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Phase separation in low-density neutron matter
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Low-density neutron matter has been studied extensively for many decades, with a view to better understanding
the properties of neutron-star crusts and neutron-rich nuclei. Neutron matter is beyond experimental control, but
in the past decade it has become possible to create systems of fermionic ultracold atomic gases in a regime close to
low-density neutron matter. In both these contexts pairing is significant, making simple perturbative approaches
impossible to apply and necessitating ab initio microscopic simulations. Atomic experiments have also probed
polarized matter. In this work, we study population-imbalanced neutron matter (possibly relevant to magnetars
and to density functionals of nuclei) arriving at the lowest-energy configuration to date. For small-to-intermediate
relative fractions, the system turns out to be fully normal, while beyond a critical polarization we find phase
coexistence between a partially polarized normal neutron gas and a balanced superfluid gas. As in cold atoms,
a homogeneous polarized superfluid is close to stability but not stable with respect to phase separation. We also
study the dependence of the critical polarization on the density.
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I. INTRODUCTION

The phase structure of polarized (or population-
imbalanced) Fermi gases is very rich. The energetically
favored phase depends on the masses and relative populations
of the species, the interaction strength, and whether the
interactions are long ranged. Polarized gases can exist in a
variety of physical systems, including ultracold trapped atomic
Fermi gases [1], dense hadronic phases near the cores of
neutron stars [2–4], and possibly quark matter [5].

In this paper, we focus on the possibility that neutrons in the
inner crust of neutron stars are spin-polarized [6]. Theoretical
calculations suggest that this region, which is about a kilometer
thick, features unbound neutrons while the protons cluster in
neutron-rich nuclei. While interactions with nuclei affect the
properties of the unbound neutrons [7,8], in this work we
consider an isolated neutron fluid and compute the conditions
for the coexistence of an unpolarized phase and a polarized
phase at densities roughly 30–250 times smaller than the
nuclear saturation density. A polarized phase in the neutron
star crust will have a larger specific heat and, therefore, its
presence may affect the time scales associated with observed
crustal transient phenomena [9]. Neutron superfluidity also
affects thermal transport properties [10,11]. If the polarization
is large enough, all effects of superfluidity are expected to
disappear.

At the low densities we consider, the dominant term in
the interaction between spin-up and spin-down neutrons is
an s-wave potential with a scattering length a ∼ −18.6 fm
and range re ∼ 2.7 fm. In a balanced system this attraction
drives the formation of Cooper pairs of spin-up and spin-down
neutrons of opposite momenta resulting in a neutron superfluid
whose properties can be understood qualitatively using BCS
theory. All the neutrons are paired and the number of up
and down species is equal. Even at densities much smaller
than the nuclear saturation density, a is much larger than
the interparticle spacing and obtaining quantitatively reliable

results requires nonperturbative techniques. Detailed quantum
Monte Carlo (QMC) simulations have calculated the energy
density E up to densities equal to or larger than the nuclear
saturation density [12,13]. At low densities, the s-wave pairing
gap obtained peaks at nearly 2 MeV.

Magnetic fields tend to split the up and down Fermi surfaces
thus disrupting the pairing and creating a polarization. For
magnetic fields (B) smaller than 1016–1017 Gauss, pairing
wins (assuming no effect coming from the lattice of nuclei),
while larger fields can create a polarized phase. In BCS
theory, the critical field, or the resulting chemical potential
split (δμ = gNμNB, where gNμN is the neutron magnetic
moment), is called the Clogston-Chandrasekhar point. At this
point, the BCS superfluid can coexist in equilibrium with a
partially polarized normal phase, which is essentially a gas
of free neutrons. Numerically, δμc = �/

√
2, where � is the

gap in the BCS phase. A weakly polarized gas of neutrons
confined in a volume forms a mixed phase [14] consisting of
the BCS and normal phases with volume fractions depending
on the polarization. Hartree corrections substantially modify
the Clogston-Chandrasekhar point even for modest couplings
|kF a| ∼ 0.5, where kF = (3π2n)1/3 is the Fermi wave vector
[15].

At strong coupling (mathematically given by |kF a| � 1)
the energies of both the superfluid and the normal phase need
to be computed nonperturbatively. In this paper, we perform
these calculations for the normal phase and find the critical
polarization at which it can coexist with the superfluid phase.
We also compare the energy of a phase separated state with
the previously evaluated [6] homogeneous polarized superfluid
phase. In this paper, we only consider the competition between
homogeneous and isotropic phases and ignore the possibility
of promising but still unconfirmed scenarios (like p-wave [16]
and inhomogeneous phases [17]).

As mentioned above, our microscopic ab initio calculations
may impact the observed behavior of neutron stars with
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extremely large internal magnetic fields. It is interesting to
concurrently examine possible connections of such simula-
tions with terrestrial experiments. Our results may be useful
for constraining density functional theories (DFTs) that are
employed to study properties of heavy nuclei. Equation of
state results at densities close to the nuclear saturation density
have been used for some time to constrain Skyrme and
other density functional approaches to heavy nuclei [18]. The
potential significance of such calculations has led to a series
of publications on the equation of state of low-density neutron
matter over the last few decades [12,19–29]. The density-
dependence of the 1S0 gap in low-density neutron matter has
also been used to constrain Skyrme-Hartree-Fock-Bogoliubov
treatments in their description of neutron-rich nuclei [30].
Similarly, an ongoing project is studying the limit of extreme
polarization in neutron matter [31]. This limit is known
in condensed-matter physics as the “polaron” problem: one
impurity embedded in a sea of fermions. Quantities of interest
here include the polaron binding energy and its effective mass,
which can be used to constrain Skyrme and other functionals.
In this line of study, DFTs can be constrained by the equation
of state of polarized unpaired neutron matter that we report
here.

Another connection of our calculations with experiment
may be possible through the field of atomic ultracold Fermi
gases. There, the scattering length of the interaction between
two hyperfine states near a Feshbach resonance can be tuned
by changing the magnetic field. Most experiments have been
performed in the region where the scattering length is infinite
(unitarity limit) and the effective range is negligible [32–36].
QMC calculations performed with the same techniques that
we use here in the same limit give results that agree well with
the experiments for both unpolarized [13,37,38] and polarized
[39–42] Fermi gases and this gives us confidence in applying
the same techniques to the problem with finite a and re. More
directly, by tuning the scattering length and the effective range

[43], it may be possible to obtain a system with similar values
of kF a and kF re as the inner crust and test our results.

II. CONSTRUCTION OF THE MIXED PHASE

The conditions for a polarized phase (P ) to be in phase
equilibrium with an unpolarized superfluid (SF ) phase are as
follows:

(i) The pressures of the two phases should be equal.
(ii) The average chemical potential of the two species in

the phases, μ = (μa + μb)/2, should be equal.
(iii) The chemical potential splitting, δμ = (μa − μb)/2,

should be less than the gap � in SF .

We construct the mixed phase between the superfluid and
the partially polarized normal phase (NP ). The pressure in
a polarized phase depends on the net density of fermions
(na + nb = n) and their relative fraction x = nb/na where a

(or ↑) is the majority species.
Motivated by the unitary Fermi gas [44,45], we write down

the energy density as:

E(na, nb) = 3

5

(6π2)2/3

2m
[nag(x, n)]5/3. (1)

For convenience we denote the energy per particle by E and
the corresponding energy for a free gas by EFG = 3k2

F /(10m).
In terms of E, g(x, n) = (E/EFG(↑))3/5.

For the unitary gas, the discussion of mixed phases is
simplified greatly since the function g is only a function of x.
In neutron matter, the interaction potential has inherent scales
(these can be thought of simplistically as a and re). To satisfy
the conditions of phase equilibrium, we need to calculate
the chemical potentials and the pressure, which include the
functional dependence of g on both x and n. The chemical
potential is

μ = ∂E
∂n

∣∣∣∣
δn

= 32/3π4/3
(

n
x+1

)2/3
g(x, n)2/3

[
2n

x+1
∂g

∂n
(x, n) + (1 − x) ∂g

∂x
(x, n) + g(x, n)

]
24/3m

. (2)

The chemical potential splitting is

δμ = ∂E
∂δn

∣∣∣∣
n

= 32/3π4/3
(

n
x+1

)2/3
g(x, n)2/3[(−x − 1) ∂g

∂x
(x, n) + g(x, n)]

24/3m
. (3)

The pressure is simply P = −E(n, δn) + μn + δμδn, where δn = na − nb.
For the unpolarized superfluid (x = 1), the function g depends only on the density (δn = 0) and we have:

μSF = 32/3π4/3
(

n
2

)2/3
gSF (n)2/3

[
n

∂gSF

∂n
(n) + gSF (n)

]
24/3m

. (4)

To organize the discussion it is convenient to start from the completely polarized (x = 0) gas. Here, the interactions between
the only species present are weak and the ground state is well described by a normal phase. (p-wave pairing and interactions will
modify the energy of the fully polarized neutron gas from a free Fermi gas. As we discuss in Sec. III, we include the effect of
p-wave interactions exactly, but ignore p-wave pairing.)
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FIG. 1. (Color online) Ground-state energy per particle (in units
of the free Fermi gas energy) scaled to the power of 3/5 for normal
spin-polarized neutron matter. Shown are QMC results at three
different total densities n1, n2, n3 (as points: black circles, red squares,
blue diamonds, respectively), along with cubic fits to the Monte Carlo
results (as lines: black solid, red dashed, blue dotted, respectively).
Also shown using hollow symbols are the results for an unpolarized
superfluid.

Now consider the following thought experiment. Keeping
the density n constant, change a few a fermions to b fermions
so that x changes. For small x, we expect that the phase
obtained will be a partially polarized normal phase. As we
increase the fraction of b fermions, it is possible that some
polarized superfluid phase (SFP ) becomes the favored state
of matter. Another possibility is that at some fractional density
xc, it becomes favorable to form a mixed phase between the
partially polarized normal phase (NP ) and the unpolarized
superfluid phase (SF ). In the present section, we will focus
on the mixed phase between NP and SF . In Sec. III we will
calculate the energy for the polarized normal gas (NP ) phase
and in Sec. IV we will look at the competition between the
homogeneous polarized superfluid (SFP ) of Ref. [6] and the
mixed phase.

Equating the chemical potentials and the pressures gives
two equations in two variables, xc and nSF . nSF is the total
superfluid density and nNP is the total density of the normal
phase. For x > xc one can find the coexistence curve in (x, n)
space. Suppose that a volume fraction v is occupied by the
NP phase and the rest (1 − v) by the superfluid phase. Then

n(v) = vnNP + (1 − v)nSF (5)

x(v) =
[

xc

1+xc
nNP + (1 − v) nSF

2

]
[

1
1+xc

nNP + (1 − v) nSF

2

] , (6)

where v ∈ [0, 1].
The parametric dependence on v can be eliminated to find

g(x, nNP ) along the coexistence curve. The coexistence curve
(for example, see dashed curve in Fig. 2) should not be seen
as the continuation of the NP curve at constant density, since
the density changes along it. It is simply a projection of the
coexistence curve in (g, x, n) space, on the (g, x) plane.
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FIG. 2. (Color online) The construction of the mixed phase at
density n1. Shown is the energy of a normal neutron gas from Fig. 1
of the present work (black solid line), along with the homogeneous
superfluid results of Refs. [6,47] (red square points), and a tangent
construction showing the phase coexistence curve (green dashed line).
For large values of the relative fraction, the phase separated state
is energetically favored with respect to a homogeneous polarized
superfluid.

To proceed with the calculation of the coexistence curve,
we need to calculate g(x, n) for the NP phase and gSF (n) for
the SF phase. We use quantum Monte Carlo techniques to
calculate the energies at a few values of (x, n) and interpolate
to determine the functional dependence. This is discussed next.

III. GREEN’S FUNCTION MONTE CARLO SIMULATIONS

The Hamiltonian for low-density neutron matter is

H =
N∑

k=1

(
− h̄2

2m
∇2

k

)
+

∑
i<j ′

v(rij ′), (7)

where N is the total number of particles. The neutron-neutron
interaction is not purely s wave but still somewhat simple if
one considers the AV4′ formulation [46]:

v4(r) = vc(r) + vσ (r)σ 1 · σ 2. (8)

In the case of S = 0 (singlet) pairs, this gives

vS(r) = vc(r) − 3vσ (r). (9)

However, it also implies an interaction for S = 1 (triplet) pairs:

vP (r) = vc(r) + vσ (r). (10)

Reference [47] explicitly included such p-wave interactions in
the same-spin pairs (the contribution of which was small even
at the highest density considered) and perturbatively corrected
the S = 1,MS = 0 pairs to the correct p-wave interaction.

In these calculations it is customary to first employ a
standard variational Monte Carlo simulation, which minimizes
the expectation value of the Hamiltonian given a variational
wave function �V . At a second stage, the output of the
variational Monte Carlo calculation is used as input in a
fixed-node Green’s function Monte Carlo simulation, which
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projects out the lowest-energy eigenstate �0 from the trial
(variational) wave function �V . This is accomplished by
treating the Schrödinger equation as a diffusion equation in
imaginary time τ and evolving the variational wave function
up to large τ . The ground state is evaluated from

�0 = exp[−(H − ET )τ ]�V

=
∏

exp[−(H − ET )�τ ]�V , (11)

evaluated as a branching random walk. The fixed-node approx-
imation gives a wave function �0 that is the lowest-energy state
with the same nodes (surface where � = 0) as the trial state
�V . The resulting energy E0 is an upper bound to the true
ground-state energy.

The ground-state energy E0 can be obtained from

E0 = 〈�V |H |�0〉
〈�V |�0〉 = 〈�0|H |�0〉

〈�0|�0〉 . (12)

The variational wave function is taken to be of the following
form:

�V (R) =
∏
i 
=j

fP (rij )
∏
i ′ 
=j ′

fP (ri ′j ′ )
∏
i,j ′

f (rij ′)	(R). (13)

In our earlier works, we studied superfluid neutron matter and,
therefore, used a trial wave function of the Jastrow-BCS form
with fixed particle number [6,13,47]. In the present work, we
are attempting to determine the stability of different phases. In
order to do this, we have completely mapped out the energy
of a normal (i.e., nonsuperfluid) neutron gas as a function of
the polarization at different densities. Thus, the 	(R) we used
in Eq. (13) describes the particles as being in a free Fermi gas
(i.e., lets all the correlations lie within the Jastrow functions).
In other words, the wave function is composed of two Slater
determinants (one for spin-up particles and one for spin-down
ones):

	S(R) = 	S(R)N↑	S(R)N ′
↓ , (14)

where

	S(R)N↑ = A[φn(r1)φn(r2) . . . φn(rN↑)] (15)

and

	S(R)N ′
↓ = A[φn(r1′)φn(r2′) . . . φn(rN ′

↓)]. (16)

The primed (unprimed) indices correspond to spin-up (spin-
down) neutrons and N↑ + N ′

↓ = N . A is the antisymmetrizer
and φn(rk) = eikn·rk /L3/2.

The Jastrow part is usually taken from a lowest-order-
constrained-variational method calculation described by a
Schrödinger-like equation:

−h̄2

m
∇2f (r) + v(r)f (r) = λf (r),

for the opposite-spin f (r) and by a corresponding equation for
the same-spin fP (r). Since the f (r) and fP (r) are nodeless,
they do not affect the final result apart from reducing the
statistical error.

We calculate ground-state energies at different total
number densities [n = (N↑ + N↓)/L3], more specifically
at n1 = 6.65 × 10−4, n2 = 2.16 × 10−3, and n3 = 5.32 ×

10−3 fm−3. To put these densities into perspective, we
can compare them to nuclear matter saturation density:
they are 0.41, 1.35, and 3.32%, respectively, of n0 =
0.16 fm−3. These simulations were performed at values
of the relative fractions chosen specifically in order to
ensure a full coverage of the x axis. More specifically,
simulations were carried out at relative fractions of x =
0, 0.333, 0.579, 0.818, 1, corresponding to particle num-
bers of 33 + 0, 57 + 19, 57 + 33, 33 + 27, 33 + 33, re-
spectively. These systems are quite large (and therefore
computationally demanding) so as to ensure a minimization of
finite-size effects (see also Refs. [13,47,48]).

The results are shown in Fig. 1 as points (circles, squares,
and diamonds, respectively), along with cubic fits to the
microscopic data. The latter will be useful to us in the following
section, when we try to check the relative stability of different
phases. To facilitate the use of these results in connection
with Eq. (1), we have divided the ground-state energies with
the energies of corresponding free spin-up Fermi gases and
raised the result to the 3/5 power. When x = 0, we see that
the values are very close to 1, though still above it: this is
due to the same-spin p-wave interactions. Similarly, as we
increase the density, the energy is decreased, a fact that, as we
see in Fig. 1, holds at any relative fraction x. The statistical
errors of the quantum Monte Carlo results are smaller than
the symbols shown in the figure. Also, shown to the right of
the figure are the QMC results for an unpolarized superfluid
at the three densities of interest (hollow circles, squares, and
diamonds, respectively). The results for n1 and n2 were taken
from Ref. [47]; the value at n3 was reoptimized for the purposes
of the present work.

IV. PHASE COMPETITION

Having arrived at the functional dependence of the energy of
a normal neutron gas on the relative fraction [thereby getting
information on the g(x, n) function defined in Eq. (1) and
appearing in the rest of Sec. II], we can now use the simple
cubic fits for the three densities n1, n2, n3 to determine the
competition between different phases. More specifically, Fig. 1
shows the behavior of the NP (normal polarized) equation of
state. From the hollow points on the same figure, we also have
access to the energy of the SF (unpolarized superfluid) phase.
Using these two dependences, we can find out the critical
values of the relative fraction (xc1, xc2, xc3, respectively) at
the three densities we are studying. Above a critical relative
fraction, the system phase separates into a mixture of SF and
NP, whereas below that value the neutron gas is normal and,
therefore, does not exhibit any of the widely studied features
of a superfluid in the neutron star crust.

To determine xc we need the functional dependence of
g(x, n) on both x and n, which is given by the interpolations
for n1, n2, and n3. Let us first focus on n2. In Eq. (2) we also
need the derivative with respect to n. We estimate this deriva-
tive by finite differences: [g(x, n2) − g(x, n1)]/(n2 − n1) and
[g(x, n3) − g(x, n2)]/(n3 − n2). We estimate the derivatives
for SF used in Eq. (4) with a linear form in 1/(kF a) and
kF re. In practice, ∂g

∂n
is small and doesn’t affect the value of
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xc and nSF significantly. We can then solve the conditions for
coexistence and find xc and nSF . The numerical values show
slight dependence on the interpolation method used. A simple
cubic fit as a function of x gives xc2 = 0.78 and nSF = 2.17 ×
10−3 fm−3. A three-parameter fit in (1, x, x5/3) motivated
by [1,40] gives xc2 = 0.77 and nSF = 2.18 × 10−3 fm−3. This
gives some idea about the errors made in the interpolation:
we estimate our error bar on xc to be 0.02 for the three
densities. This detailed procedure gives results very similar
to a simpler procedure, namely constructing a tangent to the
constant density NP curve for g(x, n) passing through the
value of gSF (n) at the same density, which gives xc2 = 0.78.
The close agreement between the two approaches stems from
the fact that ∂g

∂n
is small—for ∂g

∂n
= 0, the coexistence curve is

given exactly by the tangent construction [45]. Therefore, we
will use the tangent construction to find xc for n1 and n3 below.

This analysis requires that for x < xc the normal phase
is thermodynamically stable. That is, the eigenvalues of the
matrix d2E

dnidnj
are positive. For n = n2 we can check and have

checked explicitly that this is the case. Finally, we find δμ

at xc2 is given by δμc2/EF = 0.16(2) where EF = (k2
F /2m).

Comparing with �SF2/EF ∼ 0.23 obtained from Ref. [47],
we see that �SF2 > δμc2 satisfying the third condition for
coexistence.

In Fig. 2 we have plotted as a black solid line the n1 results
from Fig. 1; at this density, the perturbative S = 1,MS = 0
correction in the Hamiltonian mentioned in Sec. III is the
smallest, leading to the highest degree of confidence in the
accuracy of our microscopic results. We focus on large values
on the x axis for reasons that will soon become clear. We also
show as red square points the unpolarized superfluid result
from Ref. [47] (at x = 1) and the homogeneous polarized
superfluid results of Ref. [6] (at smaller x). In addition, we
show a coexistence curve, which is arrived at by a tangent
construction from the unpolarized superfluid to the normal
polarized curve when the y axis is chosen as we have [45]. This
coexistence line meets the NP curve at xc1 = 0.74 (δμc1/EF =
0.2). As can be clearly seen in Fig. 2, the coexistence line lies
below the homogeneous polarized superfluid quantum Monte
Carlo results, implying that these are not energetically favored
(foreseeing this possibility, Ref. [6] included a critical assump-
tion explicitly excluding the possibility of phase separation).
This situation follows the behavior of ultracold fermionic gases
at unitarity [1,40,41]: there the critical value of the relative
fraction was closer to xc = 0.44. The value we find is different
for a variety of reasons: first, n1 corresponds to kF a = −5,
which is somewhat smaller than kF a = ∞. More importantly,
the neutron-neutron interaction is characterized by a finite
effective range and the presence of higher partial waves. The
latter point explains why when we repeat this exercise for n2

(kF a = −7.4) and n3 (kF a = −10), the corresponding results
(from tangent constructions) for the critical fraction are xc2 =
0.78 (δμc2/EF = 0.16) and xc3 = 0.88 (δμc3/EF = 0.07),
respectively. The trend appears to be that at larger density
(stronger coupling) the critical fraction is moving toward 1,
implying that farther down toward the core of the neutron star
polarized neutron matter quickly becomes normal for the vast
majority of possible polarizations.
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FIG. 3. (Color online) Pressure as a function of δμ for fixed
μ = 1.94 MeV. For δμ > δμc = 0.53 MeV, the unpaired phase (bold
black curve) has a higher pressure. At δμc [marked by the vertical
line (brown online)], the SF and the NP phases can coexist. For
smaller δμ, the pressure of the SF phase marked by the horizontal
line (blue online) is larger than the pressure of the NP phase marked
by the dashed line (red online), and the SF phase is favored. On the
other extreme, for δμ = 4.18 MeV, x = 0.0005. We choose μ so that
the density of the normal phase at δμc is n2.

The value of δμc is relevant for neutron star phenomenol-
ogy, since whether δμ is greater or less than δμc determines
the phase. This is seen more simply in the grand canonical
ensemble, where we can compare the pressure as a function
of the chemical potentials. In Fig. 3, we plot the pressure as
a function of δμ for fixed μ = 1.94 MeV. For this value of
μ, the density of the superfluid phase at the critical δμ is n2.
For δμ < δμc, the pressure of the SF phase is larger and the
system is unpolarized. Even if the magnetic field is not large
enough to polarize the system, certain thermal observables,
for example, the specific heat, are sensitive to the difference
between δμ and δμc.

Determining the critical relative fractions is also relevant:
if a magnetic field is strong enough to polarize neutron matter
sufficiently (x � xc), the gas ceases to be superfluid even at
zero temperature. At such large magnetic fields, processes
that rely on the presence of a bulk superfluid in the inner
core of neutron stars, for example, a recently proposed heat-
conduction mechanism that requires superfluid phonons [10],
would no longer be operational. On a different note, a precise
determination of these fractions (along with the rest of the
equation of state) is also significant for Skyrme functional
practitioners: for the region where the NP phase is the true
ground state of the system, the results shown in Fig. 1 are
a microscopic constraint to nuclear energy-density functional
theory, which can help improve its predictions on neutron-rich
heavy nuclei.

V. SUMMARY AND CONCLUSIONS

In summary, we have studied spin-polarized low-density
neutron matter at many values of the polarization. Our
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quantum Monte Carlo approach provides tight upper bounds,
which are expected to be quite close to the true ground-state
energy of the system. At very low density, the Hamiltonian
becomes quite simple and we include its dominant well-
known terms. We have calculated the energy as a function
of polarization using the AV4′ interaction at three different
densities.

One of our main results is a determination of the critical
relative fraction values above which the system phase separates
into an unpolarized superfluid and a polarized normal neutron
gas. Above these values, a homogeneous polarized superfluid
is found not to be energetically favored. Below these values,
the neutron gas is completely normal. Both these facts can
lead to astronomically important consequences. Importantly,
the trend of our results seems to imply that at slightly larger
densities, xc would be very close to one: this would mean
that even at zero temperature a small polarization would be
enough to close the superfluid pairing gap and, thus, easily
lead to larger polarization. In a nonastrophysical context, it is
conceivable that our results could be tested directly by using
ultracold fermionic atom gases with unequal spin populations
and a finite effective range. In cold atoms, quantum Monte
Carlo simulations of spin-polarized matter have in recent
times been repeatedly used as input to computationally less
demanding density-functional theory approaches. Similarly,
we expect that the results presented in this work can also
be used as input to self-consistent mean-field models of
nuclei.

A possible direction for future work, which would be of in-
terest to both nuclear astrophysicists and Skyrme practitioners,
would be a study of the behavior of polarized and unpolarized
superfluid and normal neutron matter in an external periodic
potential. Such a study of the static response of neutron matter
could also in principle be guided (or guide) analogous research
related to optical lattice experiments with cold atoms.

In the neutron star context, it will be useful to analyze
the finite-temperature phase diagram to understand how the
specific heat is modified as a function of the chemical
potential splitting and how this modification affects transient
phenomena in the neutron star crust.
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