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Charmed mesons have no discernible color-Coulomb attraction
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Starting with a confining linear Lorentz scalar potential Vs and a Lorentz vector potential Vv , which is also
linearly rising but has in addition a color-Coulomb attraction piece −αs/r , we solve the Dirac equation for
the ground-state c- and u-quark wave functions. Then, convolving Vv with the u-quark density, we find that
the Coulomb attraction almost completely washes out, making an essentially linear V̄v for the c quark. A
similar convolution using the c-quark density also leads to an essentially linear Ṽv for the u quark. For bound
c̄-c charmonia, where one must solve using a reduced mass for the c quarks, we again find by convolution
an essentially linear V̂v . Thus, the relativistic quark model is consistent with the absence of a color-Coulomb
attraction in the charmed-meson mass spectrum. To see if this near-linearity of Vv provides a reasonable model
for the bound c̄-c charmonium states, we then solve the radial Dirac equations for Vs and Vv , both with and
without a color-Coulomb attraction at shorter distances. We present and compare the predictions of their masses
for the two models. We find that a strictly linear Vv provides about as good a fit to the charmonia masses as the
one with a color-Coulomb attraction, despite having one less parameter.
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I. INTRODUCTION

By assuming mesons to be quark-antiquark bound states
and using the so-called “Cornell potential” [1]

VCor(r) = −CF

αs

r
+ κ2r, (1)

nonrelativistic solutions of the Schrödinger equation have been
remarkably successful in predicting features of the meson
spectrum in terms of two parameters. Here CF = 4

3 is the color
factor, αs = g 2

s /4π , with gs being the (running) quark-gluon
coupling constant, and κ is the string tension (in fm−1). It is
the linear term in VCor(r) that confines the quarks, similar to
the confinement in the relativistic bag model. [2]

However, nonrelativistic potential models for charmonium
states [3] have also done remarkably well at describing
these states with a simple linear confining potential (plus
spin-spin and spin-orbit terms), absent any evidence for a
short distance color-Coulomb contribution. This finding is
somewhat surprising as, early on, the high mass of the
charm quark suggested that the color-Coulomb region might
be discernible, at least in the wave functions, if not the
eigenenergies. Here we find the effect to be negligible in
the latter and not significant in the former, with a relativistic
quantum mechanical approach to c̄-c charmonium states using
the Dirac equation.

For a relativistic model the two terms in VCor(r) have dif-
ferent Lorentz transformation properties. The color-Coulomb
potential αs/r is naturally the fourth component of a Lorentz
vector, which we will take as a part of a Lorentz vector potential
Vv(r). On the other hand, relativistic linear confinement
requires a Lorentz scalar, which we take as a scalar potential
Vs(r). (The q-q vector interaction is attractive or repulsive
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depending upon whether the two quarks are in a color 3̄ or color
6 irrep and so cannot confine directly. The scalar interaction
avoids the repulsive channel entirely.)

Explicitly, the coupled radial Dirac equations [4–6] we
solve in this paper are, in dimensionless form,

gl
′(x) + k

x
gl(x) − (Ẽ − Vv(x) + Vs(x) + m̃) fl′ (x) = 0,

fl′
′(x) − k

x
fl′ (r) + (Ẽ − Vv(x) − Vs(r) − m̃) gl(x) = 0,

(2)

where x = κr is a dimensionless distance and the dimension-
less energy and mass are Ẽ = E/κ and m̃ = m/κ . Also, l

and l′ = 2j − l are the orbital angular momenta for the upper
component g l(x) and lower component fl′ (x), respectively.
The integer k is determined by the angular momentum
quantum numbers according to

k = −(l + 1), if j = l + 1
2 ; k = l, if j = l − 1

2 . (3)

The upper Dirac component ψa(x) is given (up to a phase) by
g l(x)/x and the lower component ψb(x) by fl′ (x)/x. For real
potentials, the radial wave functions can be chosen to be real.

Note that the sign for Vv(x) in Eqs. (2) is opposite to that
of the energy Ẽ, the fourth component of the momentum four-
vector, while that for Vs matches that for the (current) quark
mass m̃, also a Lorentz scalar. We will choose the parameters
of the Vs(x) and Vv(x) confining potentials to reproduce the
bound charmonia masses.

The vector potential is assumed to also be linearly rising,
with the same slope as Vs(r). The reason for this is that
there is evidence in the baryonic spectrum that the spin-orbit
interaction is suppressed [7]. Page, Goldman, and Ginocchio
(PGG) [8] have shown that this can be due to a cancellation
between a scalar potential Vs and a vector potential Vv having
the same linear slope at large distances.
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We have shown elsewhere [6], numerically, that this
cancellation does occur if the (dimensionless) forms of the
potentials are

Vs(x) = x, Vv(x) = x − xv, with x = κr. (4)

Here we have chosen Vs(0) = 0 to satisfy chiral symmetry at
short distances and the parameter xv > 0 displaces Vv to lie
below Vs . However, the addition of the color-Coulomb term to
Vv ,

Vv, Coul (x) = −αs

x
+ x − xv, (5)

would break the PGG cancellation. This breaking could
be considered desirable, since there is evidence for a non-
negligible spin-orbit interaction in the mesonic spectrum. For
example, the 1P charmonium states χ0 and χ2 differ in their
masses by 142 MeV [9].

We have checked that potentials such as Vs(x) = x and
Vv(x) as in Eq. (5) produces a reasonable representation of the
charmonium spectrum to within ≈15 MeV. The details of this
calculation are given in Sec. III and those following.

In doing such a calculation for Vv(x) with the color-
Coulomb attraction, however, we encountered an argument
that suggests that the Coulomb attraction has no significant
effect (hence the title for this article). We find that an iterative,
self-consistency requirement on these potentials leads to a
vector potential that is virtually indistinguishable from linear
over the full range of interest. How this happens is discussed
in Sec. II.

So, the question comes down to whether a strictly linear
Vv(x) as in Eq. (4) can do as well in predicting the bound
charmonia masses. We find that it does. Details of calculations
and comparison of results with and without the Coulomb term
are presented in Sec. III.

II. WHY THE COLOR-COULOMB TERM DISAPPEARS

A. Convolving the vector potential

To see why the Coulomb attraction might be ineffective, we
begin by considering the relativistic approach to the hydrogen
atom. The Dirac equation is used for a reduced mass electron in
a potential determined by the total charge interior to the radial
point under consideration. This approach has been studied
intensively by, for example, Friar and Negele [10]. For us,
however, the closest analogy is to the case of D mesons, with
one light quark and a heavy charm quark in the analogous role
to that of the proton in Hydrogen.

As the light-quark mass is negligible on the scale of
interest (we neglect effects of electromagnetism), there is no
discernible reduced mass effect to consider. Furthermore, in
hydrogen, the charge distribution within the proton (or nucleus
in more massive atoms) smears out the Coulomb divergence at
zero separation. Here, the charm quark is the color-Coulomb
source but has no intrinsic internal structure. However, unlike
the electromagnetic case, the strong virtual emission and
reabsorption of gluons produces significant fluctuations in the
color source location; for a very massive quark these are not
negligible even to leading order.

Our approach is to take, as a first approximation, the charge
distribution (rms size) of the D meson as setting a relevant
scale for these fluctuations in smearing the color-Coulomb
divergence. Although it may not be precise, given that the rms
size is comparable to the inverse of the QCD mass scale, we
consider this to be a very reasonable starting point. We use this
scale to modify smoothly the color-Coulomb potential with a
quadratically flat “bottom” and with slope equal to that of the
−αs/r color-Coulomb potential at a matching point.

We thus convolve the light-quark wave function with the
color-Coulomb potential in the manner of Friar and Negele
[10] to define the potential that the charm quark is subject to
in the presence of the light quark. Finally, to check for self-
consistency, we convolve this charm-quark wave function with
the color-Coulomb potential to observe its effect on the light
quark. We find a consistent, almost precisely linear, effective
vector potential radially extending out all the way to the region
where linear confining potentials are necessary for consistency
with data. We provide the details of how this happens in the
next four sections.

For charmonium states we then repeat the convolution
for the c quark in interaction with a c̄ quark. Here reduced
mass effects are no longer negligible. We find (Sec. II F) a
very similar result and conclude that there is indeed a single,
consistent, approximately linear color vector potential that
reasonably describes all of these states. Thus, there is no
remaining evidence of the color-Coulomb potential in the
charmed mesons, despite the relatively large mass of the c

quark.

B. The vector potential containing a color-Coulomb term

After some numerical experimentation we focused on the
charmed D mesons c̄-u and (bound) charmonia c̄-c as resulting
from scalar and vector potentials Vs(x) and Vv(x) such as those
shown in Fig. 1. As stated earlier, these potentials are dimen-
sionless functions of a dimensionless radial coordinate x = κr ,
where κ2 is about 1 GeV/fm [11]. The asymptotically linear
slopes of Vs and Vv were taken to be the same, in accordance
with the small spin-orbit splitting in the baryon spectrum [7,8].
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FIG. 1. The scalar and vector potentials Vs(x) and Vv(x) as
functions of a dimensionless radial coordinate x.
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The Vs is quadratic out to x = 1.5, after which it is strictly
linear:

Vs(x) =
{

x2/(2xs) if x < xs ,

x − xs/2 otherwise,
(6)

where the parameter xs is, for us, fixed at 1.5. The flatness near
x = 0 is to preserve chiral symmetry at short distances.

The Vv has, in addition to the linear confinement, a color-
Coulomb contribution

Vv(x) = −CF

αs

x
+ x − xv, (7)

as shown by the dashed part in Fig. 1.
However, this is the potential seen by, say, the light u quark

in the field of the heavy c̄ quark, which is itself moving about
somewhat in the field of the u quark. Thus, as discussed above,
it is reasonable to moderate the singularity at x = 0. We did
this simply by altering the potential to

Vv, Coul(x) =
{

CF αs

(
x2 − 3x 2

D

)
/ 2x 3

D + x − xv if x < xD ,

−CF αs/x + x − xv otherwise,
(8)

assuming the smoothing to be about the size of the (electric)
charge radius (RD) of the D(1869) meson. Here xD = 0.16 is
a reasonable guess (corresponding to RD ∼ 0.3 fm),

The plots in Fig. 1 are shown for the parameters αs and xv

that give the best figures of merit we found for our fit (described
in Sec. III and below) for charmonium states:

κ2 = 0.900 GeV/fm, mc = 1.567 GeV,
(9)

xv = 1.127, and αs = 0.3.

The κ2 in Eq. (9) for the color-Coulomb case is the same as that
used in Ref. [11] and is consistent with that used in the Cornell
potential, Eq. (1). For charmonia calculations, the mass in the
coupled differential equations must be the reduced mass mc/2.
The masses we fit are those of the ηc, J/ψ , η′

c, ψ ′, χ0, and
χ2. [9]

We will also, in Sec. III, compare how well the above-
mentioned fit with a color-Coulomb attraction compares with
a Vv(x) that is strictly linear, i.e.,

Vv, linear (x) = x − xv. (10)

C. Convolving the Coulomb potential for the c̄ quark

As mentioned above in Sec. II A, a more consistent way of
moderating the Coulomb singularity is first to solve for the light
u-quark 1s ground-state wave functions [6] for the potentials
Vs(x), Eq. (6), and Vv , Eq. (8), with xv = 1.127 and αs = 0.3.
The corresponding energy eigenvalue Eu(1s) = 0.363 GeV.

Given that u-quark wave function, the vector potential that
the c̄ quark should be subject to is the (unrounded) Vv given
by Eq. (7) modulated by the density of that u quark. That is,
following Friar and Negele’s discussion of muonic atoms [10],
the Coulomb potential should be convolved with the local
“charge” density defined by the u-quark Dirac wave function.
That, together with the linear contribution, gives a new vector
potential for the c̄ quark,

V̄v(x) = Qin(x)/x + Qout(x) + x − xv, (11)

where

Qin(x)/x = −αs

x

∫ x

0
x ′ 2dx ′ ψ

†
u,1s(x

′)ψu,1s(x
′)

= −αs

x

∫ x

0
x ′ 2dx ′ [

ψ2
a (x ′) + ψ2

b (x ′)
]
,

Qout(x) = −αs

∫ ∞

x

x ′ dx ′ ψ
†
u,1s(x

′)ψu,1s(x
′)

= −αs

∫ ∞

x

x ′ dx ′ [
ψ2

a (x ′) + ψ2
b (x ′)

]
. (12)

Here ψa(x) is the (real) upper Dirac component and ψb(x) the
lower component.

Near x = 0,

Qin(x)/x ≈ |ψ(0)|2
x

∫ x

0
x ′ 2dx ′ = |ψ(0)|2 x2

3
(13)

and it never gets more negative than about −0.2 before it
increases again toward zero like −αs/r . As for Qout(x), since
the 1s upper-component radial wave function is well approxi-
mated as a Gaussian [11,12], its integral gives, approximately,
−αs times a (narrower) Gaussian.

A plot of V̄v(x) calculated from the integrals of Eq. (12)
is given in Fig. 2. Despite its appearance, it is not strictly a
straight line: there is some small curvature in the plot below
x = 1. Nonetheless, we consider the high accuracy of a linear
approximation to be rather surprising, as we were expecting
only a minor change in the effective value of xD . The dashed
line in Fig. 2 is a linear fit to V̄v(x) with slope 1.1045 and
displacement −1.5008.

D. How ψc changes with the new potential

If one solves for the 1s state of the c̄ quark for mc =
1.567 GeV and the original potentials of Eq. (6) and Eq. (8),
one finds the c̄-quark eigenenergy to be Ec(1s) = 1.299 GeV.
That is, the energy of the c quark for these potentials is some
200 MeV less than its mass. The upper and lower 1s radial
wave functions are displayed in Fig. 3 as dashed curves. The
rise of ψa at the origin is reminiscent of the nonrelativistic
ground-state wave function for a pure Coulomb potential,
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FIG. 2. (Color online) The scalar potential Vs(x) and the con-
volved vector potential V̄v(x) for the c̄ quark as functions of x. The
dashed curve (nearly overlying the solid line) is a linear fit to V̄v(x).

which is a wave function that is a decaying exponential
like e−αx .

However, solving for Ec(1s) with Vs(x) and the convolved
V̄v(x), we find Ec(1s) = 1.538 GeV, now considerably higher
in energy because of the missing Coulomb well, although still a
bit less than mc = 1.567 GeV. The upper and lower component
wave functions, shown as the solid curves in Fig. 3, are broader
than those found for the original potentials. (In both cases,
however, the c̄-quark wave functions are not as broad as those
for the u quark.)

Thus, while the mass of a c̄-u D meson depends strongly
on Ec(1s), it is not very sensitive to the difference between
the original and convolved potentials; the wave functions are
quite different. We therefore expect that quantities such as
transition strengths, which are more dependent on the details
of the wave functions, will be more potential-dependent than
the masses are.

E. Convolving for the u-quark potential

Continuing, we find that the singular Coulomb piece of
the vector potential seen by the u quark is also smeared by
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FIG. 3. Comparing the c̄-quark radial wave functions for the
original and convoluted potentials.
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FIG. 4. (Color online) The scalar potential Vs(x) and the con-
volved vector potential Ṽv(x) for the u quark as functions of x. The
dashed curve is a linear fit to Ṽv(x).

the motion of the somewhat more confined, slower moving
c̄ quark. With formulas like Eqs. (11) and (12), but with the
density provided by |ψc(1s)|2, we again found this second
convolution is also very close to linear, as shown in Fig. 4.
In making this plot we used the ψc(1s) found from using
V̄v . Again, the dashed line is a linear fit to Ṽv(x) with slope
a0 = 1.167 and displacement a1 = −1.640.

The Ṽv is slightly more curved and a bit deeper than the
V̄v shown in Fig. 2, but is essentially the same nearly linear
potential as that which affects the c̄ quark. Although the linear
fit parameters are slightly different, in a strictly linear model
one could reasonably assume the same linear potential for both
quarks. We demonstrate this below.

F. Convolving for charmonium

Similarly, we investigated the smearing of the Coulomb
potential for c̄-c charmonia states. In this case we must solve
using the reduced mass mc/2 = 0.784 GeV, but otherwise the
calculation proceeds much as above. First we find the wave
functions for the c quark for the original potentials Vs(x)
[Eq. (6)] and Vv [Eq. (8)]. Then, convolving the singular
Coulomb potential with |ψc, reduced|2 as in Eqs. (11) and (12),
we obtain the plot of V̂v shown in Fig. 5. The dashed line is
a linear fit to V̂v(x) with slope a0 = 1.169 and displacement
a1 = −1.644. Note that the linear fit parameters are quite close
to the values that we found for the (effective) potential for the
u quark.

III. CHARMONIA STATES, WITH AND WITHOUT A
COULOMB TERM

A. Setting the quark masses

To proceed, we need to set the masses and find the
relativistic wave functions for the quarks of interest in this
paper, namely, q (standing for either u or d) and c. This
involves solving Eqs. (2) for each (current quark) mass m

to obtain the energy eigenvalues E(nlj ) for the different
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FIG. 5. (Color online) The scalar potential Vs(x) and the con-
volved vector potential V̂v(x) for charmonia states as functions
of x. The dashed curve is a linear fit to V̂v(x).

quarks and their respective upper and lower component wave
functions. We do this using a “shoot and match” technique
described in detail in Ref. [6].

First, we treat the q quarks, which we assume are both of
negligible mass; that is, we set mq = 0. It is because they are
light compared to the inverse size-scale of hadrons that we
consider it necessary to go to a relativistic version of the quark
model of mesons. For the lowest bound q-q̄ states, namely the
π and ρ mesons, the l = 0, j = 1

2 energy Eq(1s) is roughly
0.310 GeV, which is frequently thought of as a “constituent
mass” for the massless quark, as opposed to its “current”
mass. In this paper, because of well known complications of
glueballs, channel coupling, and the axial anomaly, we will
not treat these and other q-q̄ light mesons.

For the case of the linear Vv, linear (x), we note that the
wave functions found from solving the Dirac ODEs of Eq. (2)
are invariant with respect to the combination Ẽ + xv . That is,
Ẽ + xv is essentially the eigenvalue for the bound-state wave
function. Thus, the desired Eq(1s) is obtained by adjusting xv

to the value given in Eq. (16).
For fixing the charmed-quark mass, we can use the lightest

1S c-q̄ mesons, MD(1869) and MD∗ (2010). To do so, we
invoke a hydrogen-atom-like approximation, with the heavy
c quark acting as the proton,

MD = mc + Eq − 〈Tq〉 − 3ECMI
(14)

MD∗ = mc + Eq − 〈Tq〉 + ECMI,

where 〈Tq〉 is the kinetic energy of the light quark. This
subtracted average corrects approximately for the motion of
the center of mass of the hydrogen-atom-like state due to the
motion of the light quark. The experimental, weighted average
mass [9] of these 1S mesons is

M̄D(1S) = (MD + 3MD∗ )/4 = 1.975 GeV

= mc + Eq(1s) −
〈
p2

q

〉
2M̄D(1S)

= mc + Eq(1s) − E 2
q (1s)

2M̄D(1S)
, (15)

where we used our approximation that mq = 0 in the last
equation.

For the case with Vv, Coul, using the parameters in Eq. (9),
integrating the radial equations yields Eq(1s) = 0.462 GeV.
This energy is larger than the value relevant to light q-q̄
mesons, ≈0.310 GeV, which is to be expected since the q

quark is here more tightly localized. Thus, from Eq. (15),
mc = 1.567 GeV. This mc is larger than the Particle Data Group
(PDG) value of about 1.250 GeV [13] but is not inconsistent, as
that value is derived from data using a nonrelativistic approach.

For the (strictly) linear Vv case, we simply take mc as one
of two parameters to be fit, along with V0. (We also fixed the
value of xv at 1.7, based on the near-linear Vv(x)’s found in
Sec. II and on the discussion above regarding the invariance
of the ODEs with regard to Ẽ + xv .) The best-fit values we
found are

mc = 1.518 GeV and V0 = 1.253 GeV/fm. (16)

This charmed-quark mass is close to the value found from
Eq. (15).

We can also use the splitting of the D and D∗ meson masses
to fix the sizes of the color-magnetic interactions, ECMI, in
Eq. (14) and later on for the charmonia states. To do this
we only need to know the q- and c-quark 1s wave functions
and how the color-magnetic interaction depends upon them,
discussed next.

B. The color-magnetic interaction: the simple cases

A large part of the attractive interaction between two quarks
(or a quark and an antiquark) comes from one-gluon exchange
between them, a four-vector interaction. The induced, effective
scalar part of that interaction is considered to be largely respon-
sible for the linear confinement we invoked in Eq. (4). The
three-vector part constitutes the color-magnetic (or hyperfine)
interaction, whose matrix element, the interaction energy for
quarks “1” and “2”, is

MCM = −
∫

d3x1

∫
d3x2 ψ

†
1(x1) α ψ1(x1)

·ψ†
2(x2) α ψ2(x2) G(x1, x2), (17)

where α is the usual Dirac matrix and G(x1, x2) is the gluon
propagator, having dimensions of energy.

In this section we derive an expression for the simple
cases of interest in this paper, where there is only one way
of forming a c-c̄ state with JPC from the single quark values
of l1, j1 and l2, j2. This allows us to calculate the masses of the
following charmonium states: ηc(JPC = 0−+) at 2.980 GeV,
J/ψ(1−−) at 3.097 GeV, ηc

′(0−+) at 3.637 GeV, ψ ′(1−−) at
3.686 GeV, χ0(0++) at 3.415 GeV, and χ2(2++) at 3.556 GeV.
More complicated cases (not considered here) in which some
particular combination of l1, j1 and l2, j2 forms the state with
JPC are not treated here, but can be derived using techniques
of Racah algebra [14].

For an s state, the Dirac wave function ψ simplifies to

ψ(r) =
[

ψa(r)

−iσ · r̂ ψb(r)

]
Y00 χms

, (18)
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where χ is a two-component Pauli spinor carrying the the
magnetic quantum number ms = ±1/2.

One often takes G(x1, x2) to be a Yukawa propagator for
the massless gluon exchange, with a cutoff e−μx to model the
shielding about the quarks. In this paper, however, we will
use a Gaussian form for the propagator [11] that allows us to
perform the angular integrations in Eq. (17) more easily,

G(x1, x2) = λ e−μ(x1−x1)2
, (19)

where the parameter μ is dimensionless and the parameter
λ has dimensions of energy and is proportional to (CF αs)2.
Since the actual spatial Green function is unknown, except for
a finite range, there is no real preference for the choice of a
phenomenological propagator.

It turns out that our model’s predictions are quite insensitive
to the value of μ, and we therefore choose it to be 0.8
(corresponding to a cutoff separation scale between the quarks
of about 0.5 fm). As stated above, we will fix the value of the λ

parameter from the mass splittings between the D∗(2010) and
D(1869) mesons, then use that value of λ to predict splittings
of the bound charmonium mass states (1S, 2S, and 2P ).

After some algebra, we can reduce Eq. (17) to

MCM = 8
3 CF λ I (μ) 〈σ1 · σ2〉 = 32

9 λ I (μ) 〈σ1 · σ2〉,
(20)

The factor 〈σ1 · σ2〉 is 1 for S = 1 states and −3 for S = 0
states. Here I (μ) is a dimensionless double integral over the
radial wave functions of quarks “1” and “2”,

I (μ) = 1

2μ2

∫ ∞

0
dx1

∫ ∞

0
dx2 ψ1,a(x1) ψ1,b(x1)

×ψ2,a(x2) ψ2,b(x2)
{
(2μx1x2 − 1) e−μ(x1−x2)2

+ (2μx1x2 + 1) e−μ(x1+x2)2}
. (21)

Using the radial wave functions found by solving the
coupled ODEs for the parameters of Eq. (9), we evaluate
this double integral using c(1s) and q̄(1s) ground-state wave
functions to find I (μ = 0.8), getting

Ic(1s), q(1s) =
{

0.0896 for Vv, Coul (x),

0.0736 for Vv, linear (x),
(22)

the difference here reflecting the differences in the wave
functions.

We can now determine the color-magnetic energy scale
from the 1S D∗-D experimental mass difference,

ECMI ≡ MCM = (MD∗ − MD)/4 = 35.3 MeV. (23)

From Ic(1s),q(1s), ECMI, and Eq. (20), we find the Gaussian
energy parameter in Eq. (19) to be

λ =
{

0.111GeV for Vv, Coul (x),
0.134GeV for Vv, linear (x). (24)

We will assume that these values of λ are also valid for the
charmonia states c-c̄, since λ is proportional to αs and thus λ

ought not be much different at these two different energies.

C. The masses of the 1S states, ηc and J/ψ

Using the mc = 1.567 GeV from Sec. III A, we can now
proceed to calculate the various bound c c̄ charmonium states.
In these calculations, because of the equal masses of the two
c quarks, we must use the reduced mass mc/2; when we solve
the ODEs of Eq. (2) to get the energy and wave functions of
the ground-state c quark. We find, for the parameters of Eqs.
(9) and (16),

Ec, red(1s) =
{

0.718GeV for Vv, Coul (x),
0.790GeV for Vv, linear (x). (25)

The 1s wave functions for the reduced-mass c quark are
displayed in Fig. 6 for both cases. These wave functions are
not as peaked as those displayed in Fig. 3.

We first check the experimental value of the spin-averaged
mass of the two 1S states,

M̄exp(1S) = (
Mηc

+ 3MJ/ψ

)
/ 4 = 3.068 GeV. (26)

In analogy to the hydrogen atom, the calculated value of the
M̄(1S) average is

M̄calc(1S) = 2mc + EB(1s), (27)

where the bound c-quark binding energy is

EB(1s) = Ec, red(1s) − mc/2. (28)

From the above calculations, i.e., Eq. (25), we find

M̄calc(1S) =
{

3.068GeV for Vv, Coul (x),
3.067GeV for Vv, linear (x), (29)

both very close to the experimental value.
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FIG. 6. Comparing the (normalized) reduced-mass c-quark 1s

Dirac wave functions ψa,b(x) for the two cases Vv, Coul (x) (solid
curve) and Vv, linear (x) (dashed curve), for the parameters given in
Eqs. (9) and (16).
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TABLE I. Comparing results for the 1S and 2S bound charmonium states for the color-Coulomb and linear vector potentials.

1S states 2S states

Quantity Vv, Coul Vv, linear Experiment Quantity Vv, Coul Vv, linear Experiment

Ec, red(1s) 0.718 0.790 – Ec, red(2s) 1.297 1.423 –
EB (1s) −0.066 0.031 – EB (2s) 0.513 0.664 –
M̄(1S) 3.068 3.067 3.068 M̄(2S) 3.647 3.700 3.674
Ic(1s), c(1s) 0.1013 0.0891 – Ic(2s), c(1s) 0.0375 0.0336 –
Mηc

2.984 2.940 2.980 Mηc
′ 3.603 3.652 3.637

MJ/ψ 3.108 3.110 3.097 Mψ ′ 3.662 3.716 3.686

To calculate the 1S mass splitting due to the color-magnetic
interaction we use the reduced-mass c-quark radial wave
functions (displayed in Fig. 6) in Eq. (21), obtaining

Ic(1s), c(1s) =
{

0.1013 for Vv, Coul (x),
0.0891 for Vv, linear (x). (30)

With these values we find from Eq. (20), using the D-D∗ value
for lambda, Eq. (24),

Mηc
= 2mc + EB(1s) − 3 32

9 λ Ic(1s), c(1s)

=
{

2.948GeV for Vv, Coul (x),
2.940GeV for Vv, linear (x), (31)

MJ/ψ = 2mc + EB(1s) + 32
9 λ Ic(1s), c(1s)

=
{

3.108GeV for Vv, Coul (x),
3.110GeV for Vv, linear (x). (32)

The splitting between these states is a bit larger than the
experimental splitting. Refinements for this splitting are
discussed in Sec. III F.

D. The 2S States

To predict the excited 2S states, ηc
′ at 3.637 GeV and ψ ′ at

3.686 GeV (which are still bound with respect to D-D̄ decay),
we need the (reduced mass) energy for the c quark in its excited
2s state. We solve the ODEs again for l = 0, j = 1

2 and the
potentials having the parameters of Eqs. (9) and (16), but this
time with a higher trial energy. The wave functions ψa and ψb

found for this excited state, not shown here, have the expected
shapes [6] with one and two nodes, respectively. Again, those
for the color-Coulomb case are narrower than those for the
linear case.

Following the equations given in the previous subsection,
we compare the calculated quantities and masses for the 1S

and 2S states in Table I.
Despite M̄(2S) being fit in the iterations by fixing the

parameters for the linear potential, it comes out about
30 MeV high compared with experiment. On the other hand,
the Coulomb case finds M̄(2S) to be a bit low by the same
amount. Also, the predicted splitting between J/ψ and ηc

is larger than the experimental splitting, and it is more
so for the linear case. Likewise, the ψ ′-ηc

′ splitting, ≈60
MeV, is more than the experimental 49 MeV. We discuss
a possible refinement to the splittings for these states in
Sec. III F.

E. The 1P states

There are four 1P states [9], but we will only predict the
two that are simplest to evaluate, χ0 at 3.415 GeV and χ2 at
3.556 GeV. The two J = 1 states, χ0 (3P1) and hc (1P1), lie
between them with nearly equal masses, and therefore they
will mix with each other in an involved way, in contrast to the
unmixed 3P0 and 3P2 states.

We model the χ0 meson as a c(2p 1
2 ) c̄(1s 1

2 ) state with
J = 0, L = 1, and S = 1. We need to solve the (reduced-
mass) ODEs of Eq. (2) (with appropriately changed boundary
conditions) for the 2p 1

2 excited state, which enters into the
calculation of Mχ0 . We do likewise for χ2, a c(2p 3

2 ) c̄(1s 1
2 )

state with J = 2, L = 1, and S = 1.
The energies Ec,red(2p 1

2 ) and Ec,red(2p 3
2 ) are about

250 MeV lower than Ec,red(2s). Plots of the upper and
lower wave functions are as expected [6], again with the
color-Coulomb wave functions narrower than the linear ones.
For p-wave states, we expect the color-magnetic interaction
to be small, as the hyperfine interaction (mostly) only affects
s-wave states.

TABLE II. Comparing results for the 1P bound charmonium states, for the color-Coulomb and linear vector potentials.

Quantity χ0, nlj = {2, 1, 1
2 } χ2, nlj = {2, 1, 3

2 }
Vv, Coul Vv, linear Experiment Vv, Coul Vv, linear Experiment

Ec, red(nlj ) 1.068 1.138 – 1.132 1.158 –
EB (nlj ) 0.284 0.379 – 0.348 0.399 –
Ic(2p),c(1s) −0.0505 −0.0517 – 0.1065 0.0957 –
Mχ

J
3.399 3.390 3.415 3.524 3.481 3.556
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We display the numerical results for the color-Coulomb and
linear cases in Table II. The splitting between these two 1P

states is about 125 MeV in the Coulomb case and 91 MeV
the linear case, both of which are less than the experimental
141 MeV.

F. Can one improve the mass splittings?

As noted above, the predicted 1S and 2S mass splittings
are somewhat larger than experiment. A somewhat smaller λ,
and thus smaller mass splittings, would be found if we use the
ηc-J/ψ splitting instead of the D ∗-D mass splitting. From the
c-quark wave functions we evaluate I (cred1s, cred1s) and find

λ =
{

0.078GeV for Vv, Coul (x),
0.104GeV for Vv, linear (x). (33)

to be compared with the values in Eq. (24).

IV. CONCLUSIONS

These results are consistent with the good spectral re-
sults found in nonrelativistic and relativistic models for the
charmonium spectrum using linear confining potentials. It is

unclear whether the slight differences in the effective linear
potentials merit the complications of a relativistic approach
to the calculation of spectra until high accuracies become
necessary. Our convolution approach suggests that the good
spectral results with a nonrelativistic, linear potential are due
to the still relatively light mass of the charm quark. This in turn
invites the question as to whether this status can still hold for
the bottom quark. Absent detailed comparisons with transition
rates for charmonium and D-meson decays, which one expects
to be more sensitive to wave function details than are spectra,
the color-Coulomb contribution to the effective potential for
quark binding remains undetermined from charmonium mass
data alone. We intend to turn next to bottom-quark states to
examine whether the spectra there can provide a definitive
determination of this issue.
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