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Microscopic composition of ion-ion interaction potentials
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We present a new method to calculate the total ion-ion interaction potential in terms of building blocks,
which we refer to as “single-particle interaction potentials.” This allows also the composition of the separate
contributions of neutrons and protons to the interaction potentials. The method is applied to nuclear collisions
via the use of time-dependent Hartree-Fock theory.
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Introduction. The knowledge of interaction potentials be-
tween composite many-body systems is of fundamental impor-
tance for predicting the outcome of reactions involving such
entities. These are often modeled using empirical functions
that depend on macroscopic variables, such as the distance
between the two centers, treating the composite objects as
structureless particles and ignoring the microscopic origins
of these potentials (e.g., Lennard-Jones potential for rare-gas
atoms [1] and nucleon-nucleon potentials [2]). On the other
hand, microscopic approaches try to obtain such potentials
by including the interactions of the constituents, such as
the building blocks, and calculating the whole potential as
a function of some set of macroscopic variables (e.g., Born-
Oppenheimer approximation for molecules [3] and deformed
shell models for nuclei [4]). However, the total potential
obtained this way does not reveal the contribution coming
from individual single-particle states. Quoting Schrödinger,
the “best knowledge of a whole does not necessarily include
[the] best possible knowledge of the parts.” The entangle-
ment of these contributions may yield further insight as to
the interaction of many-body systems via a representative
potential.

Most common microscopic approaches for calculating
interaction potentials usually employ the adiabatic or sudden
approximations for the relative motion of the interacting
systems [5]. Recently, we have introduced a new microscopic
approach for the calculation of ion-ion potentials for nuclear
collisions. This method is based on the time-dependent
Hartree-Fock (TDHF) description of nuclear collisions cou-
pled [6] with a constraint on the local density at the given
instant of time. Interaction potentials obtained using the
so-called density-constrained-TDHF (DC-TDHF) method [7]
have been successful in describing fusion cross sections for a
number of systems [8]. The new approach we will describe
below is generally suitable for microscopic calculations
provided Koopmans’ theorem [9] is applicable.

Formalism. The microscopic approaches based on the
mean-field approximation often use the energy difference
between the combined system and the asymptotic energies
of the individual systems to calculate the ion-ion interaction
potential as

V (R) = EA1+A2 (R) − E
(0)
A1

− E
(0)
A1

, (1)

where EA1+A2 (R) is the total energy obtained for the combined
system as a function of the distance R between the two ions
and E

(0)
Ai

are the individual binding energies of the two systems
calculated using the same interaction. The binding energies are
often calculated either by integrating the energy density over
all space E = ∫

d3rH(r) or via Koopmans’ expression E =
1
2

∑
α wα(tα + εα), where wα denotes the occupation probabil-

ity of the single-particle state α. This mixture of half kinetic en-
ergies tα and half single-particle energies εα applies to Hartree-
Fock calculations employing purely two-body forces. For
mean-field calculations based on density-dependent effective
forces [10] or energy-density functionals [11], a rearrangement
term needs to be added to the above expression [12]. This can
be disentangled to single-particle energies and a rearrangement
term as

E = 1

2

∑
α

wα(tα + εα) − 1

2
Tr

(
〈HF|δv

δρ
|HF〉ρ

)
, (2)

where v is the density-dependent part of the interaction. We
can deduce a generalized single-particle sum from this by
decomposing the second ρ in the rearrangement term into
single-particle densities as ρ = ∑

α ρα , yielding

E = 1

2

∑
α

wα(tα + εα + ε̃α), (3)

where ε̃α is the single-particle rearrangement energy arising
from the above modification. All of the binding energies
comprising the ion-ion interaction potential via Eq. (1) can be
expressed using the above form. In terms of these expressions
the ion-ion interaction potential can be represented as a sum
over single-particle interaction potentials as

V (R) =
∑

α

wαvα(R) (4)

with

vα(R) = 1
2

[
(tα + εα + ε̃α) (R) − (

t0
α + ε0

α + ε̃0
α

)]
, (5)

where the quantities with the superscript 0 denote the asymp-
totic values. This decomposition is sensible if the single-
particle energies are good representatives of the corresponding
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separation energies according to Koopmans’ theorem [9]
and if the rearrangement corrections remain small. Such a
situation is given in the application example discussed below,
namely, nuclear mean-field calculations using Skyrme forces.
In this case, the proton and neutron interaction potentials are
obtained simply by summing the single-particle potentials
vα(R) over all protons or neutrons, respectively. Strictly
speaking, Koopmans’ theorem applies only to closed-shell
nuclei, and it remains valid only if there are no dramatic
changes in deformation when removing one particle. However,
it is generally found to be a good approximation for light nuclei
where pairing forces are negligible. For heavier systems where
pairing interactions become sizable, the formalism can only
be used for systems near closed shells where the pairing gap
vanishes. For electronic energy-density functionals, one has
to employ a self-interaction correction to restore Koopmans’
theorem approximately [13,14].

Results. For the application of the above concepts we have
used the DC-TDHF approach [7]. In this approach TDHF time
evolution takes place with no restrictions. At certain times
during the evolution, the instantaneous densities ρp/n(r, t)
are used to perform a static Hartree-Fock minimization while
holding the neutron and proton densities constrained to be the
instantaneous TDHF densities [15]. In essence, this introduces
the concept of an adiabatic reference state for a given TDHF
state. The difference between these two energies represents
the internal energy. The adiabatic reference state is the
one obtained via the density-constraint calculation, which
is the Slater determinant with lowest energy for the given
density with vanishing current and approximates the collective
potential energy after the subtraction of the static binding
energies as shown in Eq. (1). All of the dynamical features
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FIG. 1. (Color online) Interaction potential for a head-on collision
of 16O+16O at Ecm = 12 MeV. The black curve is the total ion-ion
interaction potential. The red and blue curves show the contribution
to the total potential coming from protons and neutrons, respectively.
Also shown is the point Coulomb potential.

included in TDHF are naturally included in the DC-TDHF
calculations.

In practice, we have used the Skyrme SLy4 effective nuclear
interaction [16] for our calculations. The rearrangement terms
described above can be written as

ε̃α = ε̃(3)
α + ε̃(C)

α + ε̃(DC)
α (6)

with

ε̃(3)
α = − γ

12
t3

∫
d3rραργ−1

[ (
1 + x3

2

)
ρ2

−
(

1

2
+ x3

) (
ρ2

n + ρ2
p

) ]
,

ε̃(C)
α = −1

2

(
3

π

) 1
3

e2
∫

d3rραρ
1
3
p , α ∈ {protons},

ε̃(DC)
α = −1

2

∫
d3rραλn,p(r),

where we have defined ρα = ψ∗
α (r)ψα(r) and λ(r) is the

coordinate-dependent Lagrange multiplier for the density
constraint [15]. The subscripts n and p in the rearrangement
term for the density constraint indicate a choice corresponding
to the isospin content of the index α. The summation over α
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FIG. 2. (Color online) Contribution of neutron single particles
to the interaction potential for a head-on collision of 16O+16O at
Ecm = 12 MeV. The sum of all these potentials gives the neutron
curve in Fig. 1. The arrow marked RB indicates the barrier top of the
total potential shown in Fig. 1.
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exactly reproduces the total rearrangement energies obtained
by direct integration.

The first collision studied is 16O+16O at Ecm = 12 MeV.
In Fig. 1 we show the total interaction potential (black
curve) as well as the contributions coming from neutrons and
protons to this total potential. The total interaction potential
is numerically identical to the one obtained in standard DC-
TDHF calculations using the integral of the energy density to
obtain the terms in Eq. (1). In general, DC-TDHF calculations
show that the ion-ion potential depends on the energy Ecm.
For light systems like 16O+16O, the energy dependence is
found to be negligible (see Ref. [17], Fig. 1), but for heavier
systems such as 16O+208Pb [8] and 48Ca+238U [18], the energy
dependence is appreciable. The individual neutron and proton
contributions were obtained by doing the α summation over the
neutron and proton single-particle orbitals, respectively. As a
reference we also show the point Coulomb interaction. As can
be seen from the figure, the outer part of the potential barrier
is primarily determined by the interaction potential between
the protons of the two nuclei while the neutron potential is
essentially zero. In other words the neutron-proton interaction
does not influence the outer-barrier region. While inside the
barrier, neutrons provide all of the attraction, and the proton
potential remains positive for all R values.

In Fig. 2 we show the individual neutron single-particle
potentials for the 16O+16O system. In spite of using three-
dimensional Cartesian coordinates, we are able to calculate
some quantum numbers when the solution possesses good
symmetry. In this case, spherical initial 16O nuclei allow the
use of spherical quantum labels at the asymptotic position of
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FIG. 3. (Color online) Same as Fig. 2 but for protons.

the two nuclei. On the other hand, when the nuclei overlap,
the system becomes approximately axially symmetric, thus
allowing the computation of parity and the z component of the
total angular momentum. The reassignment of parities and the
behavior of the states as they evolve toward smaller R values
are noteworthy. For smallest R values the filling of the levels
resembles that for a single-centered 32-particle system. The
trend seen in the actual single-particle energies is relatively
easy to understand; the two oxygen nuclei are initially far
apart and are brought together. While they are far apart and
isolated, the nuclei have identical energy levels. However, as
the separation between the two nuclei becomes smaller, the
single-particle states begin to overlap. The Pauli principle
dictates that no two nucleons in an interacting system may
have the same quantum state. Therefore, each (doubled) energy
level of the isolated nuclei splits into two orbitals, one lower in
energy than the original level and one higher. This can be most
easily seen for the two initial 1s1/2 states. However, in addition
to energy splitting, the parity of one of these states also changes
from positive to negative since no more than two neutrons can
be in the 1s1/2 state. (Each state is originally occupied by two
neutrons, wα = 2.) In the language of molecular physics, the
states that attain a lower energy than their asymptotic value
are referred to as bonding states whereas the states that evolve
to a higher energy are antibonding states [3].

In the case of nuclear reactions leading to fusion, bonding
states are the states driving the system toward fusion whereas
antibonding states resist the fusion process. We observe that
not all neutron states are bonding states, but to the contrary
about half are actually antibonding in character for small R

values. One of the p3/2 states [green (gray) curve] makes a
transition from antibonding to bonding for smaller R values.
Another manifestation of the bonding and antibonding states
is their spatial localization. Bonding states are localized in the
interior part of the combined system as opposed to antibonding
states that are more spread out as can been seen from the
single-particle moments. The time-dependent wave functions
in TDHF are conceptually very different from the adiabatic
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FIG. 4. (Color online) Interaction potential for a head-on collision
of 16O+24O at Ecm = 12 MeV.
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FIG. 5. (Color online) Same as Fig. 4 but for a head-on collision
of 40Ca+40Ca at Ecm = 55 MeV.

basis states of the two-center shell model (TCSM), being
very complicated superpositions of these, and a comparison
is meaningful only in the initial phase of very low-energy
reactions [19].

Figure 3 shows the contribution of proton single-particle
states to the total ion-ion potential. The trend of the proton
states is essentially the same as that of the neutron states with
the exception of the rise from the zero-potential line (dotted
lines) due to the presence of the Coulomb interaction. The
sum of all these proton single-particle potentials reproduces
the point Coulomb potential for the two incoming nuclei as
can be observed in Fig. 1.

We have also performed calculations for head-on collisions
of 16O+24O at Ecm = 12 MeV and for 40Ca+40Ca at Ecm =
55 MeV. In Fig. 4 we show the neutron and proton potentials
for the 16O+24O system. We note that in comparison to the
16O+16O system, the potential minimum is considerably lower
due to the presence of eight extra neutrons. The surplus
bending from the extra neutrons also affects the proton
potential, bringing it down to negative values for small R.
We also note that the neutron potential starts its dip to negative
values at larger R values than the 16O+16O case, thus bringing
the total barrier maximum to a lower value. Figure 5 shows the
same quantities for the 40Ca+40Ca system. The behavior of the
proton potential is significantly different in this case. Inside the
barrier the proton potential is essentially constant, and it only
rises as the minimum value of R is reached. This is probably
due to the stronger Coulomb potential which counterweights
the nuclear binding. While the neutron and total potentials
appear intuitively as expected, the proton potential behaves in
an unexpected manner. This difference is due to the fact that
here we are dealing with a finite-extent charge distribution
at a microscopic level and not the point-charge Coulomb
potential.
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FIG. 6. (Color online) Same as Fig. 4 but for a head-on collision of
48Ca+132Sn at Ecm = 120 MeV. The insert magnifies the barrier-top
region.

This is further evidence that the total potential may be masking
some interesting features of its building blocks. In order to
further explore the proton-potential behavior, we have repeated
our calculations for a heavier system 48Ca+132Sn at Ecm =
120 MeV. In Fig. 6 we show the breakdown of the total ion-ion
potential to neutron and proton parts for this collision. We
observe that in this case the proton potential actually rises for
smaller R values in comparison to the 40Ca+40Ca case, which
can be more clearly seen in the insert of Fig. 6.

Conclusions. We have introduced a general approach for
the calculation of single-particle interaction potentials as the
building blocks of the total interaction potential for two
fragments of finite fermion systems. The formulation is general
provided Koopmans’ theorem is applicable to the underlying
energy functional used for the many-body calculations. The
formalism is applied to calculate ion-ion potentials for nuclear
reactions using TDHF for the time evolution of the nuclear
collision together with the density-constraint formalism to
find the corresponding adiabatic reference state. We show the
contribution of single-particle potentials to the total potential
for the 16O+16O case. We identify repulsive and attractive
contributions as bonding and antibonding states, respectively.
Perhaps the more obvious aspect is the identification of neutron
and proton contributions to the total potential wherein we see
clearly the subtle interplay between Coulomb repulsion and
nuclear attraction for the protons while neutrons are always
the dominant contributors to binding.
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