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Fluctuation probes of early-time correlations in nuclear collisions
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Correlation measurements imply that anisotropic flow in nuclear collisions includes an interesting triangular
component along with the more familiar elliptic-flow contribution. Triangular flow has been attributed to
eventwise fluctuations in the initial shape of the collision volume. The following two questions are asked. First,
how do these shape fluctuations impact other event-by-event observables? Second, can fundamental information
on the early time fluctuations be disentangled from the complex flow that results? Correlation and fluctuation
observables are studied in a framework in which flux tubes in an early Glasma stage later produce hydrodynamic
flow. The calculated collision-energy dependence of multiplicity and transverse momentum fluctuations is in
good accord with data from 62.4 GeV Au + Au up to 2.76 TeV Pb + Pb.
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I. INTRODUCTION

Measurements of two-particle correlations in nuclear colli-
sions exhibit a complex pattern of ridges, bumps, and valleys
as functions of relative pseudorapidity �η = η1 − η2 and
azimuthal angle �φ = φ1 − φ2 [1–9]. In a recent advance,
Alver and Roland showed that much of the �φ dependence
of these correlations can be described in terms of anisotropic
flow [10]. Their key realization was that a triangular flow
contribution ∼ v3 cos 3�φ is needed to describe the data.
Such contributions have been attributed to fluctuations of
the geometric shape of the collision volume from event to
event [10–21]. A unique shape is determined in the first instants
of each collision event as the nuclei crash through one another.

Interestingly, fluctuations have been of measured in nuclear
collisions for many years, but for different reasons. Event-
by-event fluctuations of the multiplicity, mean transverse
momentum, and net charge are viewed as probes of the
QCD phase transition, although signature behavior has yet
to be seen [22–24]. Such observations are explained by the
variation of density, geometry, thermalization, and flow (see,
e.g., Refs. [25–29]).

In this paper we explore the common influence that the
early-time dynamics of the system has on correlations, flow,
and fluctuations. We begin by asking how geometric fluctua-
tions impact other event-by-event observables. In Sec. II, we
recall the relationship between correlations and anisotropic
flow. Next, we discuss the relationship between fluctuations
and correlations in Sec. III. We exploit integral relationships
obtained in Ref. [30] to marry the dynamical language of flow
and correlations to the statistical formulation of fluctuation
observables. This yields model-independent properties of
experimental observables. In particular, we find that geometric
shape fluctuations alone cannot explain measured multiplicity
and transverse momentum fluctuations.

We next ask what fluctuation and correlation measurements
can reveal about the early-time dynamics of the collision
system. The first evidence that correlations originate at early
times in the collision is the long rapidity range of the ridge

[31,32]. Correlations show a ridgelike peak near �φ = 0.
This ridge extends over a broad range in �η, as do away-side
features centered near �φ ∼ π [8]. Causality dictates that
correlations over several rapidity units must originate at the
earliest stages of the collision [31,32]. With that in mind, we
described the ridge as a consequence of particle production
in an early Glasma stage followed by transverse flow in
Refs. [31–34]. Our description is part of a broader family of
models in which particles are initially correlated at the point
of production [11,27,35–40].

Identifying the impact of anisotropic flow on these corre-
lations adds considerable credence to this observation [14].
Anisotropic flow is well understood as an early-time effect,
since it is generated in part by the geometric configuration
of participant nucleons in the colliding nuclei (see, e.g.,
Refs. [41,42]). Correspondingly, the measured v2 coefficients
vary little with rapidity.

To illustrate how correlations, flow, and fluctuations result
from the early-time dynamics, we apply the general framework
of Refs. [32,33] in Sec. IV. We obtain expressions for the
correlation function and its Fourier coefficients, (23), (24), and
(25). This provides a unifying framework for understanding
hydrodynamic vn studies together with earlier work on the
ridge. We also derive expressions for transverse momentum
fluctuations, (26) and (27).

In Sec. V, we use fluctuation measurements to extract infor-
mation on the particle production mechanism. We focus on the
color glass condensate (CGC) formulation in Refs. [31–33,43],
and argue that dynamic multiplicity fluctuationsR can provide
information on particle production that is independent of flow.
Transverse momentum fluctuations 〈δpt1δpt2〉 provide similar
information, although the results are somewhat sensitive to
radial flow (but not the vn). Constraining the flow contribution
by calculating 〈pt 〉 and v2, we compute the fluctuations for
R and 〈δpt1δpt2〉. We find that the same model that described
the energy, target mass, and pt dependence of the ridge also
describes transverse momentum fluctuations measured at the
Brookhaven Relativistic Heavy Ion Collider (RHIC) and the
CERN Large Hadron Collider (LHC).
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II. CORRELATIONS AND FLOW

Correlation measurements commonly center on the pair
distribution

ρ2(p1, p2) = dN

dη1d2pt1dη2d2pt2
, (1)

where ηi = (1/2) ln[(pi + pzi)/(pi − pzi)] is the pseudora-
pidity and pti = |pt i | is the transverse momentum of par-
ticles i = 1, 2. In the absence of correlations, ρ2(p1, p2) →
ρ1(p1)ρ1(p2), where the single-particle distribution is ρ1(p) =
dN/dηd2pt . Experiments typically report ratios of ρ2 to either
ρ1ρ1 or mixed event pairs integrated over ranges of pt . To keep
the notation simple, we will not make the η dependence explicit
unless needed.

To illustrate the connection between flow and correlations,
recall for the moment the traditional picture of flow in which
event-by-event fluctuations are neglected. It has long been
known that collisions at nonzero impact parameter b produce
anisotropic flow [41,42]. Anisotropy derives from the change
in the shape of the collision volume with respect to the reaction
plane (i.e., the plane spanned by b and the beam direction).
The distribution with respect to this plane is

ρ1(pt ; ψRP ) = ρ1

{
1 + 2

∞∑
n=1

vn(pt ) cos[n(φ − ψRP )]

}
, (2)

where the coefficients depend only on the magnitude
pt = |pt | and η. An experimental analysis that does
not identify the reaction plane measures the distribution
(2π )−1

∫
ρ1(pt ; ψRP )dψRP = ρ1, where the bar denotes average

over φ. The second equality follows because ρ1 is a function
of φ − ψRP .

Anisotropic flow introduces correlations because pairs from
the same collision event have the same reaction plane. The
reaction plane averaged pair distribution can only be a function
of the relative angle �φ, so that

ρ2 = ρ2

{
1 + 2

∞∑
n=1

an(p1, p2) cos(n�φ)

}
. (3)

If geometry is the only source of correlations then ρ2(pt1, pt2)
is the product ρ1(pt1; ψRP )ρ1(pt2; ψRP ) averaged over ψRP . In
that case the Fourier coefficients of (2) and (3) are related. For
n = 0 we find

ρ2(p1, p2) → ρ1(p1)ρ1(p2), uncorrelated (4)

while for n � 2

an(p1, p2) → vn(p1)vn(p2). uncorrelated (5)

These results hold only when fluctuations may be neglected.
Momentum conservation contributes to a1, modifying the
v1(p1)v1(p2) term, as discussed by Borghini and others
[44–48].

Fluctuations introduce further anisotropy because the shape
of the collision volume is different in each collision event. In
collisions of identical nuclei, the event-averaged interaction
volume is symmetric in φ and fixed by b and 	RP . If all events
of a given b had the same interaction volume, we then would
expect only even n to contribute to (2). Shape fluctuations

cause the flow parameters vn to vary from event to event and
allow odd n to contribute. The average pair distribution has
the same form as (3), but with coefficients

an(p1, p2) = 〈vn(p1)vn(p2)〉, (6)

where the brackets denote average over events (including all
event shapes) [19]. The measured azimuthal dependence of
two-particle correlations is reasonably described by (3) with
n = 1, 2, and 3. We emphasize that fluctuations in shape alone
cannot alter ρ2. This requires further dynamical fluctuations,
which we discuss in the following sections.

We remark in passing that one often discusses the shape
fluctuations in terms of a geometric eccentricity εn. If one
assumes that the relation between εn and the resulting
anisotropy of the fluid flow vn is approximately deterministic,
then fluctuations of the ratio vn(p1)/εn are negligible. In
that case 〈vn(p1)vn(p2)〉 ≈ [vn(p1)/εn][vn(p2)/εn]〈ε2

n〉. This
factorization conjecture seems plausible, but currently requires
further theoretical investigation [49].

III. FLUCTUATIONS

Fluctuation measurements study the variation of bulk
quantities, such as multiplicity or average transverse mo-
mentum, over an ensemble of events [22,50,51]. Suppose
that fluctuations of multiplicity N result in a variance σ 2

N
=

〈N2〉 − 〈N〉2. Uncorrelated particles would be described by
Poisson statistics, for which σ 2

N
→ σ 2

stat = 〈N〉. Correlations
give rise to a difference σ 2

N
− σ 2

stat, which we characterize by
the dynamic variance

R = 〈N2〉 − 〈N〉2 − 〈N〉
〈N〉2

, (7)

as discussed in Ref. [30]. Similarly, many describe the dynamic
fluctuations of transverse momentum using the covariance

〈δpt1δpt2〉 = 〈∑i �=j δptiδptj 〉
〈N (N − 1)〉 , (8)

where δpti = pti − 〈pt 〉 and the average transverse momen-
tum is 〈pt 〉 = 〈Pt 〉/〈N〉 for Pt = ∑

i pti the total momentum
in an event [52–55]. This quantity vanishes when particles
i and j are uncorrelated. The brackets denote average over
events, including event shape together with any other source
of variation. Note that one can write 〈δpt1δpt2〉 in terms
of the variance σ 2

Pt
= 〈(Pt − N〈pt 〉)2〉. In the absence of

correlations, that variance is σ 2
Pt stat = 〈N〉(〈p2

t 〉 − 〈pt 〉2). One
can show that 〈δpt1δpt2〉 is the difference σ 2

Pt
− σ 2

Pt stat divided
by the average number of pairs 〈N (N − 1)〉.

To see the connection between fluctuation and correlation
measurements, observe that the integral of the pair distribution
ρ2 gives the average number of pairs 〈N (N − 1)〉. We then
write (7) as

R = 1

〈N〉2

∫
r(p1, p2)dp1dp2, (9)

where we define

r(p1, p2) = ρ2(p1, p2) − ρ1(p1)ρ1(p2). (10)
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Similarly, we can write (8) in terms of the correlation function
(10) as

〈δpt1δpt2〉 =
∫

dp1dp2
r(p1, p2)

〈N (N − 1)〉δpt1δpt2. (11)

We stress that the densities ρ1 and ρ2 are event-averaged
quantities.

Fluctuation measurements probe the overall strength of
correlations in a manner that is independent of the anisotropic
flow. To see this, we combine (3) with (10) to find that the
cos n�φ contributions vanish on integration over 0 � �φ �
2π . We obtain

R = 1

〈N〉2

∫
r(pt1, pt2)dp1dp2, (12)

which depends only on the φ averaged function

r(pt1, pt2) = ρ2(pt1, pt2) − ρ1(pt1)ρ1(pt2). (13)

It is easy to understand why R is not sensitive anisotropy—N

simply counts particles irrespective of where they are flowing.
Similarly,

〈δpt1δpt2〉 =
∫

dp1dp2
r(pt1, pt2)

〈N (N − 1)〉δpt1δpt2. (14)

Here too the cos n�φ contributions to (3) vanish on inte-
gration. These fluctuations are independent of φ because our
definition of pti disregards direction.

Equations (12) and (13) have two striking implications
when combined with flow results from the previous section.
First, if the variation of the initial geometric shape of the
collision volume is the only source of fluctuations then (4)
implies that R and 〈δpt1δpt2〉 must both vanish. Experiments
have measured these quantities and they are both nonzero (see,
e.g., Refs. [55–57] and Sec. V). Second, the amplitudes r

and ρ2 determine the overall magnitude of correlations, as we
see from (3). Anisotropic flow and momentum conservation
determine the coefficients (6) and, therefore, the relative height
of the near-side ridge at �φ = 0 and away-side features
near �φ = π . However, interpretation of the evolution of
the ridge height with beam energy or centrality requires an
understanding of r or R.

IV. SOURCE OF FLUCTUATIONS

Nuclear collisions vary sharply from event to event due
to differences in the number and configuration of the nu-
cleons struck in the initial impact. Each strike adds to a
transient color field that lasts a proper time of roughly
τ0 ∼ 1 fm. This field comprises an array of flux tubes con-
necting the fragments of the highly Lorentz-contracted nuclei
along the beam direction. The number of participants deter-
mines the color charge and thus the overall strength of the
fields. The flux tubes fragment after τ0, driving soft-particle
production. We emphasize that flux tubes arise naturally in
QCD and have long been the core of phenomenological models
such as PYTHIA. In the next section we will focus on the
color glass condensate description, which incorporates these
features in the high-density environment produced by nuclear

collisions and allows for systematic computations. For now,
we keep the discussion more general.

We assume that the number and geometrical distribution of
flux tubes is the most important source of fluctuations. Their
fragmentation leads to density correlations described by

c(x1, x2) = n2(x1, x2) − n1(x1)n1(x2), (15)

where n1 and n2 are the single and pair densities. In the absence
of correlations, n2(x1, x2) → n1(x1)n1(x2) so that c vanishes.
The integral of n2 over position gives the number of pairs
averaged over events, 〈N (N − 1)〉, so that the integral of c

is R〈N〉2, with R given by (7). We now take the flux tubes
to be longitudinally boost invariant, so that the correlation
function only depends on transverse coordinates rt = r1, t −
r2, t as well as the average Rt = (r1, t + r2, t )/2. We further
assume particles from the same flux tube are primordially
correlated and that correlations with the reaction plane arise
due to the distribution of tubes. Since the transverse size of the
flux tube is small, the primordial correlations reflect common
spatial origins. We then write

c(x1, x2) = R〈N〉2 δ(rt )ρFT
(Rt ). (16)

Here, ρ
FT

(Rt ) is the probability distribution for finding a
flux tube at a transverse position Rt in the collision volume.
This function describes the distribution of shape fluctuations
discussed earlier. Following Ref. [32,33], we take ρFT to
roughly follow the participant distribution of the colliding
nuclei

ρFT (Rt ) ≈ 2

πR2
A

(
1 − R2

t

R2
A

)
(17)

for Rt � RA, and zero otherwise.
We now discuss the impact of these long-range correlations

on the final-state distributions. Comoving partons locally
thermalize as the flux tubes fragment. Pressure builds and
transverse expansion begins. In this process, partons from a
flux tube at an initial space-time point (t, x) will eventually
acquire a final flow four-velocity uμ. In a blast wave model uμ

is taken to have a Hubble-like correlation, while hydrodynamic
calculations provide a more realistic uμ. In either case, the
Cooper-Frye single-particle distribution is

ρ1(p) =
∫

f (x, p) d, (18)

where f is the one-body phase-space distribution func-
tion and d = pμdσμ is the element of flux through
the four-dimensional freeze-out surface. In local equilib-
rium the distribution has the Boltzmann form f (x, p) =
(2π )−3 exp{−pμuμ/T }. The temperature T and fluid four-
velocity uμ are generally fixed by hydrodynamics, which
enforces the local conservation laws. In keeping with the boost-
invariant distribution (16), we assume that freeze-out occurs at
a proper time τF , so that pμdσμ = τF mt cosh(y − ζ )dζd2rt ,
where ζ = (1/2) ln[(t + z)/(t − z)] is the spatial rapidity and
y = (1/2) ln[(E + pz)/E − pz)] is the rapidity.

The pair distribution has an analogous Cooper-Frye form

ρ2(p1, p2) =
∫

f2(x1, p1, x2, p2)d1d2, (19)

014905-3



SEAN GAVIN AND GEORGE MOSCHELLI PHYSICAL REVIEW C 85, 014905 (2012)

where f2 is the two-particle Boltzmann distribution function.
In local thermal equilibrium the two-particle distribution is

f2 = n2(x1, x2)
f (x1, p1)

n(x1)

f (x2, p2)

n(x2)
, (20)

where n1 and n2 are the single-particle and pair densities
discussed earlier, with n(x) = ∫

f (x, p)d3p. This expression
satisfies a generalization of the Boltzmann transport equation
for f2; the factors of f cause the generalized collision terms
to vanish just as they do in the one body equation. We
omit momentum and energy conservation terms that do not
contribute to R and 〈δpt1δpt2〉.

We understand (20) as follows. In local equilibrium we
can divide the system into fluid cells, each of which is in
equilibrium at the local temperature T (x) and mean velocity
uμ(x). The momentum distribution in each cell must therefore
be f (x, p). The local equilibrium phase-space distribution (20)
is correlated if there are density correlations between cells or
autocorrelations. These correlations are described by the pair
density n2(x1, x2). The integral n2 over both positions gives
the number of pairs averaged over events 〈N (N − 1)〉. In the
absence of correlations, n2(x1, x2) → n1(x1)n1(x2).

In order to study the angular distribution of fluctuations, we
use (18), (19), (20), and (15) to write (10) as

r(p1, p2) =
∫

c(x1, x2)f (x1, p1)f (x2, p2)d1d2. (21)

We consider the angular correlation function

�ρ(�η,�φ) =
∫

r(p1, p2) δ(�φ − φ1 + φ2)

× δ(�η − η1 + η2) dp1dp2, (22)

where r(p1, p2) is given by (10). This function probes the
(�η,�φ) correlations of particles in the full range of |pt |.
Such correlations are dominated by the more abundant low pt

particles.
We follow Refs. [32,33] and identify c(x1, x2) with (16),

a form that describes the system at its formation. This
identification omits the effects of diffusion described in
Ref. [58]. This omission is reasonable only as long as
correlations are dominated by pairs separated by |ζ1 − ζ2| > 1.

To clarify the contributions of fluctuations and anisotropic
flow to correlations, we expand (22) as a Fourier series.
Equation (9) implies that the integral of �ρ over �φ in a
rapidity range gives 〈N〉2R. We therefore write

�ρ

〈N〉2
= R

2π

{
1 + 2

∞∑
n=1

An cos(n�φ)

}
. (23)

Next, we compute the Fourier coefficients using (21) together
with the correlation function (15)–(17). We find

An =
∫

d2rtρFT (rt )[vn(rt )]
2 (24)

where we define the local flow coefficient

vn(rt ) =
∫

dp
f (rt , p)

n(rt1)
cos nφ. (25)

Since ρFT is essentially the probability distribution for a
given event shape, we interpret (24) as the average of v2

n

over shape fluctuations (see Sec. III). An important caveat
is that momentum conservation corrections omitted here will
modify the low orders, particularly A1 [44–48]. We will treat
these corrections and present a detailed computation of flow
parameters and flow fluctuations elsewhere.

We now compute 〈δpt1δpt2〉, combining (21) with (15)–(17)
as before to evaluate (11). To simplify the denominator in (11),
we note that (7) implies that 〈N (N − 1)〉 = 〈N〉2(1 + R). We
then obtain

〈δpt1δpt2〉 = R
1 + R

∫
d2rtρFT (rt )[g(rt )]

2, (26)

where the local momentum excess is

g(rt ) =
∫

dp
f (rt , p)

n(rt )
(pt − 〈pt 〉). (27)

In contrast to the flow coefficients (24), we see that 〈δpt1δpt2〉
is proportional to R. However, both flow and fluctuation
quantities depend on ρFT in a similar manner. Observe that
g vanishes if the velocity and temperature are uniform.

V. GLASMA FLUCTUATIONS

The azimuthal dependence of the correlation function given
by (23), (24), and (25) is essentially equivalent to that used in
hydrodynamic models [19]. The relative height of the near-side
ridge compared to the away-side features in �φ depends on the
shape fluctuations ρFT , the magnitude of the flow coefficients,
and momentum conservation. However, the overall scale of
correlations is set by the multiplicity fluctuations R. This
scale is crucial if one wishes to compare correlations at
different centralities or beam energies. The difficulty with
interpreting the shape of the correlation function is that one
must disentangle information on the production mechanism
contained in ρFT from flow and viscosity effects. Unless a
number of simplifying assumptions hold true, this may prove
challenging [59].

It is easiest to appreciate the significance ofR in the context
of color glass condensate theory. Suppose that each collision
produces K flux tubes, and that this number varies from event
to event with average 〈K〉. Each Glasma flux tube yields an
average multiplicity of ∼ α−1

s (Qs) gluons, where Qs is the
saturation scale [60]. The number of gluons in a rapidity
interval �y is then

〈N〉 = (dN/dy)�y ∼ αs
−1(Qs)〈K〉; (28)

for massless gluons y = η. In the saturation regime K is
proportional to the transverse area R2

A divided by the area
per flux tube, Q−2

s [60]. In Ref. [32] we show that the scale of
correlations is set by

R = 〈N2〉 − 〈N〉2 − 〈N〉
〈N〉2

∝ 〈K〉−1. (29)

The dependence on 〈K〉 drops out of the product

RdN/dy = κα−1
s (Qs), (30)

a result consistent with calculations of Dumitru et al. in
Ref. [31]. Gelis, Lappi, and McLerran have shown that the
multiplicity distribution P (N ) in the Glasma follows a negative
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binomial distribution [61]. We point out that by definition their
negative binomial parameter kNBD satisfies R = 1/kNBD . Their
calculated kNBD agrees with (29) and (30).

The signature of the Glasma contribution to correlations
and fluctuations is that RdN/dy depends only on Qs .
Equation (30) therefore constitutes a scaling relation, since
Qs depends on many collision variables in a combination
that can be computed from first principles. The leading-order
formula in Ref. [60] relates Qs to the beam energy and the
number of participants per unit area, which in turn depends on
A and b. Measurements of the ridge at various beam energies,
target masses, and centralities fix the dimensionless coefficient
κ in (30) and are in excellent accord with the leading-
order dependence [32,33]. Uncertainties in the underlying
description of flow were the biggest source of uncertainty in
comparing (30) to ridge data.

Multiplicity fluctuation measurements of R in principle
circumvent the complexity of flow, facilitating the search for
this Glasma scaling or other production mechanism signatures.
As discussed in Sec. III, R integrates the correlation function
(21), so that the cos(n�φ) contributions to (23) vanish.
Predictions shown in Fig. 1 are obtained using (30) with the
energy-independent dimensionless coefficient κ fixed to fit the
near-side ridge as in [32,33]. The number of participants Npart

is used to indicate centrality.
PHENIX has measured multiplicity fluctuations at RHIC

[56,62]. They report a negative binomial parameter kNBD . The
best we can do is to compare their k−1

NBD
= R to (30) divided

by dN/dy measured elsewhere. Results shown in the lower
panel in Fig. 1 agree fairly well in central collisions.

The experimental result that R is not zero shows that
geometric shape variation is not the only source of fluctuations.
To deduce anything beyond that, two caveats are in order.

0 50 100 150 200 250 300 3500

0.01

0.02

0.03

0.04

Npart

R

0.5

1

1.5

2

2.5

3

0

dN
dy

R

Au+Au 200 GeV

Pb+Pb 2.76 TeV

Au+Au 62.4 GeV

Au+Au 200 GeV

Au+Au 62.4 GeV

PHENIX data

(a)

(b)

FIG. 1. (Color online) (a) Prediction forRdN/dy as a function on
the number of participants Npart at three beam energies. (b) Calculated
R compared to PHENIX data from [56].

First, (29) and (30) strictly apply only to the number of
gluons. Taking the number of particles to be conserved through
hadronization as discussed in Ref. [60], we can identify R in
(29) with the measured multiplicity fluctuations (7). However,
one is then unsure how to address phenomenological concerns
such as resonance decay. Second, experimenters must exercise
care in measuring R as a function of centrality, because
centrality selection can distort multiplicity fluctuations. Using
narrow multiplicity bins to select centrality will remove
fluctuations entirely. One way to remove this bias is to use
a zero degree calorimeter to select centrality as PHENIX has
done [56]. See the appendix for details.

An alternative probe of Glasma scaling is 〈δpt1δpt2〉.
As with R, the anisotropic flow contributions vanish on
angular integration. The quantity 〈δpt1δpt2〉 is designed to
be independent of multiplicity fluctuations, reducing our
hadronization concerns [52,53]. Moreover, it is effectively
free of the multiplicity bias effect, as shown in the appendix.
Unlike R, momentum fluctuations depend on the scale of the
fluid velocity because flow enhances pt . We can constrain this
dependence using v2 and 〈pt 〉 measurements.

In order to calculate 〈δpt1δpt2〉 from (26) and (27) we must
specify the relation between the initial transverse position rt

of a fluid cell and its final transverse flow velocity vt . To
maintain consistency with our ridge analysis in Refs. [32,33],
we use a blast-wave model. There we assumed γ vt = λrt and
uniform temperature T , with parameters chosen to reproduce
fits to 200 GeV Au + Au pt spectra [32,33]. Sorensen et al.
subsequently pointed out the importance of allowing for the
ellipticity of the source in describing the centrality dependence
of the ridge [14]. To account for the ellipticity of the collision
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FIG. 2. (Color online) (a) Average transverse momentum and
(b) elliptic flow v2 as functions of Npart for the same energies as
in Fig. 1. Mean pt data in GeV are from Refs. [63–65] and v2 data
are from Refs. [66–68].
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FIG. 3. (Color online) (a) Blast-wave parameters for temperature
(in GeV) and (b) average velocity as functions of centrality. Data are
from Ref. [69].

volume, we now take γ vt = λ(εxxx̂ + εyyŷ), where ε2
x,y =

1 ± ε. The average vt and freeze-out temperature in 62 GeV
and 200 GeV Au + Au collisions are the same as those used
in [32,33] and are based on an analysis in [69]. At 2.76 TeV the
velocity is scaled up from the 200 GeV values by 6% and the
temperature is scaled up by 7%. We present these parameters
in Fig. 3; note that the change in vt and T with beam energy
is rather small. The eccentricity ε is chosen to fit the observed
centrality dependence of elliptic flow v2 in 62 and 200 GeV Au
+ Au collisions and 2.76 TeV Pb + Pb collisions [66–68]. The
top panel in Fig. 2 compares these calculations to data from
Refs. [63–65]. We then use (25) to compute v2 and compare
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FIG. 4. (Color online) Transverse momentum fluctuations
〈δpt1δpt2〉dN/dη as a function of the pseudorapidity density dN/dη

at the same three beam energies. Data is from Refs. [55,57]. Dashed
and solid 2.76 TeV curves represent different K and p contributions
to charged particle fluctuations as discussed in the text.

to v2{2}, which includes fluctuations. To see how well
these blast-wave parametrizations work for the problem
at hand, we calculate the average transverse momentum
〈pt 〉 = ∫

ptρ1dp/
∫

ρ1dp using (18). The agreement is shown
in Fig. 2.

We now compute 〈δpt1δpt2〉. The multiplicity variance R
is obtained from (30). We employ (26) and (27) combined
with (17), and use the blast-wave parameters discussed above.
These are compared to data from Refs. [55,57] in Fig. 4. The
STAR collaboration at RHIC and the ALICE collaboration
at LHC measure 〈δpt1δpt2〉 for charged particles rather than
pions. There is little difference between these quantities at
RHIC, but at LHC the K/π and p/π ratios are appreciably
larger than expected in the observed range 0.15 < pt < 2 GeV
[70]. Using the measured 〈pt 〉 and particle ratios for kaons and
protons gives 〈pt 〉ch/〈pt 〉π ∼ 1.13; PYTHIA gives ∼1.07. The
top solid curve in Fig. 4 is our computation with the measured
K/π and p/π ratios, while the dashed curve assumes PYTHIA
ratios. Agreement with data is very good for central collisions
where our local equilibrium assumptions are most applicable.
Deviations in peripheral collisions may be due in part to
incomplete thermalization (see Refs. [25,26]).

VI. CONCLUSION

In this paper we have studied the connection between
long-range correlations, fluctuations, and flow. While our
results in Sec. V primarily address fluctuations, we discuss
flow in Sec. IV so that we can isolate its effect. As anticipated,
our flow coefficients and their fluctuations obtained from
(23)–(25) depend on the spatial distribution of flux tubes—the
shape fluctuations—described by the probability distribution
ρFT . Consequently, the relative magnitude of near- and away-
side features in �φ correlations depends on these shape
fluctuations. However, it is only in this relative sense that
hydrodynamic response to initial shape fluctuations explains
long-range correlations [49].

The scale of correlations R is important in comparing
correlations at different centralities and energies. In particular,
Refs. [32,33] compared calculations to the peak height of the
ridge at �φ = 0 for Au + Au and Cu + Cu collisions for
a range of energies and kinematic conditions. Experimenters
normalize the peak �ρ to the number of pairs from mixed
events

√
ρref . When jet and momentum conservation contri-

butions are omitted, our results have the form �ρ/
√

ρref =
R(dN/dy)F (�φ), where F depends only on flow. We found
the beam energy, centrality, and A dependence of R to be
consistent with data (see Ref. [33] for details). To relate this
to the current context, observe that the Fourier decomposition
of F gives (23). This supports the arguments regarding the
physical significance of the height of the ridge stated in
Refs. [31–33,43]. A limitation of Refs. [31–33,43] is that
it is difficult to distinguish flow from Glasma effects when
concentrating exclusively on the ridge.

Fluctuation studies provide an alternative set of experimen-
tal techniques for attacking correlation physics. In Sec. III we
showed that multiplicity and pt fluctuations are independent
of anisotropic flow. Measurement of such fluctuations remove
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much of the hydrodynamic uncertainty of ridge studies
[31–33,43]. We emphasize that the mere fact that the measured
R and 〈δpt1δpt2〉 are nonzero proves that eventwise variation
of the initial geometric shape is not the only source of
fluctuations.

In Sec. V we related the correlation strength to two
fluctuation observables R and 〈δpt1δpt2〉. Glasma calculations
of R in Fig. 1 and 〈δpt1δpt2〉 in Fig. 4 are in good accord
with data, except for peripheral collisions. The deviation
in peripheral collisions may reflect the breakdown of the
assumption of local equilibrium. The onset of thermalization
in peripheral collisions modifies the correlation function. In
particular, this effect has been shown to modify 〈δpt1δpt2〉
at low numbers of participants [25]. Partial thermalization
describes peripheral RHIC data very well and, moreover,
allows one to describe pp and AA collisions in the same
model [26].

We also remark that the CMS collaboration has observed
a small ridge in high-multiplicity proton-proton collisions at
the LHC [71]. It is possible to explain these measurements
using our model with a suitable ansatz for transverse flow [72].
Partial thermalization may also explain the source of that flow.
However, one can also explain the pp ridge using CGC effects
alone [73].

The fact that long-range correlations can account for the
measured 〈δpt1δpt2〉 leaves us with a puzzle. There are two
types of fluctuations in nuclear collisions. First, each collision
produces a different multiparticle system. Second, the partonic
system produced in each event undergoes dynamic fluctuations
as it evolves and hadronizes. We have focused on the source
of long-range correlations, where causality precludes the
second type. However, fluctuation observables integrate both
long- and short-range effects. Short-range effects include jets
and jet quenching, HBT, resonance decay, hadronization and
hadrochemical effects—not to mention fluctuations due to the
phase transition. These effects modify correlations in the range
�η ∼ 1 − 2 units or less. Jet quenching, which most strongly
affects central collisions, was estimated in Ref. [74].

Measurement of charge-dependent fluctuations may help
distinguish long- and short-range contributions. Long-range
effects such as flow are charge independent. Net-charge fluc-
tuations are therefore sensitive primarily to short-range effects
and, indeed, data show the appropriate rapidity dependence
[75]. Measurement of Rab and 〈δpt1δpt2〉ab for identified
particle species a, b may further reveal short-range effects.

We have emphasized momentum fluctuations partly be-
cause STAR and ALICE have measured both 〈δpt1δpt2〉 and the
ridge, allowing direct comparison to our earlier work [32,33].
Only PHENIX has measured multiplicity fluctuations, but they
have a different acceptance and no untriggered correlation
measurements with which to compare. It would be useful if
experiments could measure RdN/dy and 〈δpt1δpt2〉 together
with correlations.

To summarize, we return to the two questions stated in the
abstract. We first asked how the eventwise shape variation
inferred from triangular flow and the ridge contributes to
other fluctuation observables. In Sec. III we showed that
multiplicity and pt fluctuations are essentially independent of
shape fluctuations. In contrast, fluctuations of the azimuthal

flow coefficients vn are determined by a combination of
shape and multiplicity fluctuations [see Eqs. (23)–(25)].
Combining these measurements therefore eliminates the un-
certainty due to anisotropic flow from studies of the ridge
alone [32,33].

We next asked whether one can disentangle fundamental in-
formation on early-time dynamics from the purely geometrical
shape fluctuations. We have argued that the initial dynamical
state determines a factor R that drives the beam-energy
dependence of multiplicity and pt fluctuations. In Glasma
theory, the energy dependence of R follows from its signature
variation with the saturation scale Qs [see Eq. (30)]. The
agreement with data in Fig. 4 indicates that the answer to
this second question may be yes. Combined, our answers to
these two questions imply that measurements of multiplicity
and pt fluctuations probe early-time dynamics regardless of
anisotropic flow.
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APPENDIX: EXPERIMENTAL CONSIDERATIONS

In this appendix we discuss experimental issues that
affect the measurement of the fluctuation observables R and
〈δpt1δpt2〉. We show that biases can modify R if multiplicity is
used to identify centrality in fluctuation observables, but that
〈δpt1δpt2〉 is largely unaffected. Experimental considerations
in fluctuation measurements were discussed in Ref. [30].
These observables were constructed to be independent of
experimental acceptance and efficiency effects, and many
contributions that alter R were estimated. We extend the
treatment in Ref. [30] to include 〈δpt1δpt2〉.

Assume that the collision produces K independent sources,
which then produce particles; one can think of each source as
a flux tube or a wounded nucleon, depending on one’s favorite
model. A set of events with fixed K produces the single and
pair densities that scale as

ρ1 = ρ̂1K, ρ2 = ρ̂2K + ρ̂1ρ̂1K(K − 1). (A1)

Suppose that experimenters measure a multiplicity m to
identify centrality. Each m bin receives contributions from a
range of K , so that the measured quantities are averaged over
that ensemble. The multiplicity of a particular particle species
will roughly satisfy 〈N〉m = 〈∫ ρ1〉m ∝ 〈K〉m. Equations (7),
(9), and (A1) imply that multiplicity fluctuations satisfy

Rm = A

〈K〉m + 〈K2〉m − 〈K〉2
m

〈K〉2
m

. (A2)

where A is a model-dependent constant (see Ref. [30] for
details). The first term represents the average fluctuations
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per source. The second term comes from fluctuations in the
number of sources. Unconstrained, independent sources follow
Poisson statistics, 〈K2〉m − 〈K〉2

m = 〈K〉m.
To illustrate the effect of centrality cuts on Rm, consider

the following opposite extremes. Suppose for the moment that
m and N are multiplicities measured in the same rapidity
interval, so that one can approximate m ∝ K ∝ N . Then the
fluctuations of K for fixed m vanish. On the other hand, if
we take m to be the signal in a zero degree calorimeter,
then m and K are correlated only by the impact parameter
b. Fluctuations of K may then dominate (A2) and be
Poissonian [32].

We now consider transverse momentum fluctuations
〈δpt1δpt2〉. We combine (A1) with (11), first noting that
〈pt 〉 = ∫

ptρ1/
∫

ρ1 implies that
∫

ρ1δpt ≡ 0. Therefore, the
numerator of (11) satisfies

∫
ρ2δpt1δpt2 ∝ 〈K〉m. The denom-

inator of (11) is 〈N (N − 1)〉m = 〈N〉2
m(1 + Rm). This implies

that

〈δpt1δpt2〉m = B

〈K〉m
1

1 + Rm

, (A3)

where B is another constant. This quantity has no additional
contribution from K fluctuations as in (A2). However, a
small centrality-bias effect may result from the Rm in the
denominator.

To estimate this effect, observe that our CGC calculation
gives R ∼ 0.0017 for central 2.76 GeV PbPb collisions,
and 0.02 for the most peripheral value computed, which
corresponds to Npart ≈ 10 participants. The effect of centrality
bias on 〈δpt1δpt2〉 is therefore negligible. However, it might
be important in pp collisions with a multiplicity trigger. Of
course, the effect could be eliminated by normalizing to 〈N〉2

rather than 〈N (N − 1)〉, but that would have consequences
regarding the cancellation of efficiencies.
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