from the binomial distributions of

nucleon isospin, make a large contribution to the cumulants of
the proton number, and they become more significant as the
order increases. Although one cannot derive a similar result for
the fourth-order relation, from the factor 1/16 in the first term
of Eq. (8) it is clear that the effect of the fourth-order baryon
number cumulant on the proton number one is more suppressed
in this order. The suppression of the first term in Eqs. (6)–
(8) may be one of the reasons why the results of the STAR
experiment and the HRG model appear to be consistent with
each other. In this sense, it is interesting that the experimental
results for skewness and kurtosis have small but significant
deviations from the HRG predictions at

√
s � 50 GeV [4]. The

deviation, for example, in skewness, can be a consequence of
〈(δN (net)

B )3〉 in Eq. (16), which possibly reflects the properties
of matter in the early stage. Baryon number cumulants are,
of course, directly determined with experimental observables
using Eqs. (9)–(12). It is worth emphasizing that the RHSs of
Eqs. (11) and (12) have terms which would lead to the negative
cumulants discussed in Refs. [15,17], or the suppression of the
ratio 〈(δN (net)

B )4〉/〈(δN (net)
B )2〉 [14].

We note that when the distribution of N
(net)
B also follows

that in the HG in addition to the above postulation, the
RHSs of Eqs. (16) and (17) reduce to 〈(δN (net)

p )2〉HG and
〈(δN (net)

p )3〉HG. A way to check this is to use the fact that the
(anti)nucleon numbers in the HG are well described by the
Poisson distribution owing to the Boltzmann approximation,
and that the Poisson distribution with an average λ, Pλ(N ),
satisfies Pλ(N1)Pλ(N2) = P2λ(N1 + N2)B(N1; N1 + N2). The
HG thus corresponds to a special case of Eq. (3), where

F (NB, NB̄) = P〈NB〉(NB)P〈NB̄〉(NB̄). (18)

In this Rapid Communication, we derived relations between
the baryon and proton number cumulants, Eqs. (5)–(8) and
(9)–(12), respectively, on the basis of the binomial nature
of (anti)nucleon isospin numbers in the final state. These
results enable to immediately determine the baryon number
cumulants with experimental results in heavy ion collisions,
which will provide significant information about the QCD
phase diagram. Though these results are obtained for the
isosymmetric case, incorporation of nonzero isospin density
is straightforward and will be discussed elsewhere.
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