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Description of hot and dense hadron-gas properties in a new excluded-volume model
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A new equation of state for a hot and dense hadron gas (HG) is obtained where the finite hard-core size of
baryons has been incorporated into a thermodynamically consistent formulation of excluded volume correction.
Our model differs from other existing approaches on the following points. We assign a hard-core volume only
to each baryon and mesons, which, although they possess a small volume, can fuse and interpenetrate into
one another. Use of the full quantum statistics is made to obtain the grand canonical partition function, where
excluded-volume correction has been incorporated by explicitly integrating over volume. We thus find that the
new model works even for cases of extreme temperatures and/or densities where most other approaches fail.
The numerical calculation indicates that the causality is respected by our prescription even at extreme densities.
The temperature and density dependences of various thermodynamical quantities, e.g., pressure, baryon density,
entropy and energy density, compare well with the results of other microscopic HG models. After suitable
parametrization of the center-of-mass energy in terms of temperature and baryon chemical potential, we explore
some new freeze-out criteria which exhibit full independence of the collision energy and of the structures of
the colliding nuclei. We further demonstrate the suitability of our model for explaining the various experimental
results of the multiplicity ratios of various particles and their antiparticles. Finally, we use our excluded-volume
model to obtain the transport behavior of a hot and/or dense HG, such as shear viscosity- to-entropy ratio and
speed of sound, and compare the results with earlier calculations.
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I. INTRODUCTION

One of the most important predictions of quantum chro-
modynamics (QCD) regards the phase transition from a hot,
dense hadron gas (HG) to a deconfined and/or chiral symmetric
plasma of quarks and gluons called quark-gluon plasma (QGP)
that occurs at a high temperature and/or baryon density.
However, despite extensive experimental and/or theoretical
research work performed during the last three decades, precise
qualitative and quantitative predictions for many aspects of this
phase transition are still missing [1–6]. Even the phase diagram
for the phase transition is quite uncertain and still exists
as a conjectured one. Ultrarelativistic heavy-ion collisions
offer the best method for studying the properties of QGP
in the laboratory. However, direct observation of primordial
plasma is impossible in the laboratory due to the confinement
problem. Moreover, QGP survives for a very brief time only,
and hence after subsequent expansion and cooling, QGP finally
hadronizes into a dense and hot HG [7]. Thus QGP diagnostics
becomes a very complicated field of study because of our
limited knowledge of the HG background. In this context, the
search for a proper equation of state (EOS) is of extreme
importance because it can suitably describe the properties
of hot and dense HG. There are compelling reasons for
investigating the properties of HG in unusual environments,
in particular, at high temperatures and/or baryon densities.
The cosmological situations after the big bang, the interior
of neutron stars, and the matter produced in the laboratory
after ultrarelativistic heavy-ion collisions are all governed by
the presence of such HG matter, and hence a proper EOS
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can help us to analyze the properties of the matter in above
systems. In an IHG description, all mesons and baryons are
treated as pointlike and noninteracting. However, using Gibb’s
construction of equilibrium phase transition between HG and
QGP, we find an anomalous phase reversal from QGP to HG
at large μB and T in the IHG picture [8]. This anomalous
situation is usually cured by assigning a finite and hard-core
volume to each baryon, which results in a strong repulsive
force between a pair of baryons or antibaryons. Thus any
fireball created in a heavy-ion collision at a fixed T and
μB cannot accommodate more than a limiting number of
baryons because its volume becomes completely occupied.
Moreover, it restricts the mobility of the baryons in the fireball,
and as a consequence, the thermodynamic pressure of HG
is also considerably reduced. Does this kind of “jamming”
also result in a phase transition as we often notice, e.g.,
in the percolation theory? Therefore, it is worthwhile to
study in detail a statistical thermodynamic model in which
the geometrical hard-core volume of each baryon has been
incorporated as an excluded-volume effect [8]. The purpose
of this paper is, first, to formulate a new thermodynamically
consistent excluded-volume model where we assign a finite
hard-core volume to each baryon, but mesons in the theory can
easily overlap, fuse, and interpenetrate into each other. Second,
an excluded-volume correction is obtained by performing
an explicit integration over the “available” volume in the
grand canonical partition function. Third, we use full quantum
statistics so that our formulation is valid for extreme cases
of temperature/density. Our model differs from others mainly
regarding the above features. Here we wish to examine the
predictions of our model and make a detailed comparison
with the experimental results. We emphasize that we have
used this model successfully to obtain the conjectured QCD
phase boundary and thus determine precisely the location of
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the QCD critical end point [9,10]. We have also calculated
the freeze-out curve and we note that the critical end point
indeed exists almost on the freeze-out curve. The plan of
this paper runs as follows: the ensuing section is devoted
to the model description and we derive our version of the
thermodynamically consistent EOS for a hot, dense HG. Then
we calculate different thermodynamical quantities such as the
number density, energy density, entropy density, and pressure
of HG and compare our model calculations with other calcula-
tions [11]. In the next section, we analyze the experimental data
on particle multiplicities and ratios for central nucleus-nucleus
collision in terms of our model over a broad energy range,
from the lowest GSI Schwerionen Synchrotron (SIS) energy to
the highest Relativistic Heavy Ion Collider (RHIC) energies,
to extract the chemical freeze-out temperatures and baryon
chemical potentials, which are then suitably parametrized in
terms of the center-of-mass energies, and subsequently some
chemical freeze-out criteria are also deduced. Thermal fits
computed within the statistical models have often been used
to successfully reproduce the hadron yield ratios obtained in
experimental heavy-ion collisions [12–20]. We use our freeze-
out picture for calculating the hadron multiplicities and ratios
of strange and nonstrange hadrons and compare our results
with the experimental data. We also predict the hadron yields
which we expect at the Large Hadron Collider (LHC) energy.
We further use this prescription to calculate pion and nucleon
densities, and a good comparison between our calculation and
Hanbury-Brown-Twiss (HBT) experimental data demonstrates
the validity of our model. We also investigate the validity of
different freeze-out criteria in our model and conclude that
at chemical freeze-out, the energy per particle in the fireball
E/N ≈ 1 and the entropy per particle S/N ≈ 7.0 emerge as
the most appropriate criteria, which are almost independent
of the collision energies and structures of colliding nuclei.
In order to make the discussion complete, we further derive
η/s and the speed of sound from our model and compare
them with other models. In the concluding section, we focus
our attention on the hadron ratios where our model fails and
that warrant an exotic phenomenon, e.g., QGP formation, as a
suitable alternative to understand them properly.

II. MODEL DESCRIPTION

We briefly describe our derivation of the EOS for the HG,
based on the excluded-volume correction [8,21], where we
have assigned a hard-core size to all baryons, while mesons
are still treated as pointlike particles in the grand canonical
partition function. Moreover, unlike in our previous paper [8],
where Boltzmann statistics make the calculation simple, here
we use the full quantum statistics. Thus the grand canonical
partition function can be written as follows:

ln Zex
i = gi

6π2T

∫ V −∑
j Nj V

0
j

V 0
i

dV

×
∫ ∞

0

k4dk√
k2 + m2

i
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exp

(
Ei−μi

T

) + 1
] , (1)

where gi is the degeneracy factor of the ith species of baryons,
Ei is the energy of the particle (Ei =

√
k2 + m2

i ), V 0
i is the

eigenvolume assigned with each baryon of the ith species, and
hence

∑
j NjV

0
j becomes the total occupied volume, where

Nj represent the total number of baryons of the j th species.
We can clearly write Eq. (1) as
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Ii = gi

6π2T

∫ ∞

0

k4dk√
k2 + m2

i

1[
exp

(
Ei

T

) + λi

] , (3)

and λi = exp(μi

T
) is the fugacity of the particle; nex

i is the
number density after excluded-volume correction and can be
obtained from Eq. (2) as
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Thus our prescription is thermodynamically consistent and it
leads to a transcendental equation,

nex
i = (1 − R)Iiλi − Iiλ

2
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+ λ2
i (1 − R)I

′
i , (5)

where I
′
i is the partial derivative of Ii with respect to λi , and

R = ∑
i n

ex
i V 0

i is the fractional occupied volume. We can write
R in an operator equation form as [9]:

R = R1 + �̂R, (6)
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i V
0
i + ∑

I
′
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i λ2

i ; n0
i is the

density of pointlike baryons of the ith species, and the operator
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i V
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Using the Neumann iteration method and retaining the series
up to the �̂2 term, we get

R = R1 + �̂R1 + �̂2R1. (8)

After solving Eq. (8), we finally get the expression of total
pressure [21] for the HG as

P ex = T (1 − R)
∑

i

Iiλi +
∑

i

P meson
i . (9)

Here P meson
i is the pressure due to the ith type of meson.

In Eq. (9), the first term represents the pressure due to
all types of baryons, where excluded-volume correction is
incorporated, and the second term gives the pressure arising
due to all mesons in HG as if they possess a pointlike size.
This makes it clear that we consider the repulsion arising
only between a pair of baryons and/or antibaryons because
we assign them exclusively a hard-core volume. In order to
make the calculation simple, we have taken an equal volume
V 0 = 4πr3/3 for each type of baryon with a hard-core radius
r = 0.8 fm. We have considered in our calculations all baryons
and mesons and their resonances having masses up to a cutoff
value of 2 GeV/c2 and lying in the HG spectrum. Here
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only resonances having well-defined masses and widths have
been incorporated in the calculations. Branching ratios for
sequential decays have been suitably accounted for, and in the
presence of several decay channels, only the dominant mode
is included. We have also strictly imposed the condition of
strangeness neutrality by putting

∑
i Si(ns

i − n̄s
i ) = 0, where

Si is the strangeness quantum number of the ith hadron, and
ns

i (n̄
s
i ) is the strange (antistrange) hadron density, respectively.

Using this constraint equation, we get the value of the strange
chemical potential in terms of μB . Having done all these things,
we proceed to calculate the energy density of each baryon
species i using the following formula:

εex
i = T 2

V

∂ ln Zex
i

∂T
+ μin

ex
i . (10)

Similarly, the entropy density is

s = εex
i + P ex − μBnB − μSnS

T
. (11)

It is evident that this approach is more simple in comparison
to other thermodynamically consistent, excluded-volume ap-
proaches, which often possess transcendental final expressions
that are usually found to be difficult to solve [14]. This
approach does not involve any arbitrary parameter in the
calculation. Moreover, this approach can be used for extremely
low as well as extremely high values of T and μB where all
other approaches fail to give a satisfying result [14].

III. HADRONIC PROPERTIES

In this section, we attempt to calculate the number density,
pressure, energy density, and entropy density of hadrons and
compare the results with the predictions of a microscopic
model named the URASiMA generator [11], which is essen-
tially based on the molecular-dynamical simulation performed
for a system of hadrons. In Fig. 1, we show the variation
of the total number density of hadrons with respect to the
temperature at a fixed baryon density and compare it with the
results obtained by the URASiMA event generator. The results
show a very close agreement between our model calculation
and the results of Sasaki, but at higher T, the curves seem to
differ slightly.

In Fig. 2, we have plotted the variation of the total pressure
generated by all hadrons with respect to temperature at a
fixed net baryon density. The hadronic pressure initially shows
a very slow increase, but for T � 170 MeV, the pressure
increases rapidly. The hadronic pressure calculated in our
model again shows a good agreement with the results of Sasaki
[11]. This shows that the EOS of HG as given by our excluded-
volume model incorporating macroscopic geometrical features
gives results in close agreement with the simulation involving
hadrons and hadronic interactions. The method of Sasaki
[11] involves various parameters, e.g., coupling constants of
hadron, arising due to hadronic interactions. However, it is
encouraging to see such excellent matching of the results
obtained with two very different models.

Figure 3 represents the variation of the energy density
of HG with respect to temperature at a constant net baryon
density. Again, the very good agreement between our model
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FIG. 1. Variation of total number density with respect to tem-
perature at a constant net baryon density. Lines show our model
calculation while symbols are the data calculated by Sasaki using the
URASiMA event generator.

calculations and the results from the URASiMA event gen-
erator demonstrates the validity of our model in describing
the properties of hot, dense HG. The energy density increases
very slowly with the temperature initially and then increases
rapidly at higher temperatures. Similarly, in Fig. 4, we show
the variation of entropy per baryon s/nB in an HG with respect
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FIG. 2. Variation of pressure with respect to temperature at a
constant net baryon density. Lines show our model calculation while
symbols are the data calculated by Sasaki using the URASiMA event
generator.
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FIG. 3. Variation of energy density with respect to temperature
at a constant net baryon density. Lines show our model calculation
while symbols are the data calculated by Sasaki using the URASiMA
event generator.

to the temperature at a fixed net baryon density. We stress that
s/nB measures the yield of all particles relative to nucleons
[22], and the IHG model gives s/nB as an almost-constant
quantity for any fireball, which means that it does not change
during the expansion or evolution of the fireball. So this is a
measurable quantity and is significant in fixing the properties
of the HG. Again, Fig. 4 demonstrates a very good agreement
between the two models. It should be stressed here that the
essential difference between the present model and the earlier
calculation [8] is the use of full quantum statistics here, in
comparison to the Boltzmann statistics used in Ref. [8]. We
note that this modification has improved the fit between our
model and Sasaki’s calculation. Both models predict a rapid
increase in s/nB for T � 160 MeV even at a fixed nB .

In order to relate the thermal parameters of hot, dense HG
with the center-of-mass energy, we extract them by fitting
the experimental particle ratios from the lowest SIS energy
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FIG. 4. Variation of s/nB with respect to temperature at a constant
net baryon density. Lines show our model calculation while symbols
are the data calculated by Sasaki using the URASiMA event generator.

to the highest RHIC energy by our model calculation. We
thus deduce the temperature and baryon chemical potential
thermodynamically from the experiments at various energies
as listed in Table I. For comparison, we have also shown the
values obtained in other models, e.g., the ideal hadron gas
(IHG) and Rischke, Gorenstein, Stöcker, and Greiner (RGSG)
models. We then parametrize the variables T and μB in terms
of center-of-mass energy as follows [23]:

μB = a

1 + b
√

sNN

, (12)

T = c − dμ2
B − eμ4

B. (13)

where the parameters a, b, c, d, and e have been
determined from the best fit: a = 1.482 ± 0.0037 GeV,
b = 0.3517 ± 0.009 GeV−1, c = 0.163 ± 0.0021 GeV, d =
0.170 ± 0.02 GeV−1, and e = 0.015 ± 0.01 GeV−3.

TABLE I. Thermal parameter (T , μB ) values obtained by fitting the experimental particle ratios in different model calculations.

√
SNN (GeV) IHG model RGSG model Our old model Our present model

T μB δ2 T μB δ2 T μB δ2 T μB δ2

2.70 60 740 0.85 60 740 0.75 60 740 0.87 70 760 1.15
3.32 80 670 0.89 78 680 0.34 90 670 0.69 90 670 0.45
3.84 100 645 0.50 86 640 0.90 100 650 0.60 100 640 0.34
4.32 101 590 0.70 100 590 0.98 101 600 0.53 105 600 0.23
8.76 140 380 0.45 145 406 0.62 140 380 0.26 140 360 0.25
12.3 148 300 0.31 150 298 0.71 148.6 300 0.31 150 276 0.20
17.3 160 255 0.25 160 240 0.62 160.6 250.6 0.21 155 206 0.27
130 172.3 35.53 0.10 165.5 38 0.54 172.3 28 0.056 163.5 32 0.05
200 172.3 23.53 0.065 165.5 25 0.60 172.3 20 0.043 164 20 0.05
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In this exercise we have used full-phase-space 4π data, but
at RHIC energies midrapidity data are available for all the
ratios and hence they are accordingly used, so that we can
remove any possible influence on particle ratios arising due to
hydrodynamical flow [24]. This allows us to study the hadronic
ratios without bothering about the expansion of the system
at freeze-out. However, we have used RHIC data available
at midrapidity at energies of 130 and 200 GeV, respectively.
Moreover, the midrapidity and full-phase-space data at these
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FIG. 6. Variation of chemical freeze-out temperature with respect
to baryon chemical potential.

energies differ only slightly as pointed out by Alt et al. for
K+/π+ and K−/π− ratios [26].

In Fig. 5, we show the parametrization of the freeze-out
values of the baryon chemical potential with respect to the
center-of-mass energy, and similarly, in Fig. 6, we show the
chemical freeze-out curve between temperature and baryon
chemical potential. The fits demonstrate that the parameters in
parametrizations (12) and (13) have been suitably chosen and
the experimental variable such as center-of-mass energy can
be described well by the variables T and μB of the fireball.

IV. ENERGY DEPENDENCE OF HADRON RATIOS

In a series of measurements of Pb-Pb and Au-Au collisions
at various center-of-mass energies [30–34], it is found that
there is an unusually sharp variation giving rise to peaks in the
K+/π+ and 	/π− ratios. Such a strong variation of K+/π+
with energy does not occur in p-p collisions and, therefore, has
been attributed to the presence of unusual phenomena of the
QGP formation. This transition is referred as the “horn” in Ref.
[30]. A strong variation of 	/π− with energy has also been
attributed as a signal for the existence of a critical point in the
QCD phase diagram [35,36] and nontrivial information about
the critical temperature TC ≈ 176 MeV has been extracted
[36]. A sharp rise at low energies, with a mild maximum and
a subsequent flattening of K+/π+, was also reported by many
authors [15,18,37] using various statistical model calculations.
Nayak et al. [38] have also explained the horn by using a
microscopic approach for the HG. Similarly, a good fit with
the experimental data for the horn has been proclaimed as the
onset of QGP formation [39–41]. In Fig. 7, we show the results
of our calculation for K+/π+ and we compare our results
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FIG. 7. Energy dependence of K+/π+ ratio. We compare our
results with the Cleymans-Suhonen model [25]. Symbols are experi-
mental data [26–29]. RHIC data are at midrapidity.
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FIG. 8. Energy dependence of 	 relative to pion. We compare
our results with the Cleymans-Suhonen model [25]. Symbols are
experimental data [26–29]. RHIC data are at midrapidity.

with those from other models. We find that our results almost
coincide with the results of the Cleymans-Suhonen model,
which involves a thermodynamical inconsistency. Figure 8
shows the variation of 	/π− with

√
SNN . We have again

compared our results with various HG models [25] and we
find that our model calculation gives a much better fit to
the experimental data at all energies in comparison to other
models. Although we have not successfully reproduced the
sharp peak in K+/π+, we still get a broad peak, and our results
almost reproduce the data at lower as well as higher energies. In
the 	/π− case we get a sharp peak around the center-of-mass
energy of 5 GeV and our results almost reproduce all the
features of the experimental data.

In Figs. 9 and 10, we show the variations of the multiplicity
ratios of φ and � relative to pions with the center-of-mass
energy, respectively. Our model is able to reproduce the
experimental data only at lower

√
SNN . Although our model

calculation is not able to describe these ratios, it is closer
to the experimental data in comparison to other models,
especially at higher

√
SNN . We note that no thermal model

can suitably account for the multiplicity ratios of multistrange
particles since �− is sss and φ is ss̄ hidden-strange quark
combinations. Strangeness enhancement invoked in the case of
QGP formation will also give nonmatching results. However,
the quark coalescence model assuming QGP formation has
been claimed to explain the results [42]. In the thermal model,
this result for multistrange particles raises doubt about the
degree of chemical equilibration for strange hadrons reached
in the HG fireball. The failures of excluded-volume models
in these cases may indicate the presence of QGP formation.
Figure 11 shows the energy dependence of K− and p relative
to pions. There is a very good agreement between our model
calculations and the experimental data. These ratios saturate at
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FIG. 9. Energy dependence of φ relative to pion. We compare
our results with the Cleymans-Suhonen model [25]. Symbols are
experimental data [26–29]. RHIC data are at midrapidity.

higher energies, which means that the production rate of these
particles is independent of

√
SNN at higher energies. In Fig. 12,

we show the energy dependence of antiparticle-to-particle
ratios, e.g., K−/K+, p̄/p, 	̄/	, and �̄+/�−. These ratios
increase sharply with respect to

√
SNN and then almost saturate

at higher energies, reaching the value 1.0 at the LHC energy.
This behavior shows that the production rates of antiparticles
relative to particles continuously increase with increasing
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FIG. 10. Energy dependence of � relative to pion. We compare
our results with the Cleymans-Suhonen model [25]. Symbols are
experimental data [26–29]. RHIC data are at midrapidity.

014908-6



DESCRIPTION OF HOT AND DENSE HADRON-GAS . . . PHYSICAL REVIEW C 85, 014908 (2012)

  (GeV)
NN

S

1 10 210
310

410

+ π
p/

−210

−110

1

10
AGS (Au−Au)

SPS (Pb−Pb)

RHIC (Au−Au)

Our Model

  (GeV)
NN

S
1 10 210 310 410

− π/−
   

   
   

   
K

0

0.05

0.1

0.15

0.2

0.25

0.3
AGS (Au−Au)
SPS (Pb−Pb)
RHIC (Au−Au)
Our Model

FIG. 11. Energy dependence of various hadrons relative to pion.
Symbols are from experimental data [26–29] and the solid line
represents our model calculation. RHIC data are at midrapidity.

√
SNN and will become almost-equal at the LHC energy.

The excellent agreements between our model results and the
experimental data demonstrate the validity of our model for
describing the data going from the lowest to the highest energy.

Usually excluded-volume models suffer from a severe
deficiency caused by the violation of causality in a hot and
dense HG, i.e., the sound velocity cs is higher than the velocity
of light c in the medium. In other words, cs > 1, in units of
c = 1, means that the medium transmits information at a speed
faster than c [43]. It would be interesting to see if our model
violates causality. In Fig. 13, we plot the variations of the total
hadronic pressure P as a function of the energy density ε of an
HG at a fixed entropy per particle. We find that, for a fixed s/n,
the pressure varies linearly with respect to the energy density.
In Fig. 14, we show the variation of cs (cs

2 = ∂P/∂ε at a
fixed s/n) with respect to s/n. We find that cs � 0.58 always
in our model of interacting particles having a hard-core size.
We get cs = 0.58 (i.e., 1/

√
3) for an ideal gas consisting of

ultrarelativistic particles. This feature supports our viewpoint
that our model not only is thermodynamically consistent but
also does not involve any violation of causality.

In Fig. 15, we show the variations of nucleon density and
pion density with respect to center-of-mass energy. We have
compared our results with the IHG model and found that
both results are in better agreement with the experimental
data [44] as obtained by HBT interferometry. In fact, for the
pion density, we find that the incorporation of hard-core size
does not produce any noticeable change. However, for the

nucleon density, we note that our calculations yield results
lying well below the HBT results at lower center-of-mass
energies. Similarly, the experimental value for the nucleon
density at RHIC energy lies well above our theoretical result.
In general, the experimental data for enhanced nucleon density
obtained in recent heavy-ion collider experiments have posed
a problem which defies explanation. Hence, some other
production mechanism is needed to explain the excess of
baryon density observed in these experiments.

V. FREEZE-OUT CRITERIA—REVISITED

In ultrarelativistic nucleus-nucleus collisions, a hot, dense
matter is formed over an extended region for a very brief time
and it is often called a “fireball.” The physical variables of
the fireball are the volume V , energy density ε, and baryon
density nB , which are in fact related to the T and μB of the
fireball. When cooling or expansion of the fireball starts, it
goes through two types of freeze-out stages; when inelastic
collisions between constituents of the fireball do not occur,
we call this the chemical freeze-out stage. Later, when elastic
collisions also cease to happen in the fireball, this stage is
called the thermal freeze-out. The abundances of particles
and their ratios provide important information regarding the
chemical equilibrium occurring in the fireball just before
thermal equilibrium.

After seeing the remarkable success of our model in
explaining the multiplicities and the particle ratios of various
particles produced in heavy-ion experiments from the lowest
SIS energy up to the highest RHIC energies, we wish to extend
the search for chemical freeze-out criteria for the fireball.
Recently many papers have appeared [14,23,24,45–47] which
predict the following empirical conditions to be valid on the
entire freeze-out hypersurface of the fireball: (i) the energy per
hadron is a fixed value at 1.08 GeV, (ii) the sum of the baryon
and antibaryon densities nB + nB̄ = 0.12/fm3, and (iii) the
normalized entropy density s/T 3 ≈ 7. Indeed, Cleymans et al.
have found that these conditions separately give a satisfactory
description of the chemical freeze-out coordinates of T and μB

in an IHG picture of statistical thermodynamics. Moreover, it
was also proposed that these conditions are independent of the
collision energy and the geometry of colliding nuclei, but these
findings were not illustrated explicitly. Furthermore, Cleymans
et al. [23] hinted that incorporation of the excluded-volume
correction leads to wild as well as disastrous effects under
these conditions. Our purpose in this section is to reinvestigate
the validity of these freeze-out criteria in our excluded-volume
model.

In Fig. 16, we show the variation of E/N with respect to
the center-of-mass energy (

√
SNN ) at the chemical freeze-

out point of the fireball. The ratio E/N indeed shows a
constant value of 1.0 in our calculation and it shows a
remarkable energy independence. Similarly, the curve in the
IHG model shows that the value for E/N is slightly larger
than one reported in [23]. However, our results support that
E/N is almost independent of the energy and, also, of the
geometry of the nuclei. Most importantly, we note that the
inclusion of the excluded-volume correction does not change
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FIG. 12. Energy dependence of antihadron-to-hadron ratios. Symbols are from experimental data [26–29] and the solid line represents our
model calculation. RHIC data are at midrapidity.

the result much, which is contrary to the claim of Cleymans
et al. [23]. The condition E/N ≈ 1.0 GeV was successfully
used in the literature to make predictions [48] of freeze-out
parameters at SPS energies of 40 and 80 A GeV for Pb-Pb
collisions long before the data were taken. Moreover, we
also show in Fig. 16 the curves in the Cleymans-Suhonen
model [25] and the RGSG excluded-volume model [14] and
we note a small variation with

√
SNN , particularly at lower

energies.
In Fig. 17, we study a possible new freeze-out criterion

which was not proposed earlier. We show that the quantity
entropy per particle, i.e., S/N , yields a remarkable energy
independence in our model calculation. The quantity S/N ≈
7.0 describes the chemical freeze-out criteria and is almost
independent of the center-of-mass energy in our model
calculation. However, the results below

√
SNN = 6 GeV do not

give promising support for our criterion and show some energy
dependence. This criterion thus indicates that the possible use
of excluded-volume models and thermal descriptions at very
low energies is not valid for HG. Similar results were obtained
in the RGSG, Cleymans-Suhonen, and IHG models.

Should the normalized entropy density s/T 3 remain fixed
over the entire chemical freeze-out surface in heavy-ion colli-

sion experiments? This idea was initially used to extrapolate
lattice gauge results from μB = 0 to finite values of μB by
keeping s/T 3 fixed [47]. In Ref. [49] this quantity was also
used to separate a baryon-dominant region from a meson-
dominant one, in order to understand the rapid variations of
certain particle ratios observed at lower SPS energies by the
NA49 collaboration [30]. In Fig. 18, we show the energy
dependence of the normalized entropy density s/T 3, which
shows energy dependence at lower energies in almost all the
models. In the IHG model, however, energy independence was
observed to some extent and its value equals approximately
6.0. In the case of Cleymans-Suhonen and RGSG model
calculations, this ratio follows the same trend as in our model
calculation. This ratio varies wildly at lower energies in these
excluded-volume models. Thus we cannot treat the criterion
of fixed s/T 3 as being valid on the freeze-out hypersurface of
the fireball, as it is dependent on the energy of the collisions.

In heavy-ion collisions, the net baryon density, i.e., the
difference between the density of baryons nB and the density
of antibaryons nB̄ , shows wild variation with the center-
of-mass energy as shown in Fig. 15. However, it was first
noted by Braun-Munzinger et al. [45] that the sum of the
baryon and antibaryon densities remains constant at chemical
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freeze-out. However, they used the excluded-volume model
of RGSG and they used different eigenvolumes for baryons
and mesons, respectively. In Fig. 19, we show the variation
of nB + nB̄ with

√
SNN . This quantity indeed involves a

rapid variation with the energy in almost all the HG models.
Our calculations thus reveal that some of the above criteria
are not strictly valid on the freeze-out surface, as they do
not show energy independence. However, as pointed out by
certain authors, we can still treat them as freeze-out criteria
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√
SNN ). The solid line shows the

meson density calculated in the IHG model and the dashed line shows
our model calculation for meson density. Dotted and dash-dotted lines
show the nucleon density calculated in the IHG model and our model,
respectively. Filled symbols show HBT experimental data [44].

provided we give adjustable eigenvolumes for both baryons
and mesons, respectively. Our finding lends support to the
crucial assumption of achieving chemical equilibrium with an
HG resulting in heavy-ion collisions from the lowest SIS up
to the RHIC energy, and the EOS of the HG developed by
us gives a proper description of the hot and dense fireball
and its subsequent expansion. However, we still do not get
any information regarding QGP formation from these criteria.

 (GeV)NNS
1 10 210

E
/N

0.6

0.8

1

1.2

1.4 Our Model
Cleymans−Suhonen Model

RGSG Model

IHG Model

FIG. 16. Variation of E/N with
√

SNN . The ideal HG model
calculation is shown by the dash-dotted line; the Cleymans-Suhonen
and Rischke et al. (RGSG) model calculations are shown by the
dashed and dotted lines, respectively. The solid line shows the
calculation using our model.
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Once attained by a hot and dense HG, the chemical equilibrium
removes any memory regarding QGP existing in the HG
fireball. Furthermore, in a heavy-ion collision, a large amount
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FIG. 18. Variation of s/T 3 with
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SNN . The ideal HG model
calculation is shown by the dash-dotted line; the Cleymans-Suhonen
and Rischke et al. (RGSG) model calculations are shown by the
dashed and dotted lines, respectively. The solid line shows the
calculation using our model.
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Rischke et al. (RGSG) model calculations are shown by the dashed
and dotted lines, respectively. Solid line shows the calculation using
our model.

of kinetic energy becomes available and part of it is always
lost during the collision due to dissipative processes. In the
thermal description of the fireball, we ignore the effect of such
processes and we assume that all available kinetic energy (or
momentum) is globally thermalized at the freeze-out density.
The experimental configuration of the collective flow in hot,
dense matter reveals the unsatisfactory nature of the above
assumption.

VI. TRANSPORT PROPERTIES

Transport coefficients are of particular interest to quantify
the properties of a strongly interacting relativistic fluid and
its critical phenomena, i.e., phase transition, critical point,
etc. [50–52]. The fluctuations cause the system to depart from
equilibrium, and for a brief time a nonequilibrated system is
created. The response of the system to such fluctuations is
essentially described by the transport coefficients, e.g., shear
viscosity, bulk viscosity, and speed of sound. Recently the data
on collective flow obtained from RHIC and LHC experiments
indicate that the system created in these experiments behaves
as a strongly interacting perfect fluid [53], whereas we
expected that QGP created in these experiments would behave
like a perfect gas. The perfect fluid created after the phase
transition thus has a very low shear viscosity–to–entropy
ratio value so that the dissipative effects are negligible and
the collective flow should be large as obtained in heavy-
ion-collision experiments [54,55]. There are several analytic
calculations for η and η/s values of simple hadronic systems
[56–62] along with some sophisticated microscopic transport
model calculations [63–65] in the literature. Furthermore,
some calculations predict that the minimum of the shear
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viscosity–to–entropy density ratio is related to the QCD phase
transition [66–70]. Similarly, the sound velocity is a very
important property of the matter created in heavy-ion-collision
experiments because the hydrodynamic evolution of this
matter strongly depends on it. A minimum in the sound
velocity has also been interpreted in terms of a phase transition
[67,71–77], and further, the presence of a shallow minimum
corresponds to a crossover transition [78]. Similarly, Liao and
Koch have shown that the shear viscosity–to–entropy ratio
cannot give a good measure of fluidity when one compares
the relativistic vis-à-vis the nonrelativistic fluid, and they have
defined a new fluidity variable for this purpose [79]. In view
of the above, it is worthwhile to study in detail the transport
properties of HG in order to fully comprehend the nature of
the matter created in colliders as well as the phase transition
phenomenon involved. In this section, our excluded-volume
model for HG is used to calculate transport properties such as
the shear viscosity–to–entropy ratio, the speed of sound, and
also the fluidity measure as proposed by Liao and Koch [79].

Our calculation for the shear viscosity is completely based
on the method of Gorenstein et al. [80], where the RGSG model
was used for HG. According to molecular kinetic theory, we
can write the dependence of the shear viscosity as [81]

η ∝ n l 〈|p|〉, (14)

where n is the particle density, l is the mean free path, and hence
the average thermal momentum of the baryons or antibaryons
is

〈|p|〉 =
∫ ∞

0 p2 dp p A∫ ∞
0 p2 dp A

, (15)

and A is the Fermi-Dirac distribution function for baryons
(antibaryons). For the mixture of particle species with different
masses and with the same hard-core radius r , the shear
viscosity can be calculated by the equation [80]

η = 5

64
√

8 r2

∑
i

〈|pi|〉 × ni

n
, (16)

where ni is the number density of the ith species of baryons
(antibaryons) and n is the total baryon density.

In Fig. 20, we show the variation of η/s with respect to
temperature as obtained in our model for an HG having a
baryonic hard-core size r = 0.5 fm and compare the results
with those of Gorenstein et al. [80]. We find that near
the expected QCD phase transition temperature (Tc = 170–
180 MeV), η/s shows a lower value in our HG model than
in the other model. In fact, η/s in our model looks close
to the lower bound (1/4π ) suggested by AdS/QCD theories
[82]. Recently measurements in Pb-Pb collisions at the LHC
support the value η/s ≈ 1/4π compared with the viscous fluid
hydrodynamic flow [83].

In Fig. 21, we show the variation of η/s with respect to
μB but at a very low temperature (≈10 MeV). Here we find
that the η/s is constant as μB increases up to 700 MeV
and then sharply decreases. This kind of valley structure at
low temperatures and at a μB of about 950 MeV was also
obtained by Chen et al. and Itakura et al. [59,61]. They related
this structure to the liquid-gas phase transition of the nuclear
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FIG. 20. Variation of η/s with temperature for μB = 0 in our
model and a comparison with the results obtained by Gorenstein
et al. [80].

matter. As we increase the temperature above 20 MeV, this
valley-like structure disappears. They further suspect that the
observation of a discontinuity in the bottom of the η/s valley
may correspond to the location of the critical point. Our HG
model yields a curve in complete agreement with these results.

In Fig. 22, we show the variation of η and η/s with respect
to temperature at a fixed μB (=300 MeV) for an HG having
a baryonic hard-core size r = 0.8 fm and compare this result
with the result obtained in Ref. [61]. Here we find that η

increases with temperature in our HG model as well as in
the simple phenomenological calculation in Ref. [61], but
in low-temperature effective-field-theory calculations, η de-
creases with an increase in temperature [59,61]. However, η/s

decreases with increasing temperature in all three calculations,
and η/s in our model gives the lowest value at all temperatures
in comparison with the other models.

In Fig. 23, we show a comparison between the η calculated
in our HG model and the results obtained in the microscopic
pion-gas model used in Ref [63]. Our model results show a
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FIG. 21. Variation of η/s with respect to baryon chemical
potential (μB ) at a very low temperature, 10 MeV. The solid line
represents our calculation and the dotted curve is that of Itakura
et al. [61].
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temperature at μB = 300 MeV in our model and a comparison with
the results obtained by Itakura et al. [61].

fair agreement with the microscopic model results for tem-
peratures higher than 160 MeV, while at lower temperatures
the microscopic calculation predicts lower values of η in
comparison with our results. The most probable reason is
that the calculations have been done only for pion gas in the
microscopic model, while at low temperatures the inclusion
of baryons in the HG is very important in order to extract the
correct value for the shear viscosity.

The speed of sound is another important quantity because
it is related to the speed of small perturbations produced in the
medium in its local rest frame. Here we have used the recent
formulation of Cleymans and Worku to calculate the speed
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FIG. 23. Variation of η with respect to temperature at μB = 300
MeV in our model and a comparison with the results obtained by
Muronga [63].

of sound at a constant s/n [72]. The speed of sound at zero
chemical potential is easy to calculate where it is sufficient to
keep the temperature constant [71,77]. However, the speed of
sound (cs) at finite chemical potential can be obtained by using
the extended expression [72]

c2
s =

(
∂p

∂T

) + (
∂p

∂μB

)(
dμB

dT

) + (
∂p

∂μs

)(
dμs

dT

)
(

∂ε
∂T

) + (
∂ε

∂μB

)(
dμB

dT

) + (
∂ε
∂μs

)(
dμs

dT

) , (17)

where the derivative dμB/dT and dμs/dT can be evaluated
by using two conditions: first, keeping s/n constant and,
second, imposing overall strangeness neutrality. Thus one gets
[72]

dμB

dT
=

[
n
(

∂s
∂μs

) − s
(

∂n
∂μs

)][
∂L
∂T

− ∂R
∂T

] − [
n
(

∂s
∂T

) − s
(

∂n
∂T

)][
∂L
∂μs

− ∂R
∂μs

]
[
n
(

∂s
∂μB

) − s
(

∂n
∂μB

)][
∂L
∂μs

− ∂R
∂μs

] − [
n
(

∂s
∂μs

) − s
(

∂n
∂μs

)][
∂L
∂μB

− ∂R
∂μB

] (18)

and

dμs

dT
=

[
n
(

∂s
∂T

) − s
(

∂n
∂T

)][
∂L
∂μB

− ∂R
∂μB

] − [
n
(

∂s
∂μB

) − s
(

∂n
∂μB

)][
∂L
∂T

− ∂R
∂T

]
[
n
(

∂s
∂μB

) − s
(

∂n
∂μB

)][
∂L
∂μs

− ∂R
∂μs

] − [
n
(

∂s
∂μs

) − s
(

∂n
∂μs

)][
∂L
∂μB

− ∂R
∂μB

] , (19)

where L = nB
s + nM

s , is the sum of the strangeness den-
sity for baryons and mesons. Similarly, R = nB̄

s + nM̄
s ,

the sum of the antistrangeness densities for baryons and
mesons.

In Fig. 24, we show the variation of c2
s with respect to μB

at two temperatures. We find that at T = 120 MeV, there is a
clear minimum at μB ≈ 500 in the curve of the speed of sound,
while in the case of T = 170 MeV, we do not observe any such
minimum and c2

s continues to increase with increaseing μB .
The minimum at μB ≈ 500 for T = 120 MeV indicates the
position where a first-order phase transition from HG to QGP
materializes.

In a recent paper [79], Liao and Koch suggested that η/s can
serve as a good measure for the fluidity of a relativistic fluid

only because the ability of η/s to serve such a role is actually
inherited from η/ω, where the enthalpy of HG is ω. We find
that ω becomes approximately equal to T s only in the case of
relativistic or ultrarelativistic matter. It is not always necessary
for one to prefer η/s over η/ω for a measure of the fluidity
of the system. Thus if we want to compare various systems,
i.e., relativistic and nonrelativistic, and extract some useful
insights about the nature of the systems, then we have to define
a fluidity measure exclusively in terms of the properties of the
system itself. Liao and Koch defined a quantity F to measure
the fluidity of a relativistic and/or nonrelativistic system as
follows:

F = Lη

Ln

, (20)
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where we can use

Lη = η

ωcs

, (21)

and Ln can be calculated by the relation [79]

Ln = 1

n1/3
=

(
4

s

)1/3

. (22)

Actually Lη provides a measure for the minimal wavelength
of a sound wave which propagates in a viscous fluid and Ln

is basically related to the interparticle distance to provide an
internal length scale for the medium. In Fig. 25, we show the
variation of F = Lη

Ln
with respect to temperature as obtained

in our excluded-volume model using different hard-core sizes
for baryons and compare the results with the curve obtained by
Liao and Koch [79], in which they crudely assumed η/T 3

c ≈
T/Tc. We thus find that the features of our curves show a
behavior similar to the results obtained by Liao and Koch
using a completely different formalism.

Study of the transport properties of nonequilibrium systems
which are not far from an equilibrium state has yielded valuable
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FIG. 25. Variation of fluidity (F) with temperature for μB = 0 in
our model and a comparison with the results obtained by Liao and
Koch [79].

results in the recent past. The large values of the elliptic flow
observed at the RHIC indicate that the matter in the fireball
behaves as a nearly perfect liquid, with a low value of the η/s

ratio. After evaluating η/s in strongly coupled theories using
the AdS/CFT duality conjecture, the lower bound was reported
as η/s = 1

4π
. We, surprisingly, note that a fireball with a hot,

dense HG as described in our excluded-volume model gives a
transport coefficient which agrees with those given by different
approaches. The temperature and baryon chemical potential
dependence of η/s are analyzed and compared with the results
obtained with other models. We also focus our attention on cs

and the fluidity variable. Our results show trends and features
similar to those reported by previous authors.

VII. SUMMARY AND CONCLUSIONS

We have formulated a new thermodynamically consistent
EOS for a hot and dense HG by incorporating a hard-core finite
size of baryons and antibaryons only. We have treated mesons
as pointlike particles. Alternatively, they possess a size but they
can penetrate and overlap with each other. Our prescription is
valid even at extreme values of T and μB . Moreover, our model
does not suffer from either of the two main inconsistencies,
i.e., violation of causality and thermodynamic inconsistency.
Our model involves a mathematical form which resembles the
thermodynamically inconsistent Cleymans-Suhonen model
but contains some extra correction terms which arise due to the
condition of thermodynamic consistency. We have calculated
the prediction of our model for various thermodynamic
quantities, such as pressure, energy density, number density,
and entropy density, and compared the predictions with those
of other excluded-volume models. Similarly, we have also
compared our results with those obtained from the microscopic
simulation approach of Sasaki. We find that our results mostly
show very close agreement with those of Sasaki, although
the two approaches are completely different in nature. In
addition, Sasaki’s approach has a fundamental inconsistency
and antibaryons and strange particles are not included in
the model. The EOS thus formulated usually suffers from
the crucial assumption regarding how many particles and
resonances one should incorporate into it. We have taken all the
known particles and resonances up to the mass of 2 GeV/c2.

Our results for the particle ratios and their energy depen-
dences fit the experimental data very well. We have deduced
certain freeze-out criteria and attempted to test whether these
criteria involve energy independence as well as independence
of the structures of the nuclei involved in the collision. We find
that two criteria, i.e., E/N = 1.0 GeV per produced particle
and s/n = 7.0, demonstrate their validity. Moreover, the cal-
culations of transport properties in our model match well with
the results obtained using other widely different approaches.

In conclusion, the utility of our present model has been
demonstrated in explaining various properties of a hot, dense
HG, and thus our model provides a proper and realistic EOS for
a hot, dense HG and it can suitably describe an HG at extreme
values of temperatures and/or densities. Calculations regarding
pT as well as the rapidity spectra of different particles at the
RHIC and LHC are still in progress and will be reported in a
future paper.
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[18] C. Spieles, H. Stöcker, and C. Greiner, Eur. Phys. J. C 2, 351
(1998).

[19] B. Schenke and C. Greiner, J. Phys. G 30, 597 (2004).
[20] W. Florkowski, W. Broniowski, and M. Michalec, Acta Phys.

Pol. B 33, 761 (2002); W. Broniowski and W. Florkowski, Phys.
Rev. C 65, 064905 (2002).

[21] C. P. Singh, B. K. Patra, and K. K. Singh, Phys. Lett. B 387, 680
(1996); S. Uddin and C. P. Singh, Z. Phys. C 63, 147 (1994).

[22] A. Andronic, P. Braun-Munzinger, J. Stachel, and H. Stöcker,
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