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Universality of nucleon-nucleon short-range correlations: Two-nucleon momentum distributions
in few-body systems
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Using realistic wave functions, the proton-neutron and proton-proton momentum distributions in 3He and 4He
are calculated as a function of the relative, krel, and center of mass, Kc.m., momenta and the angle between them.
For large values of krel � 2 fm−1 and small values of Kc.m. � 1.0 fm−1, both distributions are angle independent
and decrease with increasing Kc.m., with the pn distribution factorizing into the deuteron momentum distribution
times a rapidly decreasing function of Kc.m., in agreement with the two-nucleon (2N ) short-range correlation
(SRC) picture. When Kc.m. and krel are both large, the distributions exhibit a strong angle dependence, which is
evidence of three-nucleon (3N ) SRC. The predicted center of mass and angular dependence of 2N and 3N SRC
should be observable in two-nucleon knock-out processes A(e, e′pN )X.
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Realistic many-body calculations (see, e.g., Refs. [1–3])
show that a mean-field approach, though describing very
successfully many properties of nuclei, breaks down when the
relative distance r ≡ |r1 − r2| between two generic nucleons
“1” and “2” is of the order of r � 1.3–1.5 fm. In this region,
nucleon-nucleon (NN ) motion exhibits short-range correla-
tions (SRC), arising from the interplay between the short-range
repulsion and the intermediate range tensor attraction of the
NN potential. As a result of such an interplay, the two-nucleon
density distribution strongly deviates from the mean-field
distribution in that, whereas the latter has a maximum value at
zero separation, the former almost vanishes at r = 0, increases
sharply with increasing separation, overshoots at r � 1.3–
1.5 fm the mean-field density, and coincides with it at larger
separations. The detailed structure of SRC depends on the
spin-isospin state of the NN pair, as well as upon the value of
the pair center-of-mass (c.m.) coordinate Rc.m. = (r1 + r2)/2.
The study of SRC represents one of the main challenges of
modern nuclear physics, since the detailed theoretical and
experimental knowledge of the short-range structure of nuclei
could provide decisive answers to long-standing fundamental
questions, such as the formation and structure of cold dense
nuclear matter, the origin of the EMC effect, and the role of
quark-gluon degrees of freedom in nuclei (see, e.g., Ref. [4]).
SRC generate high-momentum components, which are lacking
in a mean-field approach, and give rise to peculiar config-
urations of the nuclear wave function in momentum space
[5]. In particular, if nucleons “1” and “2” become strongly
correlated at short distances, the local configuration (in the
nucleus center-of-mass frame) characterized by k2 � −k1,
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KA−2 = ∑A
i=3 ki � 0, dominates over the average mean-field

configuration
∑A

i=2 ki � −k1, which is the configuration
when the high-momentum nucleon is balanced by all of the
remaining A − 1 nucleons. Thus, if a correlated nucleon with
momentum k1 acquires a momentum q from an external
probe and it is removed from the nucleus and detected
with momentum p = k1 + q, the partner nucleon should be
emitted with momentum k2 � −k1 = q − p ≡ pmiss. Such a
qualitative picture is strictly valid only if the center-of-mass
momentum of the correlated pair was zero before nucleon
removal and, moreover, if the two correlated nucleons leave the
nucleus without interacting between themselves and with the
nucleus (A − 2). Nonetheless, a proton knock-out experiment
with detection of emitted neutrons, 12C(p, ppn) [6], found that
low-momentum neutrons, pn < 0.22 GeV/c, were emitted
isotropically but that high-momentum neutrons were emitted
opposite to the struck proton’s missing momentum pmiss
and were, therefore, interpreted as correlated partners of the
struck protons [7]. This experiment, later confirmed using
electron probes [8], allowed one to obtain the center-of-mass
momentum distribution of the correlated pair, finding a Gaus-
sian distribution as predicted long ago in Ref. [9]. Whereas
experiments demonstrating the presence of SRC in nuclei
and their basic mechanism have eventually been performed,
detailed information through the periodic table of their isospin,
angular-momentum, and center-of-mass dependencies is still
to come. A partial relevant progress has, however, already
been done by demonstrating [3,10], in qualitative agreement
with the experimental data on 12C, that the strong correlations
induced by the tensor force lead to large differences in the
pp and pn distributions at moderate values of the relative
momentum of the pair. Such a result has been confirmed in
a recent thorough analysis [11] of the relative (integrated
over the variables R and K c.m.) two-body densities and
momentum distributions and their detailed dependence on
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the spin-isospin states. As for the angular and center-of-mass
dependencies of SRC, in Refs. [3,10] the focus was on the
two-body momentum distributions integrated either over the
center of mass or the relative momenta, whereas in Ref. [12]
the center-of-mass dependence of the relative momentum
distributions of 3He and 4He has been investigated in a
particular angular configuration, namely when K c.m. and krel

are parallel. In this Rapid Communication the results of
calculations for arbitrary mutual orientations of K c.m. and krel

are presented and several universal features of SRC will be
demonstrated. Our calculations were performed with nuclear
wave functions [13,14] obtained from the solution of the
Schrödinger equation containing realistic NN interactions,
namely the AV18 [15] and AV8′ [16] interactions. We will
compare our results with a preliminary analysis of data on
3He from the CEBAF large acceptance spectrometer (CLAS)
collaboration at JLab [17]. The summed-over spin and isospin
two-body momentum distributions of a nucleon-nucleon pair
is defined as follows:

nNN (k1, k2) = 1

(2π )6

∫
d r1 d r2 d r1

′ d r2
′ ei k1·(r1−r ′

1)

× ei k2·(r2−r ′
2) ρ

(2)
NN (r1, r2; r ′

1, r ′
2) (1)

with

ρ
(2)
NN (r1, r2; r ′

1, r ′
2)

=
∫

ψ∗
o (r1, r2, r3 . . . , rA) ψo(r ′

1, r ′
2, r3, . . . , rA) δ

×
(

A∑
i=1

r i

)
A∏

i=3

d r i (2)

being the two-body nondiagonal density matrix. By introduc-
ing the two-nucleon relative and center-of-mass coordinates
and momenta r = r1 − r2, krel = (k1 − k2)/2, Rc.m. = (r1 +
r2)/2, and K c.m. = k1 + k2, the two-nucleon momentum
distribution can be defined as follows:

nNN (krel, K c.m.) = nNN (krel,Kc.m., �)

= 1

(2π )6

∫
d r d R d r ′ d R′ ei K c.m.·(R−R′)

× ei krel·(r−r ′) ρ
(2)
NN (r, R; r ′, R′), (3)

where |krel| ≡ krel, |K c.m.| ≡ Kc.m., and � is the angle between
krel and K c.m.. In what follows the momentum distributions are
normalized to unity. Given the formula above, the momentum
distribution integrated over the center-of-mass coordinate,
nNN

rel (krel), and the one integrated over the relative momentum,
nNN

c.m.(Kc.m.), can be obtained, but a more important property,
considered in this Rapid Communication, is the dependence
of the two-body momentum distribution on the relative mo-
mentum krel for fixed values of the center-of-mass momentum
Kc.m. and the angle �. In our calculations we used, for 3He,
the nuclear wave function obtained within the approach from
Ref. [13] and corresponding to the AV18 interaction [15] and,
for 4He, the wave functions of Ref. [14] corresponding to the
AV8′ interaction [16]. Before discussing our results, let us
stress that the independence of the two-nucleon momentum

FIG. 1. (Color online) The two-body momentum distributions of
pn (a) and pp (b) pairs in 3He normalized to unity, vs. the relative
momentum krel, for fixed values of the center-of-mass momentum
Kc.m. and two orientations of them: krel||Kc.m. (dashed curves) and
krel ⊥ Kc.m. (symbols). The continuous curves for the pn pair repre-
sents the deuteron momentum distribution rescaled by the center-of-
mass momentum distribution npn

c.m.(Kc.m.) = ∫
npn(krel, K c.m.) dkrel

(see text and Fig. 4). 3He wave function from Ref. [13] and AV18
interaction [15].

distributions on the angle �, is evidence of the factorization
of the distributions in the variables krel and Kc.m., i.e.,
nNN (krel,Kc.m., �) � nNN

rel (krel)nNN
c.m.(Kc.m.) [18,19].

The pn and pp relative momentum distributions, plot-
ted versus krel in correspondence with several values
of Kc.m., and two angular configurations are shown in
Figs. 1 and 2; Fig. 3 shows the ratio for back-to-back
nucleons Rpn = npn(krel,Kc.m. = 0)/nD(krel), whereas the
pN center-of-mass momentum distributions n

pN
c.m.(Kc.m.) =∫

npN (krel, K c.m.)dkrel are given in Fig. 4; finally, in Fig. 5, the
ratio Rpp/pn of the correlated pp to pn pairs, extracted from the
3He(e, e′pp)n process [17], is shown. Note that in Figs. 1 and
2 we did not separate the contributions from the various pair
spin-isospin states, namely (ST ) = (10), (01), L − even,
and (ST ) = (11), (00), L − odd, where L is the pair orbital
momentum. The contribution from the deuteronlike state (10)
is shown in Fig. 3, whereas the separate contribution of the four
spin-isospin states will be presented in a separate paper [20].

The main features of our results can be summarized as
follows: (i) at Kc.m. = 0 the results of Ref. [10] are reproduced,
namely at small values of krel the pn and pp momentum
distributions do not appreciably differ, with their ratio being
closer to the ratio of the pn to pp pairs, whereas at 1.0 �
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FIG. 2. (Color online) The same as in Fig. 1 but for
4He. Correlated variational wave function from [14] and AV8′

interaction [16].

krel � 4.0 fm−1 the dominant role of tensor correlations makes
the pn distributions much larger than pp distribution, with
the node exhibited by the latter filled up by the D wave
in the pn two-body density; (ii) nNN (krel,Kc.m., �), plotted
versus krel, decreases with increasing values of Kc.m.; (iii)

.

FIG. 3. (Color online) The ratio of the pn momentum distribu-
tions npn(krel, Kc.m. = 0) of 3He and 4He, shown in Figs. 1 and 2 to the
deuteron momentum distribution nD(krel) (full lines). The dotted lines
represent the contribution from the spin-isospin deuteronlike state
S = 1, T = 0 in 3He and 4He. The different magnitudes of the ratio
for the two nuclei is due to the different values of the center-of-mass
momentum distribution at Kc.m. = 0 (see Fig. 4).

FIG. 4. (Color online) The center-of-mass momentum distribu-
tion npN

c.m.(Kc.m.) = ∫
npN (krel, K c.m.) d 3krel for pp and pn pairs in

3He and 4He (reduced by a factor 10). The solid lines correspond
to the model of Ref. [9] aimed at describing the low-momentum
(Kc.m. � 1 fm−1) (Kc.m. � 1.0–1.5 fm−1) part of npN

c.m.(Kc.m.).

starting from a given value of krel, which for Kc.m. = 0 is
krel � 1.5 fm−1, and increases with increasing Kc.m., the
pn distribution changes its slope and becomes close to the
deuteron distribution; (iv) in the region (krel � 2 fm−1, Kc.m. �
1 fm−1), nNN becomes � independent,1 which means that
nNN (krel,Kc.m., �) � nNN

rel (krel)nNN
c.m.(Kc.m.); for pn pairs, one

has npn(krel,Kc.m., �) � nD(krel)n
pn
c.m.(Kc.m.), where nD(krel)

is the deuteron momentum distribution and the only A

dependence is given by n
pn
c.m.(Kc.m.); the factorized form for pn

pairs describes the 2N SRC configuration, when the relative
momentum of the pair is much larger than the center-of-mass
momentum; (v) at high values of the center-of-mass momen-
tum, of the same order of the (large) relative momentum, more
than two particles can be locally correlated, with a resulting
strong dependence on the angle and the breaking down of
factorization, as clearly shown by Fig. 1 for Kc.m. = 3 fm−1.
According to our preliminary results [20], all of the above re-
marks appear to hold also for complex nuclei. In particular, the
relative momentum distribution, which reflects the local short-
range properties of nuclei, exhibits very mild A dependence at
krel � 1.5–2.0 fm−1, whereas the center-of-mass momentum
distribution at low center-of-mass momenta (Kc.m. � 1.0–
1.5 fm−1) can be associated to the mean-field average kinetic
energy and approximated by a Gaussian, in agreement with
the results of Ref. [9] and the experimental finding for 12C
of Ref. [6]. Let us now discuss in detail the factorized form
of the momentum distributions for pn pairs. To this end
we will consider the ratio Rpn = npn(krel, 0)/nD(krel) and its
isospin dependence, presented in Fig. 3, and the center-of-mass
momentum distribution n

pN
c.m.(Kc.m.), presented in Fig. 4. These

two figures tell us, first, that the constant value exhibited by
the S = 1, T = 0 ratio at krel � 1.5 fm−1 is unquestionable
evidence that in this region the dependence on krel of the
two-body momentum distribution npn(krel, 0) is the same as

1Such an independence has been checked in a wide range of angles.
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FIG. 5. (Color online) The ratio of the spectator correlated pp

and pn nucleon pairs extracted from the 3He(e, e′pp)n reaction and
integrated over the pair relative momentum in the range 1.5 < krel <

3.0 fm−1 and the angle � between Kc.m. and krel [17]. The dashed
curve represents the ratio of our theoretical momentum distributions
and the full curve also includes the final-state interaction in the
spectator pp and pn pairs, calculated by the exact solution of the
continuum Schroedinger equation with AV18 potential.

the deuteron one; second, they also tell us that the difference
between the ratios for 3He and 4He in the region krel �
1.5 fm−1 equals exactly the difference between the values
of the center-of-mass momentum distributions at Kc.m. = 0,
shown in Fig. 4. As a consequence, if we divide the dotted
lines by the corresponding values of n

pn
c.m.(0), we obtain 1 for

both nuclei. Concerning the different behavior of n
pn
c.m.(Kc.m.)

for 3He and 4He at Kc.m. � 1.5 fm−1, this is due to the
different binding associated with the center-of-mass motion:
In 3He the third uncorrelated particle is weakly bound, with
a long asymptotic tail, resulting in a sharp peak at Kc.m. = 0;
thus, the more rapid fall off of the center-of-mass momentum
distributions of 3He leads, with respect to the 4He case, to
the wider separation of the curves corresponding to various
values of Kc.m. presented in Fig. 1. In 4He, the overall average
density can already be described by a mean-field approach, so
the realistic calculation leads, as shown in Fig. 4, to a result

which is practically the same as the one obtained in Ref. [9]
within a model based on the mean value of the kinetic energy in
a shell-model picture. As for the experimental ratio presented
in Fig. 5, it should be pointed out that, whereas this quantity
represents a nice confirmation of the dominance of tensor
correlations, it cannot provide information about the increase
or decrease of the two-body momentum distributions with the
increase of the center-of-mass momentum, since the pp and pn

distributions may both increase or decrease at the same time,
leaving the ratio almost unchanged. A discriminating quantity
would be the ratio of pn (or pp) pairs in correspondence of two
values of the center-of-mass momentum. As a matter of fact, it
can be seen from Fig. 1 that such a ratio at, e.g., Kc.m. = 0 and
Kc.m. = 1.5 fm−1, is predicted to be a large positive number.

To sum up, a clear physical picture of the motion of a
pair of nucleons embedded in the nuclear medium arises from
our calculations. In the region 2 � krel � 5 fm−1, Kc.m. �
1 fm−1, the motion of NN pairs is governed by 2N SRC,
characterized by a decoupling of the center of mass and
relative motions; for a pn pair, the latter is described by the
deuteron momentum distribution and the former is governed
by the average mean-field motion. Some aspects of this picture
have already been experimentally confirmed [8], whereas
some others, e.g., the center-of-mass dependence of two-
nucleon momentum distributions, need proper experimental
investigations. This picture of a locally correlated pair, with
the relative motion being practically A independent, with the
A dependence given only by the center-of-mass motion, would
be of great usefulness in various fields where SRC have been
recently shown to play an important role, such as high-energy
hadron-nucleus [21] and nucleus-nucleus scattering [22], deep
inelastic scattering [23], the equation of state of nuclear [24],
and neutron [4] matters.
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K. Slifer, P. Solvignon, V. Sulkosky, G. M. Urciuoli, E. Voutier,

021001-4

http://dx.doi.org/10.1146/annurev.nucl.51.101701.132506
http://dx.doi.org/10.1146/annurev.nucl.51.101701.132506
http://dx.doi.org/10.1016/j.ppnp.2010.02.003
http://dx.doi.org/10.1016/j.ppnp.2010.02.003
http://dx.doi.org/10.1103/PhysRevLett.100.162503
http://dx.doi.org/10.1103/PhysRevLett.100.162503
http://dx.doi.org/10.1142/S0217751X08041207
http://dx.doi.org/10.1142/S0217751X08041207
http://dx.doi.org/10.1016/0370-1573(88)90179-2
http://dx.doi.org/10.1103/PhysRevLett.90.042301
http://dx.doi.org/10.1103/PhysRevLett.97.162504
http://dx.doi.org/10.1103/PhysRevLett.97.162504


RAPID COMMUNICATIONS

UNIVERSALITY OF NUCLEON-NUCLEON SHORT-RANGE . . . PHYSICAL REVIEW C 85, 021001(R) (2012)

J. W. Watson, L. B. Weinstein, B. Wojtsekhowski, S. Wood,
X.-C. Zheng, and L. Zhu, Science 320, 1476 (2008).

[9] C. Ciofi degli Atti and S. Simula, Phys. Rev. C 53, 1689 (1996).
[10] R. Schiavilla, R. B. Wiringa, S. C. Pieper, and J. Carlson, Phys.

Rev. Lett. 98, 132501 (2007).
[11] H. Feldmeier, W. Horiuchi, T. Neff, and Y. Suzuki, Phys. Rev.

C 84, 054003 (2011).
[12] R. B. Wiringa, R. Schiavilla, S. C. Pieper, and J. Carlson, Phys.

Rev. C 78, 021001(R) (2008).
[13] A. Kievsky, S. Rosati, and M. Viviani, Nucl. Phys. A 551, 241

(1993) (private communication).
[14] H. Morita, Y. Akaishi, O. Endo, and H. Tanaka, Prog. Theor.

Phys. 78, 1117 (1987).
[15] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C

51, 38 (1995).
[16] B. S. Pudliner, V. R. Pandharipande, J. Carlson, S. C. Pieper,

and R. B. Wiringa, Phys. Rev. C 56, 1720 (1997).

[17] H. Baghdasaryan et al. (CLAS Collaboration), Phys. Rev. Lett.
105, 222501 (2010).

[18] C. Ciofi degli Atti, L. P. Kaptari, S. Scopetta, and H. Morita,
Few-Body Syst. 50, 243 (2011).

[19] M. Baldo, M. Borromeo, C. Ciofi degli Atti, Nucl. Phys. A 604,
429 (1996).

[20] M. Alvioli, C. Ciofi degli Atti, L. P. Kaptari, C. B. Mezzetti,
and H. Morita (to be published).

[21] C. Ciofi degli Atti, B. Z. Kopeliovich, C. B. Mezzetti, I.
Potashnikova, and I. Schmidt, Phys. Rev. C 84, 025205
(2011).

[22] M. Alvioli and M. Strikman, Phys. Rev. C 83, 044905
(2011).

[23] E. Piasetzky, L. B. Weinstein, D. W. Higinbotham, J. Gomez,
O. Hena, and R. Shneor, Nucl. Phys. A 855, 245 (2011).

[24] T. Frick, H. Muther, A. Rios, A. Polls, and A. Ramos, Phys. Rev.
C 71, 014313 (2005).

021001-5

http://dx.doi.org/10.1126/science.1156675
http://dx.doi.org/10.1103/PhysRevC.53.1689
http://dx.doi.org/10.1103/PhysRevLett.98.132501
http://dx.doi.org/10.1103/PhysRevLett.98.132501
http://dx.doi.org/10.1103/PhysRevC.84.054003
http://dx.doi.org/10.1103/PhysRevC.84.054003
http://dx.doi.org/10.1103/PhysRevC.78.021001
http://dx.doi.org/10.1103/PhysRevC.78.021001
http://dx.doi.org/10.1016/0375-9474(93)90480-L
http://dx.doi.org/10.1016/0375-9474(93)90480-L
http://dx.doi.org/10.1143/PTP.78.1117
http://dx.doi.org/10.1143/PTP.78.1117
http://dx.doi.org/10.1103/PhysRevC.51.38
http://dx.doi.org/10.1103/PhysRevC.51.38
http://dx.doi.org/10.1103/PhysRevC.56.1720
http://dx.doi.org/10.1103/PhysRevLett.105.222501
http://dx.doi.org/10.1103/PhysRevLett.105.222501
http://dx.doi.org/10.1007/s00601-010-0127-3
http://dx.doi.org/10.1016/0375-9474(96)00144-3
http://dx.doi.org/10.1016/0375-9474(96)00144-3
http://dx.doi.org/10.1103/PhysRevC.84.025205
http://dx.doi.org/10.1103/PhysRevC.84.025205
http://dx.doi.org/10.1103/PhysRevC.83.044905
http://dx.doi.org/10.1103/PhysRevC.83.044905
http://dx.doi.org/10.1016/j.nuclphysa.2011.02.050
http://dx.doi.org/10.1103/PhysRevC.71.014313
http://dx.doi.org/10.1103/PhysRevC.71.014313

