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We reconsider a method based on dispersion theory that allows one to extract the scattering length of any
two-baryon system from corresponding final-state interactions in production reactions. The application of the
method to baryon-baryon systems with strangeness S = −2 and S = −3 systems is discussed. Theoretical
uncertainties due to the presence of inelastic channels with near-by thresholds are examined for the specific
situation of the reaction K−d → K0�� and the coupling of �� to the �N channel. The possibility to disentangle
spin-triplet and spin-singlet scattering lengths by means of various polarization measurements is demonstrated
for several production reactions in K−d and γ d scattering. Employing the method to available data on the ��

invariant mass from the reaction 12C(K−,K+��X), a 1S0 scattering length of a�� = −1.2 ± 0.6 fm is deduced.
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I. INTRODUCTION

The baryon-baryon interaction in the strangeness S = −2
sector and, specifically, the �� system has been a topic of
interest for quite some time. The fascination was generated not
least by the possible existence of the so-called H dibaryon, a
deeply bound six-quark state with J = 0, isospin I = 0, and
S = −2, predicted by R. Jaffe in 1977 based on a bag-model
calculation [1]. The binding energies of �� in nuclei, deduced
from sparse information on doubly strange hypernuclei [2–4]
indicated a strongly attractive 1S0 �� interaction and seemed
to be at least not inconsistent with the existence of such
a bound state. The perspective changed drastically when in
2001 a new (and unambiguous) candidate for 6

��He with a
much lower binding energy was identified [5], the so-called
Nagara event, suggesting that the �� interaction should be
only moderately attractive. This hypothesis concurs also with
evidence provided by various searches for the H dibaryon that
did not yield any support for its existence, cf. Refs. [6–8] for
the latest experiments.

However, very recently the H dibaryon was put back on the
agenda. Lattice QCD calculations by the NPLQCD [9,10] as
well as by the HAL QCD [11–13] collaborations provided
evidence for a bound H dibaryon. While the actual com-
putations were performed for pion masses still significantly
larger than the physical one, extrapolations suggest that the H

dibaryon could be still bound by around 0–7 MeV [14] at the
physical point, but it could also move above the �� threshold
and dissolve into the continuum [15–17]. (The original H

dibaryon [1] was expected to be bound by roughly 80 MeV!).
Indeed, the strength of the �� interaction as well as

those of other S = −2 baryon-baryon systems is of rather
general interest, noteably for a better understanding of the
role played by the SU(3) flavor symmetry. Theoretical in-
vestigations of the S = −2 sector that have been performed
within the conventional meson-exchange picture [18–23],
utilizing the constituent quark model [24,25], and also in the
framework of chiral effective field theory (χEFT) [26] all rely

strongly on the SU(3) symmetry as guideline. Furthermore, the
hyperon-hyperon (YY ) interaction plays an important role in
the understanding of the global properties of compact stars
like neutron stars. Their stability and size as well as the
cooling process depend sensitively on the strength of the YY

interaction [27,28].
As indicated above, practically the only experimental

constraint we have so far on the �� interaction comes from the
analyis of double-� hypernuclei. In the present paper we want
to call attention to the fact that there is also another and even
more direct way to determine the strength of the �� force but
also the one in other S = −2 systems. It consists in studying
the final-state interaction (FSI) of reactions where correspond-
ing pairs of hyperons are produced. In fact, recently we
proposed a method for extracting hadronic scattering lengths
from production reactions [30–32]. The presentation of the
method in those publications was done with special emphasis
on its application to the hyperon-nucleon (YN ) interaction.
In particular, the reactions NN → KYN and γ d → KYN

were analyzed, and possible uncertainties of the method were
established. Polarization observables needed to disentangle
different spin states of the final YN system were identified.

In the present paper we explore the possibility of ap-
plying the method proposed in Refs. [30–32] to the ��

system, but also other baryon-baryon states with S = −2
or even S = −3 are considered. Our study is motivated by
the available data on the �� invariant mass distribution
determined in the reaction 12C(K−,K+��X) [8,33]. These
data are afflicted by sizable uncertainties, but still they allow
us to demonstrate the practicability of our method and to
extract an actual value for the �� 1S0 scattering length. In
order to stimulate future dedicated experiments we consider
specifically reactions like K−d → K�� or K−d → K�N

where corresponding high-statistics measurements could be
performed at the Japan Proton Accelerator Research Complex
(J-PARC). The CLAS collaboration at the Thomas Jefferson
National Accelerator Facility has measured γp → K+K+�−
[34] and, thus, it might be feasible that they can perform
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also experiments for γ d → K+K+�N and γ d → K+K0��

[35]. Yet another option are reactions like pp → K+K+��

and pp → K0K0�+�+ which could be measured at the
future Facility for Antiproton and Ion Research (FAIR), for
example. Since the spin structure of these reactions differs
partly from the ones considered in Refs. [30–32] the question
of what polarization observables are needed to disentangle the
singlet and triplet baryon-baryon states has to be readdressed.
Note, however, that for the considered �� system this issue is
not relevant. Near threshold it can only be in the spin-singlet
(1S0) state. Due to the Pauli principle the other S wave, the 3S1,
is forbidden in this case. Thus, no polarization experiment is
required and, consequently, our method could be even applied
to data on �� production on somewhat heavier nuclei, e.g.,
in K− 3He or K− 4He collisions.

Independently of that, the error estimation [30] for the
method has to be redone. Specifically, for the �� system the
inelastic threshold (due to the �N channel) lies with around
25 MeV much lower than for �N (where it is around 80 MeV
and due to the �N channel). However, as we will see, the
latter aspect increases the theoretical error of our method only
marginally, under the discussed reasonable assumptions, and in
the absence of a bound state. Taking into account the possibility
of a bound state requires much more effort and is technically
more complicated. In view of the current extrapolations of the
lattice QCD results which rather seem to disfavor the existence
of a bound state [14–16] we avoid the pertinent complications
in the present study.

For completeness let us mention that FSI effects as a tool
to constrain the �� interaction were considered already many
years ago by Afnan and collaborators [36,37]. Their study was
done under rather different presuppositions, namely for the
reaction �−d → n�� and within the framework of Faddeev
equations. With regard to the �N system there is also an
entirely different possibility to determine the corresponding
scattering lengths, namely via the study of �− atoms. Shifts of
the energy levels due to the presence of the strong interaction
would permit to deduce the scattering lengths for �−p or
�−d, say, via the Deser-Trueman formula. The prospects of
corresponding experiments were discussed in Ref. [38].

The paper is structured as follows. In Sec. II we review
briefly our method. Section III is devoted to the �� system.
First, we provide a new estimation for the error of the scattering
length due to the extraction method, taking into account the
relatively small separation of the �� and �N thresholds.
We then apply our method to available data on the ��

invariant mass spectrum from a measurement of the reaction
12C(K−,K+��X). In Sec. IV we discuss several aspects
of applying our method also to the �N and �� final-state
interactions and even to the strangeness S = −3 sector. The
paper ends with a short summary. Details of the polarization
observables required for separating the spin-singlet and -triplet
states are summarized in the appendix.

II. REVIEW OF THE METHOD

The basic idea of the method is to exploit the scale
separation between a short-ranged production operator and

a long-ranged FSI. In this case, the production operator can
be regarded as pointlike and the FSI can be factored out.
These conditions restrict the class of reactions and kinematic
regimes that one can consider, namely one can apply the
method only to reactions with large momentum transfer qt .
Furthermore, the scattering length a in the system under
consideration must have an appropriate magnitude, i.e., fulfill
the condition a � 1/qt . Sufficiently large scattering lengths
are expected in the baryon-baryon sector. In particular, it
is interesting to study the hyperon-nucleon and hyperon-
hyperon interactions with different strangeness content of
the hyperons. An elegant way to utilize the condition of
scale separation is a dispersion-relation approach. Imposing
unitarity and analyticity constraints on the amplitude and
assuming that there are no bound states, one arrives at the
following expression for the reaction amplitude AS [30,39,40]:

AS(s, t,m2)

= exp

[
1

π

∫ m2
max

m2
0

δS(m′2)

m′2 − m2 − i0
dm′2

]
	(s, t,m2), (1)

where m is the invariant mass of the produced baryon-baryon
system with the threshold value m0, s is the total center-
of-mass energy squared, and t represents all the remaining
kinematic variables the amplitude depends on. The function
	(s, t,m2) slowly varies with m2, which is a consequence of
the assumed large momentum transfer. The cut off mmax has to
be determined in such a way that the integral extends over the
whole region where FSI effects are expected to be important.
Based on scale arguments a condition for mmax was derived in
Ref. [30] which reads, reformulated in terms of the maximum
kinetic energy in the two-baryon system, εmax = mmax − m0 �

1
2a2

Sμ
. Here aS is the scattering length in question and μ is

the reduced mass of the baryon-baryon system. As argued in
Ref. [30], for the hyperon-nucleon interaction a typical cutoff
is given by the condition εmax ≈ 40 MeV. The baryon-baryon
scattering process has to be elastic in this region (i.e., there
should be no other open channels) and it should be dominated
by the s-wave amplitude parametrized by the phase shift
δS(m2). Note that Eq. (1) can be applied only to amplitudes
for a specific baryon-baryon spin state S. Therefore, one
has to be able to separate spin-singlet and spin-triplet states
experimentally. The index “S” on the quantities above (and
below) is a reminder that one has to consider the production
of the baryon-baryon system in a definite spin S.

It was shown in Ref. [30] how one can invert Eq. (1) to
express the scattering length via the reaction amplitude squared
(or the differential cross section d2σS

dm′2dt
)

aS = lim
m2→m2

0

1

2π

(
ma + mb√

mamb

)
P

∫ m2
max

m2
0

dm′2
√

m2
max − m2

m2
max − m′2

× 1√
m′2 − m2

0 (m′2 − m2)
ln

[
1

p′

(
d2σS

dm′2dt

)]
, (2)

where ma and mb are the masses of the two baryons, m0 =
ma + mb, p′ is the center-of-mass momentum in the baryon-
baryon system, and P indicates that the principal value of the
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intregral has to be taken. An analogous equation can be derived
for the effective range.

Possible theoretical uncertainties of the method originate
from the following sources: (i) energy dependence of the
production operator, (ii) influence of scattering at higher ener-
gies (m > mmax), (iii) contributions from inelastic channels
(e.g., from the �N ↔ �N transition), and (iv) final-state
interaction among other pairs of particles. For the hyperon-
nucleon FSI the theoretical uncertainty in the determination
of the scattering length was estimated to be 0.3 fm at most
[30]. This estimate was confirmed by model calculations of
production amplitudes using several different models for the
hyperon-nucleon interactions with triplet and singlet scattering
lengths varying from −0.7 to −2.5 fm.

The general form of Eq. (1) admits approximations under
certain conditions. One of the standard approximative treat-
ments follows from the assumption that the phase shifts are
given by the first two terms in the effective range expansion,

p cot[δ(m2)] = −1

a
+ re

2
p 2, (3)

over the whole energy range, which is usually called the
effective range approximation (ERA). In this case the relevant
integrals of Eq. (1) can be evaluated in closed form as [41]

A(m2) ∝ (p2 + α2)re/2

−1/a + (re/2)p2 − ip
, (4)

where α = 1/re(1 + √
1 − 2re/a). Because of its simplicity

Eq. (4) is often used for the treatment of the FSI. A further
simplification can be made if one assumes that a � re, a
situation that is realized in the 1S0 partial wave of the NN

system. The energy dependence of the quantity in Eq. (4) then
is given by the energy dependence of the elastic amplitude

A(m2) ∝ 1

−1/a + (re/2)p2 − ip
, (5)

as long as p 	 1/re. Therefore, one expects that, at least
for small kinetic energies, NN elastic scattering and particle
production reactions with a NN final state exhibit the same
energy dependence [41–44], which, indeed, was experimen-
tally confirmed for meson production [45]. The treatment
of FSI effects based on Eq. (5) is often referred to as
the Migdal-Watson approach [42,43] and the one utilizing
Eq. (4) as Jost-function approach. The reliability of such
approximations as compared to the formula of Eq. (2) was
investigated in detail in Ref. [31]. In general, the method based
on Eq. (2) works systematically better than the approximations
and gives scattering lengths within 0.3 fm accuracy even for
rather large scattering lengths like those for NN scattering.
The uncertainty in the extraction employing the other two
methods is typically larger. As demonstrated in Ref. [31], these
procedures lead to a systematic deviation from the true values
of the scattering lengths of the order of 0.3 fm (Jost) and of
0.7 fm (Migdal-Watson).
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FIG. 1. (Color online) Graphic representation of the thresholds
for the various strangeness S = −2 channels with charges from
Q = −2 to Q = +2. The thresholds for isospin averaged masses
are indicated at the bottom.

III. THE �� SCATTERING LENGTH

The �� system is certainly the most promising case where
one could apply our method. Its threshold is the lowest
one among all S = −2 channels and measurements could
be performed for the reaction K−d → K0��, for example.
Moreover, no polarization experiment is required because
(near threshold) the �� can be only in the (spin-singlet)
1S0 partial wave. The 3S1 state is forbidden due to the Pauli
principle, as already mentioned. Thus, spin-triplet states can
occur only in P (or higher partial) waves—and it is safe to
assume that such higher partial waves do not contribute near
threshold. There is, however, a complication because the first
inelastic threshold (due to �N) is fairly close: The �0n channel
opens at an excess energy of 23.06 MeV, cf. Fig. 1. [In the �p

case considered in Ref. [30] the first inelastic channel (�0p)
opens at 76.96 MeV!] Thus, it is necessary to redo the error
estimate of Ref. [30]. This will be done in subsection A below.
Note that, for convenience, we will work with isospin-averaged
masses throughout this section and hence the �N threshold is
located at 25.8 MeV!.

In subsection B we apply our method to the �� invariant
mass distribution measured in the reaction 12C(K−,K+��X)
by the KEK-PS E224 Collaboration [8]. Those data, though
afflicted by sizable error bars, allow us to demonstrate how our
method works, and they even enable us to deduce a concrete
value for the �� 1S0 scattering length.

A. Error estimation

In this subsection, we generalize the discussion of theoret-
ical errors presented in Ref. [30] to the case of the occurrence
of inelastic channels. Specifically, we estimate the theoretical
error for the extraction of the hyperon-hyperon scattering
length exemplary for the reaction K−d → K0��, taking into
account that there is a nearby inelastic threshold due to the
coupling of �� to the �N channel.
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The uncertainties originate [30] from the energy (i.e., m2)
dependence of the function 	(s, t,m2) in Eq. (1). These
include the energy dependence of the production operator (i.e.,
the influence of left-hand singularities), contributions of the
elastic scattering to the dispersion integral at higher energies,
the influence of inelastic channels, and the interaction between
other pairs of particles in the final state. The latter effect can be
controlled by choosing different kinematical conditions such
as initial energy (final-state interaction among other pairs of
particles would depend on such a choice, whereas the �� FSI
does not). Also investigating the invariant-mass distribution

for a corresponding pair of particles via a Dalitz plot analysis
can provide additional information on their interaction [45]. In
what follows, we will disregard this (possibly important) kind
of correction and focus on the other three.

The energy dependence of the production amplitude
AS(s, t,m2) can be deduced from the basic principles of
analyticity and unitarity. The discontinuity of the amplitude
in m2 is given by the sum of the elastic term, the inelastic con-
tribution of the �N channel (and/or other ones), Din

S (s, t, m2),
and the left-hand part, Dl.h.

S (s, t,m2), denoting the remaining
contribution from the production operator,

DS(s, t,m2) ≡ 1

2i
[AS(s, t,m2 + i0) − AS(s, t,m2 − i0)] = A(s, t,m2)e−iδ sin δ + Dl.h.

S (s, t,m2) + Din
S (s, t,m2). (6)

The inelastic contribution reads

Din
S (s, t,m2) =

[
A(s, t,m2)(1 − η)e−2iδ

2i
+ A2(s, t,m2)f ∗

12(m2)p2

]
θ
(
m2 − m2

2

)
, m2

2 = (m� + mN )2,

p2 =
√(

m2 − m2
2

)
m�mN

m2
2

≈ 1

2

√
m2 − m2

2 (in nonrelativistic kinematics), (7)

where η is the inelasticity parameter in the �� system, A2

is the production amplitude for the reaction K−d → K+�N ,
and f12 is the �� → �N transition amplitude. The latter can
be written in terms of η, δ, and the phase shift δ2 of the �N

channel:

f12 =
√

1 − η2 ei(δ+δ2)

2
√

p p2
. (8)

In order to shorten the notation we rewrite Din
S as

Din
S (m2) = A(m2)θ

(
m2 − m2

2

)
×

[
1 − η

2i
e−2iδ +

∣∣∣∣A2(m2)

A(m2)

∣∣∣∣ |f̃12(m2)|
2

e−iδ̃

]
,

f̃12(m2) = 2p2f12(m2), δ̃ = δ + δ2 + δA − δA2 , (9)

where we suppressed any dependence on s and t and where we
denoted the phases of the production amplitudes A and A2 by
δA and δA2 , respectively. The solution of Eq. (6) in the physical
region can be represented as (see Refs. [30,39,40,46]),

A(m2) = eu(m2)	̃(m2) ≡ eu(m2)[	l.h.(m
2) + 	in(m2)],

	l.h.(m
2) =

∫ m̃2

−∞

Dl.h.
S (m′ 2)e−u(m′ 2)

m′ 2 − m2 − i0

dm′ 2

π
,

	in(m2) =
∫ +∞

m2
2

Din
S (m′ 2)e−u(m′ 2)

(
m2 − m2

0

)
(m′ 2 − m2 − i0)

(
m′ 2 − m2

0

) dm′ 2

π
,

u(m2) = 1

π

∫ ∞

m2
0

δ(m′ 2)
(
m2 − m2

0

)
(m′ 2 − m2 − i0)

(
m′ 2 − m2

0

)dm′ 2.

(10)

where m̃2 denotes the upper end of the left-hand cut. In order
to remove the energy independent part from the inelastic

dispersion integral, we made subtractions at m2 = m2
0 in the

definition of u(m2) and in the inelastic dispersion integral (a
constant term is assigned then to the left-hand contribution
since the latter is slowly varying with energy anyway, as we
will show.)

The theoretical error of the extracted scattering length
is determined by the energy dependence of the function
	(s, t,m2) from Eq. (1) [30]

δa(th) = − lim
m2→m2

0

P
∫ m2

max

m2
0

ln |	(m′ 2)|2√
m′ 2 − m2

0 (m′ 2 − m2)

×
√

m2
max − m2

m2
max − m′ 2

dm′ 2

π
. (11)

The function 	(m2) depends on m2
max. This dependence fac-

tors out [30], i.e. 	(m2
max,m

2) = �(m2
max,m

2)	̃(m2), where
�(m2

max,m
2) contains the information on the phase shift at

energies above mmax

�
(
m2

max,m
2) ∝ exp

[
1

π

∫ ∞

m2
max

δ(m′ 2)

m′ 2 − m2 − i0
dm′ 2

]
. (12)

Thus, the theoretical error is the sum δa(th) = δammax + δã,
where δammax is due to the factor �(m2

max,m
2) and δã is

determined by the energy dependence of 	̃(m2) which is
related to the energy dependence of the production operator
and inelastic effects.

Let us, first, estimate the theoretical error originating
from the energy dependence of the production operator,
neglecting for the moment the inelastic contributions. In order
to do this one has to investigate the contribution to the
dispersion integral from the left-hand cuts. We follow here
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K−

p

n
d

Λ

π−

Λ

K0

FIG. 2. Typical production mechanism for the reaction K−d →
K0��.

the procedure utilized in Ref. [30]. We are interested in the
left-hand singularities of the amplitude, i.e., singularities in
some momentum transfer variable t . The simplest production
mechanism for the reaction K−d → K0�� is seemingly the
one shown in Fig. 2 denoting the exchange of one nucleon
and one pion (one should add, of course, the diagram with
proton and nucleon interchanged and π+ replaced by π0).
Clearly, there are also other more complicated production
mechanisms that will contribute. Those should be of even
shorter range and, thus, correspond to production operators
with even weaker energy dependence so that they are not
relevant for the estimation of the theoretical error. Of course,
if one wants to provide absolute predictions for the reaction
cross section then all those production mechanisms have to
be taken into account. But this is not the scope of the present
investigation.

We consider for simplicity kinematics corresponding to
the final particles produced not far away from threshold (so
that the momenta of the final particles are small compared to
the momentum transfer). The required initial center-of-mass
momentum is then pi ≈ 580 MeV/c. The production operator
contains a cut corresponding to the π−p intermediate state,
which can be associated with the interaction in the �K0 system
discussed above. The other cut over the neutron and π− is
the one we are interested in. We can very roughly estimate
the energy dependence associated with this singularity via
approximating it by a pole term,

	(m2) ∼ 1

t − m2
nπ−

, t = (pK− − p�)2, (13)

where pK− and p� are the corresponding four-momenta and
mnπ− is the effective invariant mass of the nπ− system, i.e.,
mnπ− ≈ 1 GeV. For threshold kinematics (i.e., zero momentum
of all final particles; this choice is made for uniqueness)
this energy dependence (after averaging over all directions)
has the form 	 ≈ 1 + p2/p2

t , where p is the center-of-mass
momentum in the �� system and pt is of the order of
2 GeV. The correction to the scattering length due to such
an energy dependence of the amplitude amounts to pmax

p2
t

≈
0.01 fm [30] for values of εmax = 40–60 MeV. The above rough
estimation is sufficient to observe that the error coming from
the energy dependence of the production operator is negligible
as compared to the other sources of uncertainties and we can
safely assume that

	l.h.(m
2) ≈ 	l.h.

(
m2

0

) = A
(
m2

0

) ≈ A(m2)e−u(m2). (14)

Note that since the �� scattering length is expected to be
somewhat smaller than a�p [18,21,24,26] we choose εmax =

60 MeV rather than εmax = 40 MeV (used for �N scattering)
as our central value in order to minimize the effect of higher
energy scattering. As was pointed out in Ref. [30] εmax must
be chosen well above 1

a2
Sm�

(cf. also the discussion in Sec. II).

Although a further increase of εmax can help even more in
reducing this effect, in reality it would be difficult in this case
to separate S waves from higher partial waves in the final
state and to avoid the influence of the interaction in other
channels—the effects and the number of inelastic channels
would increase.

Next we consider the error coming from the inelastic
channels coupled to the �� system. For simplicity, we
consider only the one nearest to the �� threshold, namely
�N , which opens only about 25 MeV above the �� threshold
so that it is necessary to analyze its impact. Clearly, due to
the lack of empirical information on the �N interaction and
the coupling of this channel to the �� system such an error
analysis cannot be done in a completely model-independent
way. One has to make some assumptions on the strength of
the interactions in the relevant channels. For our analysis we
prepared three variants of the hyperon-hyperon interaction of
Ref. [26] which yield �� scattering lengths of −1.36, −1.50,
and −1.70 fm, respectively. We are interested in the situation
when the effect coming from the inelastic channel is small and
its contribution can be treated perturbatively, i.e.,

	in(m 2) 	 	l.h.(m
2). (15)

If this is not the case the error of the extraction of the scattering
length would be comparable with the scattering length itself
and then an extraction would no longer be meaningful. We
made a subtraction in Eq. (10) at m2 = m2

0 so that 	in is
exactly zero at the beginning of the integration interval. A small
resulting correction to the scattering length then would imply
a likewise small variation of 	in and hence the condition of
Eq. (15) would be justified. Note that, formally, the subtraction
point does not enter the expression for the error.

Utilizing Eqs. (15) and (14) one can rewrite Eq. (11) for the
inelastic contribution to the theoretical error in the form

δain = − lim
m2→m2

0

1

π
P

∫ m2
max

m2
0

ln |	l.h.(m′ 2) + 	in(m′ 2)|2√
m′ 2 − m2

0 (m′ 2 − m2)

×
√

m2
max − m2

m2
max − m′ 2

dm′ 2

≈ − lim
m2→m2

0

1

π
P

∫ m2
max

m2
0

2Re{	in(m′ 2)/A(m2
0)}√

m′ 2 − m2
0 (m′ 2 − m2)

×
√

m2
max − m2

m2
max − m′ 2

dm′ 2

= − 1

π

∫ m2
max

m2
0

2Re
{[

	in(m′ 2) − 	in
(
m2

0

)]/
A

(
m2

0

)}
√

m′ 2 − m2
0

(
m′ 2 − m2

0

)

×
√

m2
max − m2

0

m2
max − m′ 2

dm′ 2. (16)
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Substituting 	in(m2) from Eq. (10) and performing one integration one gets

δain = Im
4pmax

π

∫ m2
max

m2
2

dm2 Din
S (m2)e−u(m2)

A
(
m2

0

)(
m2 − m2

0

) 3
2
√

m2
max − m2

− Re
4pmax

π

∫ +∞

m2
max

dm2 Din
S (m2)e−u(m2)

A
(
m2

0

)(
m2 − m2

0

) 3
2
√

m2 − m2
max

, (17)

where pmax = 1
2

√
m2

max − m2
0 .

Using the explicit form of Din
S (m2) from Eq. (7) and making a suitable change of variables we have

δain = δain
1 + δain

2 ,

δain
1 = 1

πpmax

[∫ y2

0

dỹ

(1 − ỹ2)(3/2)
(η − 1) cos (2δ) +

∫ ∞

0

dy

(1 + y2)(3/2)
(1 − η) sin (2δ)

]
, (18)

δain
2 = − 1

πpmax

[∫ y2

0

dỹ

(1 − ỹ2)(3/2)
|f̃12| sin δ̃

∣∣∣∣A2

A

∣∣∣∣ +
∫ ∞

0

dy

(1 + y2)(3/2)
|f̃12| cos δ̃

∣∣∣∣A2

A

∣∣∣∣
]

,

with ỹ =
√

m2
max−m2

m2
max−m2

0
, y2 =

√
m2

max−m2
2

m2
max−m2

0
, and y =

√
m2−m2

max

m2
max−m2

0
.

From Ref. [30] we recall the expression for δammax (with the
same definition of y)

δammax = 2

πpmax

∫ ∞

0

δ(y)dy

(1 + y2)(3/2)
. (19)

Note that the integration over y from 0 to ∞ can be truncated
at y = 1, say, for practical applications since the integrals are
rapidly converging (unless the phase shift is rising unnaturally
fast with energy). In any case, we cannot trust the χEFT
predictions for the amplitude at such high energies.

The numerical values of δ̃ and of |A2
A

| are not known;
therefore, we estimate

∣∣δain
2

∣∣ <
1

πpmax

[∫ y2

0

dỹ

(1 − ỹ2)(3/2)
|f̃12|

+
∫ ∞

0

dy

(1 + y2)(3/2)
|f̃12|

]
Max

∣∣∣∣A2

A

∣∣∣∣, (20)

where Max|A2
A

| is the maximal value of this ratio in the
considered energy region.

Using the three mentioned variants of the hyperon-hyperon
interaction, we arrive at the following estimates of the
theoretical errors for εmax = 60 MeV:

δain
1 + δammax = −0.19 fm,

∣∣δain
2

∣∣ < 0.28 Max

∣∣∣∣A2

A

∣∣∣∣ fm

for the variant with a = −1.36 fm,

δain
1 + δammax = −0.11 fm,

∣∣δain
2

∣∣ < 0.30 Max

∣∣∣∣A2

A

∣∣∣∣ fm

for the variant with a = −1.50 fm, and

δain
1 + δammax = −0.22 fm,

∣∣δain
2

∣∣ < 0.14 Max

∣∣∣∣A2

A

∣∣∣∣ fm

for the variant with a = −1.70 fm. The value of Max
∣∣A2

A

∣∣
can be accessed only from the corresponding production
experiment for the �N channel. Some estimates can be
obtained by looking at the strength of the cusp effect in the
�� production channel. Under the assumption that there is no

specific production mechanism that makes this ratio large, one
can estimate the ratio, at least qualitatively, from the unitarity
contribution that corresponds to the (on shell) �� → �N

conversion. It amounts to Max|A2
A

| = Max|f12p2| < 0.3 for all
three considered interactions. Based on those numbers, a rough
estimation for the full theoretical error related to inelastic
effects and higher energy scattering yields δath < 0.3 − 0.4
fm. Such small values for δath justify the approximation made
in Eq. (15), because it means that 	in(m 2) does not change
much for p < 1

δath , an energy range that safely covers the
region we are interested in.

In order to test our method and to check our error analysis
we applied it to a production amplitude, calculated with a
pointlike production operator, that incorporates �� final-state
interactions generated from the three variants of the χEFT
interaction. In Fig. 3 we show the dependence of the difference
of the extracted scattering length and the exact one on the cut
off εmax of the integration. One can see that for εmax = 60 MeV
the theoretical error is indeed within the range of 0.25–0.35 fm
in agreement with the preceding analysis. Note the apparent

0 20 40 60 80 100
εmax [MeV]

0

0.5

1

1.5

2

ae
xt
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ct
ed
-a
ex
ac
t [
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]

FIG. 3. (Color online) Dependence of the extracted scattering
lengths on the value of the upper limit of integration, εmax. Shown is
the difference to the exact results for three variants of the χEFT ��

interaction with a = −1.50 fm (solid line), a = −1.70 fm (dashed
line), and a = −1.36 fm (dotted line). The shaded area indicates the
estimated error of the applied method.
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drop of the curves around 25 MeV, i.e., at the opening of the
�N channel.

B. Analysis of data on the �� invariant mass from
12C(K−, K+��X)

First results for the �� invariant mass distribution were
reported by the KEK-PS E224 Collaboration from a measure-
ment of the 12C(K−,K+��X) reaction in 1998 [33]. An
enhancement was seen for invariant masses near threshold.
Already at that time there were attempts to extract the
�� interaction from the spectrum [47,48]. Then, in 2007,
the KEK-PS E522 Collaboration published a �� invariant
mass spectrum with somewhat better statistics [8]. Also in
this case efforts were made to extract the �� scattering
length. The value reported at some conferences [49,50],
a�� = −0.10+0.37

−1.56 ± 0.28 fm, was obtained by utilizing the
Migdal-Watson approach [Eq. (5)].

As already pointed out above and as we thoroughly
investigated in Ref. [31], the Migdal-Watson approach works
only well for fairly large scattering lengths, i.e., for values of
the order of 5 fm or more, as they are typical for the NN

interaction. For small scattering lengths as suggested by the
analysis in Refs. [49,50] this approach is not reliable. It can
lead to a systematic deviation of 0.7 fm or more. Thus, we
reanalyzed the �� invariant mass spectrum given in Ref. [8],
employing our method based on Eq. (2). Indeed, since in the
�� case the FSI can occur only in the 1S0 partial wave, and,
thus, no polarization experiment is required, our method can be
applied also to data like those of �� production on carbon [8]
from the reaction 12C(K−,K+��X). But one has to keep
in mind that in reactions on nuclei the energy dependence
of the production operator is not under control. For example,
there could be excitations in the other fragments of the reaction
process. Thus, a rigorous error estimation is not possible in this
case. In addition, in the measurement in question, the error bars
of the �� invariant mass distribution are quite large; therefore,
one has to expect large uncertainties for the extracted scattering
length. Nevertheless, in order to demonstrate how the method
works we applied it to the data of Ref. [8], following the
procedure for the analysis of experimental data described in
detail in Appendix A of Ref. [30]. We fit the data with the
amplitude squared parametrized as

|A(m)|2 = exp

[
C0 + C2

1(
m2 − C2

2

)
]
, (21)

multiplied with the phase-space factor and allowing for a finite
mass resolution of 2.5 MeV. The resulting curve is shown
in Fig. 4 (solid line). We then use this fit to extract the
scattering length from the dispersion integral with the cutoff
εmax = 60 MeV. The result is

a�� = −1.2 ± 0.6 fm, (22)

where the given error is due to the uncertainties in the data. As
already stated above, a rigorous estimation of the theoretical
error is not possible in this case, but it is definitely at least as
large as the one estimated in the preceeding subsection for the
K−d reaction.
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FIG. 4. �� invariant mass spectrum for the reaction
12C(K−, K+��X) [8] and our fit to it (solid line).

For the ease of comparison we present in Table I a selection
of �� 1S0 scattering lengths predicted by various published
YY interaction models. The large scattering length of the in-
teraction by Tominaga et al. from 1998 [22] was still triggered
by the first experimental information on the ground states of

6
��He, 10

��Be, and 13
��B [2–4]. Those experiments suggested a

separation energy of �B�� = 4–5 MeV, where the separation
energy is defined as, e.g., �B�� = B��( 6

��He) − 2B�(5
�He).

Such a large separation energy could be described only with
a rather strong �� interaction with scattering lengths a�� in
the order of −2 to −3.6 fm [22,51] or larger [52].

The analysis of the unambiguously identified 6
��He double

hypernucleus (Nagara event) [5] yielded the much smaller
separation energy of 1.01 ± 0.20 MeV. Calculations that obtain
separation energies in agreement with the new experimental
value suggest �� scattering lengths in the order of −0.7 to
−1.3 fm [19,24,52]. It should be said, however, that, so far,
there are no fully microscopic (i.e., six-body) calculations of

6
��He available that utilize only elementary baryon-baryon
(NN , YN , YY ) interactions such as those listed in Table I.

TABLE I. �� 1S0 scattering lengths (as) and effective range
parameters (rs) for various strangeness S = −2 interaction potentials
(in fm). In the case of the χEFT interaction results for the lowest
(550 MeV) and highest (700 MeV) cut-off value are given, cf.
Ref. [26]. Note that (a) the scattering lengths of the Nijmegen
(ESC04) potential differ significantly, depending on whether they
are calculated in the particle [19] or isospin [20] basis, and (b) in the
potentials by Tominaga et al. [22] some channel couplings are not
included.

YY interaction Reference as (fm) rs (fm)

χEFT (550) [26] −1.52 0.82
χEFT (700) [26] −1.67 0.34
Nijmegen (NSC97a) [18] −0.27 15.00
Nijmegen (NSC97f) [18] −0.35 14.68
Nijmegen (ESC04a) [20] −3.804 2.42
Nijmegen (ESC04d) [20] −1.555 3.62
Nijmegen (ESC08a′′) [21] −0.88 4.34
Tominaga (set B) [22] −3.40 2.79
Fujiwara (fss2) [24] −0.821 3.78
Valcarce [25] −2.54 –
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TABLE II. �� and �NS-wave scattering lengths a and effective range parameters r for various strangeness S = −2
interaction potentials (in fm). The subscripts s and t refer to the singlet (1S0) and triplet (3S1) states, respectively. In case
of the χEFT interaction results for the lowest (550 MeV) and highest (700 MeV) cut-off value are given, cf. Ref. [26].
Note that (a) the scattering lengths of the Nijmegen (ESC04) potential differ significantly, depending on whether they
are calculated in the particle [19] or isospin [20] basis, and (b) in the potentials [22,23] some channel couplings are not
included.

YY interaction Reference Channel as (fm) rs (fm) at (fm) rt (fm)

χEFT (550) [26] �+�+ −6.23 2.17 – –
χEFT (700) [26] �+�+ −9.27 1.88 – –
Nijmegen (NSC97a) [18] �+�+ 10.32 1.60 – –
Nijmegen (NSC97f) [18] �+�+ 6.98 1.46 – –
Fujiwara (fss2) [24] �+�+ −85.3 2.34 – –
Valcarce [25] �+�+ 0.523 – –
χEFT (550) [26] �0n – – −0.34 −5.86
χEFT (700) [26] �0n – – −0.15 16.3
Nijmegen (ESC04a) [20] �N (I = 0) – – −1.672 2.70
Nijmegen (ESC04d) [20] �N (I = 0) – – 122.5 2.083
Nijmegen (ESC08a′′) [21] �N (I = 0) – – 6.9 1.18
Tominaga (set B) [22] �N (I = 0) – – −0.352 17.4
Ehime (1.82) [23] �N (I = 0) – – −0.43 13.0
Valcarce [25] �N (I = 0) – – 0.28
χEFT (550) [26] �−n 0.21 −30.7 0.02 968
χEFT (700) [26] �−n 0.13 −98.5 0.03 548
Nijmegen (NSC97a) [18] �−n 0.46 −6.09 −0.04 634
Nijmegen (NSC97f) [18] �−n 0.40 −8.88 −0.31 870
Nijmegen (ESC04a) [20] �−n 0.491 −0.421
Nijmegen (ESC04d) [20] �−n 0.144 4.670
Nijmegen (ESC08a′′) [21] �−n 0.58 −2.71 3.49 0.60
Tominaga (set B) [22] �−n −0.202 33.0 −0.484 10.6
Ehime (1.82) [23] �−n −0.27 20.3 −0.56 9.0
Fujiwara (fss2) [24] �−n 0.324 −8.93 −0.207 26.2
Valcarce [25] �0p −3.32 18.69

All studies are performed either with three-body Faddeev
equations applied to the cluster model [52–56], the Brueckner
theory approach [19,57], or with the stochastical variational
method [58] and rely, at least partly, on effective two-body
interactions.

In this context, let us mention that the separation energy
for the Nagara event has been recently reanalyzed and is now
given as �B�� = 0.67 ± 0.17 MeV [59]. See also Ref. [60]
for a recent review of the status of �� hypernuclei.

IV. THE �N AND �� SCATTERING LENGTHS

Since the �� system is a pure isospin I = 0 state, the
I = 1 �N interaction is also elastic and, thus, permits a
determination of the corresponding scattering length via our
method. The first inelastic channel, ��, opens at the excess
energy of around 52 MeV and, therefore, should affect the
extraction of the scattering length less than what has been
discussed in the context of the �� case above. The required
�N invariant mass spectrum is accessible experimentally in
the reaction K−d → K+�−n, for example. However, since
�N can occur in the 1S0 as well as in the 3S1 partial wave,
one needs data from an experiment with polarization for a

separation of the singlet and triplet contributions. The relevant
observables are discussed in Appendix A. In addition, one
has to keep in mind that the reaction K−d → K+�N might
be dominated by the quasielastic process K−N → K+�,
similarly to what happened for the reaction γ d → KYN [32]
with γN → KY . In such a case the reaction kinematics has to
be chosen rather carefully in order to suppress the contributions
from the quasielastic process, as studied in detail in Ref. [32],
which certainly increases the difficulties for a corresponding
experiment.

As a subtlety, let us mention that even in the �0n system
the scattering length for 3S1 is real, although the amplitude
is actually the sum of I = 0 and I = 1 states. Because of
the Pauli principle, the 3S1 partial wave of the �� system is
forbidden so that there is no coupling between the �� and
�N channels for the partial wave in question.

Experimental information on the �N invariant mass spec-
trum is scarce [61–63]. Results published in Ref. [61] for the
�−p case, obtained from a K−d bubble-chamber experiment,
suggest an enhancement in the invariant mass distribution
but at around 2480 MeV and not near the �N threshold,
which is around 2255 MeV. In any case, the statistics is too
low for drawing any conclusions. The situation is better for
an experiment performed at Saclay [62] where the missing
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FIG. 5. (Color online) Predictions for the �+�+ (a) and �� (b) invariant mass spectrum for the K−d reaction based on the YY potential
of Ref. [26]. The solid and dashed line correspond to the lowest (550 MeV) and highest (700 MeV) cut-off value considered in this χEFT
interaction. The dash-dotted line represents the phase space. All results are given in arbitrary units and are normalized to 1 at the highest
invariant mass shown.

mass (MM) in the reaction K−d → K+ + MM at 1.4 GeV/c

was studied. The curve presented in this publication exhibits
a rather smooth behavior around the �N threshold, which
suggests that the �−n interaction in the 1S0 and/or 3S1 might
be fairly weak. Such a hypothesis is actually in line with
the results of several of the potential models summarized in
Table II which predict rather small �−n scattering lengths.
Indeed, if the �N scattering lengths are smaller than the
expected error of our method, i.e., |a�N | � 0.3 fm, then
their extraction from the invariant mass spectrum is no longer
possible. Nonetheless, we want to emphasize that there are also
YN models with a fairly strong �N interaction. Notably, the
latest Nijmegen potential (ESC08a′′) produces bound states in
the 3S1 partial wave of the I = 0 and I = 1 channels [21].
The binding energies are comparable to that of the deuteron
and, accordingly, sizeable near-threshold enhancements in the
corresponding invariant mass spectrum are to be expected if
such bound states indeed exist in nature.

In addition to the �N system the I = 2 channel �+�+
is potentially interesting too because it is also elastic. But,
due to the charge, it cannot be produced with a K− beam
on the deuteron. However, the �−�− system which is
likewise I = 2 could be studied, namely in the reaction
K−d → K+π+�−�−. Also in this case, only the 1S0 partial
wave is present so that no polarization data are required for
a determination of the scattering length. Contrary to �−n,
practically all model predictions for the �+�+ (�−�−)
scattering length are fairly large, cf. Table II. Details of
the application of our method to cases where the Coulomb
interaction is present can be found in Ref. [31].

For illustration purposes in Fig. 5 we present predictions for
the �+�+ and �� invariant mass spectrum for the K−d reac-
tion based on the YY potential of Ref. [26], where the solid and
dashed lines correspond to the lowest (550 MeV) and highest
(700 MeV) cut-off value considered in that χEFT interaction.
The dash-dotted line represents the phase space and is given
simply by the center-off-mass momentum corresponding to
the excess energy available in the produced �+�+ or ��

systems. The invariant mass spectra are calculated under the

assumption that the production operator is pointlike, i.e., of
zero range, and without referring to any specific production
mechanism. Then the reaction amplitude A(m2) is equal to the
two-body (�+�+ or ��) scattering wave function �(p, r) at
the origin, more precisely, to �−(p, 0)∗ [41]. In order to guide
the eye and to facilite an easy comparison of the effects we
have normalized all results to 1 at the highest invariant mass
shown.

In principle, one can even consider reactions of the type
K−d → KK�� and K−d → KK��, which would give
access to the strangeness S = −3 world. Potential-model
calculations [19,24] and also predictions obtained within the
framework of χEFT [64] suggest that the interaction in some of
the channels are strongly attractive so that the corresponding
scattering lengths could be large. Clearly, here it would be
desirable to have at least a rough estimation of the count rates
that one can expect in order to judge the feasibility of such
experiments. Independently of that, also for these reactions
we provide and discuss the relevant polarization observables
that are needed for a separation of the singlet and triplet
contributions, cf. Appendix A.

V. SUMMARY

We reviewed a method that allows one to extract hadronic
scattering lengths from production reactions by studying final-
state interactions. In particular, we discussed its applicability to
the case of baryon-baryon interactions in the strangeness S =
−2 and S = −3 sectors. We emphasized the importance of
separating different spin states of the interacting particles. Con-
sidering as examples the reactions K−d → KB1B2, γ d →
K1K2B1B2, and K−d → K1K2B1B2, we could demonstrate
that it is possible to construct polarization observables that pro-
vide access to spin-singlet and spin-triplet scattering lengths.
In the cases of the �� and �+�+ (or �−�−) interactions
near threshold only the 1S0 partial wave is present due to
the Pauli principle and, thus, no polarization experiments are
required for determining the pertinent scattering length from
the final-state interaction. Employing the method to available
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data on the �� invariant mass from 12C(K−,K+��X) [8],
a 1S0 scattering length of a�� = −1.2 ± 0.6 fm is deduced.
The error given here reflects the accuracy of those data. Thus,
it would be important to perform experiments with better
statistics which could be done, e.g., at J-PARC [65]. This
would then allow one to reduce the error on the �� scattering
length to the one of the extraction method, which we estimate
to be in the order of 0.3–0.4 fm.

In addition to ��, the �+�+ (or �−�−) system is
certainly the most promising candidate for an experimental
investigation. As mentioned, here, likewise, no polarization
experiments are required and, moreover, predictions of po-
tential models as well as from chiral effective field theory
indicate that the 1S0 scattering length could be large. On the
other hand, for �N practically all interactions predict rather
small scattering lengths and this circumstance is certainly
discouraging for any experimental activity. Still, exploratory
measurements (without polarization) would be desirable in
order to establish that the �N interaction is indeed as weak as
suggested by present day’s theory.
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APPENDIX: SPIN CONSIDERATIONS FOR THE
PRODUCTION OF BARYON-BARYON SYSTEMS WITH

STRANGENESS S = −2 AND S = −3

The technique utilized for the hyperon-nucleon interactions
in Refs. [30–32] is applicable also in the case of strangeness
S = −2 and S = −3 systems. The necessary condition that
baryon-baryon scattering should be elastic up to some m =
mmax is satisfied for the S = −2 channels ��, �+�+, �−�−,
�0p, and �−n and for the S = −3 channels �−�, �0�,
�−�−, and �0�+. See Fig. 1 for a graphic overview of
the kinematics. In what follows we are going to consider as
examples K−d, pp, and γ d scattering in complete analogy
with the hyperon-nucleon production reactions studied in
Ref. [32]. The following four types of reactions can be used
to produce baryon-baryon states with strangeness S = −2 and
S = −3:

K−d → KB1B2 (K0��, K+�−n), (A1)

pp → K1K2B1B2

(K+K+��, K+K0�0p, K0K0�+�+), (A2)

γ d → K1K2B1B2

(K+K0��, K0K0�0p, K+K+�−n), (A3)

K−d → K1K2B1B2

(K0K0�0�, K+K0�−�, K+K+�−�−). (A4)

We now come to the question of separating the spin-triplet
and spin-singlet states in the baryon-baryon system. As in
the case of the hyperon-nucleon interaction it is sufficient to
consider reactions with polarized initial particles. We start
from the general form for the reaction amplitude in the

center-of-mass system for the three processes

MK−d→KB1B2 = as
1(�εd × p̂) · �k + at

2(�εd · �S ′)

+ at
3(�εd · p̂)(�S ′ · �k) + at

4(�εd · �k)(�S ′ · p̂),

Mpp→K1K2B1B2 = bs
1 + bs

2(p̂ × k̂) · �S + bt
3(p̂ · k̂)(p̂ × k̂) · �S ′

+ (
bt

4p̂i k̂j + bt
5p̂j k̂i

)
SiS

′
j ,

Mγ d→K1K2B1B2 = cs
1(�εγ × �εd ) · p̂ + ct

2(�εγ · �εd )(�S ′ · p̂)

+ ct
3(�εγ · �S ′)(�εd · p̂),

MK−d→K1K2B1B2 = ds
1(�εd · p̂) + dt

2(�εd × �S ′) · p̂. (A5)

Here a, b, c, and d are some functions of s and of m (and, in
general, of further invariants that are required to specify the
kinematics of the reaction), where their upper indices indicate
whether they correspond to spin-singlet (s) or spin-triplet
(t) amplitudes. The polarization vectors of the deuteron and
photon are denoted by �εd and �εγ , respectively. The spin vectors
�S, �S ′ are used for the spin-triplet initial and final states,
respectively. For the last two reactions we assume the momenta
of the final kaons to be either aligned or antialigned with
the direction of the initial center-of-mass momentum p̂. This
leads to a significant simplification allowing one to separate
different spin states. For the reaction K−d → KB1B2 such a
restriction is not necessary and the momentum of the emitted
kaon is denoted by �k. For the reaction pp → K1K2B1B2 we
assume, for simplicity, that both emitted kaons go into the
same direction k̂. It is convenient to introduce the following
set of polarization observables:

O1 = (
1 −

√
2T 0

20

) dσ0

dm2dt
,

O2 = (
2 +

√
2T 0

20

) dσ0

dm2dt
, O3 = T 0

10
dσ0

dm2dt
,

O4 = [
2 +

√
2T 0

20 +
√

3
(
T l

22 + T l
2−2

)] dσ0

dm2dt
(A6)

=
√

3
[−√

2T c
10 + (

T l
22 + T l

2−2

)] dσ0

dm2dt
,

O5 = A0y

dσ0

dm2dt
, O6 = (1 + Ayy)

dσ0

dm2dt
,

where the various T ’s for the γ d initial state are defined
in Ref. [32], and dσ0

dm2dt
is the unpolarized differential cross

section. T 0
20 and T 0

10 have the same definition also for the
K−d initial state, the only difference being the absence of
the summation over the photon polarizations. The observable
O1 selects the amplitudes with longitudinal target polarization
�εd ‖ p̂, whereas O2, O3, O4 select the amplitudes with �εd ⊥ p̂.
In addition O4 contain only that part of the amplitude which
is antisymmetric with respect to an interchange of �εd and
�εγ . The observables O5 and O6 correspond to the proton-
proton–induced reaction. Here A0y is the analyzing power
and Ayy is the spin correlation coefficient for polarized beam
and target [30,45], and y is the direction perpendicular to the
reaction plane.

Now inspecting the structure of the reaction ampli-
tudes (A5) we can identify the observables that allows one
to separate a particular spin state: For the reaction K−d →
KB1B2 the triplet final state can be singled out by the
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observable O1 for any direction of the emitted kaon, or
one can measure the unpolarized differential cross section
for �k ‖ p̂. The spin-singlet state cannot be separated. For
the reaction γ d → K1K2B1B2 the triplet final state can
be separated by measuring O1. The observable O4 pro-
vides access to the spin-singlet amplitude. For the reaction
K−d → K1K2B1B2 the observable O1 separates spin-singlet

contribution, whereas O2 and O3 separate spin-triplet state. For
the reaction pp → K1K2B1B2 the observable O6 separates
the spin-triplet contribution, whereas O5 is proportional to
sin θ Im{bs

1b
s∗
2 + bt

4b
t∗
5 cos θ} with cos θ = p̂ · k̂. Since the bi’s

are even functions of cos θ (due to parity conservation), after
the integration of O5 over an angular region symmetric with
respect to θ = π

2 only spin-singlet amplitudes survive.
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