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In the canonical picture of the evolution of the quark-gluon plasma during a high-energy heavy-ion collision,
quarks are produced in two waves. The first is during the first fm/c of the collision, when gluons thermalize
into the quark-gluon plasma (QGP). After a roughly isentropic expansion that roughly conserves the number
of quarks, a second wave ensues at hadronization, 5–10 fm/c into the collision. Because entropy conservation
requires the number of quasiparticles to stay roughly equal, and because each hadron contains at least two quarks,
the majority of quark production occurs at this later time. For each quark produced in a heavy-ion collision, an
antiquark of the same flavor is created at the same point in space-time. Charge balance functions identify, on a
statistical basis, the location of balancing charges for a given hadron, and given the picture above one expects the
distribution in relative rapidity of balancing charges to be characterized by two scales. After first demonstrating
how charge balance functions can be defined using any pair of hadronic states, it is shown how one can identify
and study both processes of quark production. Balance function observables are also shown to be sensitive to
the charge-charge correlation function in the QGP. By considering balance functions of several hadronic species,
and by performing illustrative calculations, this class of measurement appears to hold the prospect of providing
the field’s most quantitative insight into the chemical evolution of the QGP.
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I. INTRODUCTION AND THEORY

In a central heavy-ion collision at the Relativistic Heavy
Ion Collider (RHIC) or at the Large Hadron Collider (LHC),
several thousand hadrons are created from the initial collision
of a few hundred incoming nucleons. In the central unit of
rapidity, aside from a few dozen extra baryons, the roughly
one thousand hadrons are created and evolve from quark-
antiquark creation processes. For every up, down, or strange
quark observed in the final state, one usually finds one extra
antiup, antidown, or antistrange antiquark within roughly a
unit of rapidity. For quark-antiquark pairs created early in
the collision, the balancing pairs might be pulled apart by
the initial tunneling process by a fraction of a femtometer
in distance and are then pulled further apart by collective
longitudinal flow and diffusion. If the quarks are pulled 0.5 fm
apart at a time 1.0 fm/c, collective flow would pull them
apart by 7.5 fm by the time breakup occurs (∼15 fm/c),
and diffusion would spread them apart even further. In the
canonical view of the quark-gluon plasma (QGP), a first
wave of quark production occurs when the quark-gluon
plasma is created during the first fm/c. The number is
then roughly conserved in a semi-isentropic expansion until
hadronization, when a second wave of production ensues.
Owing to entropy conservation, a thousand partons would be
expected to convert to roughly a thousand hadrons, and because
each hadron has multiple quarks, and because the gluonic
entropy has no quarks, the number of quarks should more
than double during hadronization. If hadronization were to
occur later in the process, perhaps at 5–10 fm/c, the balancing
quark-antiquark pairs created at hadronization would be
unlikely to separate by more than a few femtometers before
breakup.

Charge balance functions were proposed as a means for
identifying and quantifying the separation of balancing charges
[1]. They represent the conditional probability of observing a
balancing charge in bin p1, given the observation of a charge
in bin p2, and are defined by

B+−(p1|p2) ≡ 〈[n+(p1) − n−(p1)][n−(p2) − n+(p2)]〉
〈n+(p2) + n−(p2)〉 , (1)

where 〈n+/−(p1)〉 is the probability density for observing a
positive or negative particle in bin p1, and 〈n+(p1)n−(p2)〉 is
the probability density for observing a positive particle in bin
p1 and a negative particle in p2. If the number of positives and
negatives are equal, and if the detector is perfectly efficient for
all p1, integrating the balance function over all p1 would give
unity. The label pi can refer to any measure of momentum, in-
cluding rapidity or pseudorapidity. The observable can be mod-
ified to more appropriately treat the case where the net charge
significantly differs from zero [2]. In short, the balance func-
tion is simply the application of a like-sign subtraction with
the purpose of statistically isolating the opposite balancing
charge.

More generally, balance functions can be analyzed for any
two sets of hadrons and antihadrons,

Bαβ(p1|p2) ≡ 〈[nα(p1) − nᾱ(p1)][nβ(p2) − nβ̄(p2)]〉
〈nβ(p2) + nβ̄(p2)〉 . (2)

For instance, one could consider balance functions where α

were protons and β were negative kaons. The antiparticles
are noted by ᾱ and β̄. For this study we confine ourselves
to the situation where the net charges are zero, which is
certainly a good assumption at LHC energies. For the case
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where the net charges are not equal, one might wish to follow
the example in Ref. [2] and define the denominator using the
lesser of the two charges, nᾱ or nα , followed by a mixed-event
subtraction.

Balance functions can be analyzed in six dimensions as a
function of p1 and p2, though statistics makes that prospect
unlikely. Instead, the condition p2 is usually the observation
of a particle anywhere in the detector, whereas p1 refers to
the observation of the second particle with relative rapidity
�y, or relative azimuthal angle �φ, or relative invariant
momentum Qinv. Balance functions were used at the CERN
Intersecting Storage Rings to study hadronization dynamics
in pp and e+e− collisions in the 1980s [3–7], while their
use in heavy-ion collisions was motivated by the desire to
distinguish between early and late production of charges [1].
For more central collisions, balance functions were observed
to significantly narrow when binned in relative rapidity [8–10].
This behavior is quantitatively consistent with the idea that a
good fraction of the charge is created late in the collision, as
expected from delayed hadronization with the existence of a
long-lived quark-gluon plasma [11]. Narrowing is also pre-
dicted and observed as a function of relative azimuthal angle
[11,12], though this article focuses on the behavior in relative
rapidity.

Our first goal is to understand how to calculate balance
functions between any two hadronic species α and β. We
especially wish to know what happens if charge production
comes in two waves, the first wave being the initial thermal-
ization of the QGP, which is where the quark number rises
quickly from zero in the first ∼1 fm/c, and the second wave
at hadronization, which may be in the 5–10 fm/c window.
This goal is complicated by the fact that hadrons carry three
charges (one for each light flavor of quark or equivalently
strangeness, electric charge, and baryon number), which makes
the problem rather entangled. Charge balance functions binned
in relative spatial rapidity are characterized by a scale σ(QGP)

before hadronization, which might well be the greater part
of a unit of rapidity. During hadronization a second group
of balancing charges is created with relative coordinates
characterized by σ(had) ∼ 0. In the next section, it is shown
how one can use local charge conservation overlaid onto an
assumption that extra charge within a volume is distributed
thermally to derive expressions for both components of the
balance functions. From this perspective, all balance functions
in relative spatial rapidity are determined in terms of σ(had)

and σ(QGP), the number of quark species per unit rapidity
before hadronization, dNu,d,s/dy, and the number of hadrons
per unit rapidity, dNα/dy, in the final state. The hadronic
yields are experimentally measured and the rapidity density
of quarks can be estimated from the total entropy, thus
leaving the widths as the least understood quantities. The
balance function in terms of the relative spatial coordinate
along the beam axis translates into a balance function in
relative rapidity after convoluting with a thermal kinetic
distribution and including decays. The final section presents
illustrative predictions for balance functions in relative ra-
pidity for several species by using a thermal blast-wave
model to map between spatial rapidity and momentum space
rapidity.

II. THEORY

Balance functions are related to charge correlations. For the
purposes of this derivation the charge densities are considered
as a function of the coordinate η, which describes the
longitudinal position in Bjorken coordinates:

z = τ sinh(η), t = τ cos(η),
(3)

τ =
√

t2 − z2, η = tanh−1(z/τ ).

In the absence of longitudinal acceleration, a particle moving
with the fluid has fixed η, and aside from diffusion the
separation of balancing charges would be fixed in �η.

Before progressing, we define the charge correlation func-
tion,

gab(η1, η2) ≡ 〈ρa(η1)ρb(η2)〉′
=

∑
i �=j

qi,aδ(η1 − ηi)qj,b(η2 − ηj ), (4)

where the sum over i �= j covers all particles i and j , and the
prime denotes that the correlation of a charge with itself is
subtracted. The indices a and b refer to the specific charge,
e.g., net strangeness. For this article Roman indices refer
to charges, e.g., the net number of up, down, or strange
quarks, while Greek indices denote specific species, e.g., π+,
p, K−. Because a chargeless plasma is being considered,
〈ρa〉 = 0, and one need not subtract the terms 〈ρa〉〈ρb〉. For a
hadronic system conserving baryon number, electric charge,
and strangeness, the index can equivalently sum over the net
number of up, down, and strange quarks. The charge-charge
correlation can be expressed as

g++(η1, η2) = 〈[n+(η1) − n−(η1)][n+(η2) − n−(η2)]〉′
= −B+−(η1|η2)〈n+(η2) + n−(η2)〉. (5)

Here, the positive and negative subscripts refer to the sets
of all positive or all negative particles, respectively. The
relation between the balance function, Bαβ , and gab becomes
complicated if particles have more varied charges, which is the
case for a hadronic system; e.g., the �− carries baryon number,
electric charge, and strangeness. These cases are discussed in
the next few paragraphs.

The reason we switch from balance functions to correlations
is that the correlation does not change suddenly at hadroniza-
tion, except for where η1 = η2. This follows from local charge
conservation. It can be understood by considering the addition
of a pair with η1 � η2 during hadronization. The contribution
of this single pair to the sum in Eq. (4), where either i or
j points to any other particle besides those from the created
pair, vanishes because one is considering the creation of a
pair with equal but opposite charges at the same point. The
only contribution comes from the element of the sum where
both particles come from the pair, which then shows up at
η1 = η2. Assuming hadronization is sudden, and assuming one
understands the charge correlation before hadronization, one
would also know g(η1, η2) immediately after hadronization,
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except for the region η1 ≈ η2. To determine the correlation in
the region of small relative coordinates, one can use the sum
rule for charge correlations, which follows from integrating
the definition of g in Eq. (4):

−
∫

dη1gab(η1, η2) = −
∑
i �=j

qj,aδ(η2 − ηj )qi,b (6)

=
∑

j

qj,aqj,bδ(η2 − ηj )

= χab(η2) ≡
∑

α

〈nα(η2)〉qα,aqα,b. (7)

The first step used charge conservation,
∑

i qi = 0. The
average number of particles of a given species α within dη

is 〈nα(η)〉dη. Assuming instantaneous hadronization, in order
to satisfy the sum rule of Eq. (6), the charge correlation
immediately after hadronization must be

gab(η1, η2) = g
(QGP)
ab (η1, η2) + g

(had)
ab (η1, η2),

g
(had)
ab (η1, η2) = −[

χ
(had)
ab (η1) − χ

(QGP)
ab (η1)

]
δ(η1 − η2),

(8)
χ

(had)
ab (η) =

∑
α∈had

qα,aqα,b〈nα(η)〉,

χ
(QGP)
ab (η) =

∑
α∈QGP

qα,aqα,b〈nα(η)〉,

where g(QGP) describes the correlations both immediately
before and immediately after hadronization but neglects the
hadronization component created at η1 = η2. The sums over
α cover the species for each state, i.e., over partonic species
for the QGP state and over hadronic species for the hadronic
state. The value χab, when multiplied by the δ function,
represents the charge-charge correlation that would ensue
from independent particles, i.e., when the only correlations
come from a particle with itself. Here the values 〈nα〉 are
the densities per unit η of the species α, so if one measures
the final-state yields, χ

(had)
ab can be considered as known. The

values of χab can also be extracted from a one-body treatment
such as hydrodynamics. The matrix χ

(QGP)
ab is diagonal in a

QGP if the charges refer to the net number of up, down,
and strange quarks. In contrast, hadrons have multiple charges
and χ

(had)
ab has off-diagonal elements. Because hadronization

is sudden, but not instantaneous, one would expect to replace
the δ function with some function of finite but narrow width,
normalized to unity.

The next goal is to determine the balance function for any
hadronic species just after hadronization, given gab in the
QGP phase. Equation (8) describes how to extract gab just
after hadronization. However, once there are multiple charges
spread across a variety of species, it is not easy to understand
how the correlation functions, gab(η1, η2), determine the
balance functions, Bαβ(η1|η2). Here, a and b refer to any
conserved charges, while α and β refer to the charge carried
by a specific species, where the particles and antiparticles of

each species are denoted by α and ᾱ:

Bαβ(η1|η2) = 〈[nα(η1) − nᾱ(η1)][nβ(η2) − nβ̄(η2)]〉
〈nβ(η2)〉 + 〈nβ̄(η2)〉

= gαβ(η1, η2)

〈nβ(η2)〉 + 〈nβ̄ (η2)〉 . (9)

Here, nα is the density (number per unit η) of particles of
species α. Thus, gαβ is the correlation of the effective charge
defined by the number of a specific species minus the number
of its antiparticle. With this definition, one can see that

gαβ̄ = −gα,β, gᾱβ = −gαβ, gᾱβ̄ = gαβ,
(10)

Bαβ̄ = −Bαβ̄, Bᾱ,β = −Bαβ, Bᾱβ̄ = Bαβ.

As an example, one can consider the proton-K− balance
function. In this example, the index α would refer to protons
and β would refer to negative kaons. The corresponding charge
correlation function would be

gpK− (η1, η2) = 〈[np(η1) − np̄(η1)][nK−(η2) − nK+ (η2)]〉.
(11)

The suffixes α and β can also refer to a subset of species,
with ᾱ and β̄ referring to the equivalent subset of antiparticles.
For instance, α could refer to the set of all positive particles,
while β could refer to the set of all antiparticles. Switching the
indices leads to the relations

gαβ = gβα, Bαβnβ = Bβαnα. (12)

Determining the balance functions for arbitrary species
requires making the jump from gab to gαβ . There are three
conserved charges, which we consider to be the net num-
bers of up, down, and strange quarks. Although one could
have equivalently used baryon number, electric charge, and
strangeness, the quark numbers are more convenient because
one does not expect any off-diagonal elements to gab in this
basis for the QGP. For the species-labeled correlations, gαβ ,
there are many more possibilities in the hadronic state. Even
for the final state, one might wish to consider charged pions,
charged kaons, protons, or λ’s. Neutral kaons must also be
taken into account for absorbing strangeness, but because they
oscillate into Ks and Kl , they cannot be easily used for balance
functions. Since gαβ has more elements than gab, additional
assumptions are required if gαβ is to be determined from gab.

Observing a hadronic species α at position η1 infers one has
observed the three charges qα,a , which is the number of up,
down, and strange quarks in the resonance α. The correlation
gab(η1, η2) should then provide the probability of finding the
balancing charges at position η2. To determine gαβ one then
needs a model to determine how an extra charge qb at position
η2 influences the probability of finding a hadronic species β at
the same position.

By assuming that the local distribution of hadrons is
determined by a thermal distribution constrained by the local
charge density, one can determine gαβ from gab. To show this,
we express the two-particle correlation as being determined
by a grand-canonical ensemble with Lagrange multipliers
applied to constrain reproduction of the average two-particle
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correlation function; i.e.,

〈AB〉 = 1

Z
Tr

{
ABe− ∫

dηH0/T (η)

× exp

[∫
dη1dη2

∑
ab

ρa(η1)μab(η1, η2)ρb(η2)

]}
,

Z = Tr

{
e− ∫

dηH0/T (η)

× exp

[∫
dη1dη2

∑
ab

ρa(η1)μab(η1, η2)ρb(η2)

]}
.

(13)

Here, H0 is the Hamiltonian or relevant free-energy density, T
is the temperature, and μa,b(η1, η2) plays the role of a Lagrange
multiplier chosen to enforce that gab(η1, η2) is reproduced. The
strategy is first to find μab in terms of gab, then to use μab to
determine gαβ . The correlation function gab(η1, η2) is found
by replacing the operators A and B above with

A = ρa(η1) =
∑

α

nα(η1)qα,a,

(14)
B = ρb(η2) =

∑
β

nβ(η2)qβ,b,

where α and β are summed over all hadronic species. By
assuming that the weighting is proportional to an exponential

of the constraint (fixing gab), this is essentially a thermal
ansatz.

Because the correlation would be zero if not for μ, we can
expand the expression for small μ and find

gab(η1, η2) =
∑
αβ

〈nα(η1)〉qα,aqβ,b〈nβ (η2)〉

× exp

{∑
cd

qα,cμcd (η1, η2)qβ,d

}

≈
∑
αβcd

〈nα(η1)〉qα,aqα,cμcd (η1, η2)qβ,dqβ,b〈nβ(η2)〉,

=
∑
cd

χac(η1)μcd (η1, η2)χdb(η2), (15)

where χ was defined in Eq. (6). The assumption of small μ

is warranted given that charge-conservation correlations are
small (at least for central collisions). Inverting the equation,
one can then find μab in terms of gab,

μab(η1, η2) =
∑
cd

χ (−1)
ac (η1)gcd (η1, η2)χ (−1)

db (η2). (16)

One can now find gαβ by inserting

A = nα(η1) − nᾱ(η1), B = nβ(η2) − nβ̄(η2), (17)

into Eq. (13). Here nᾱ is the density of the antiparticles to α.
Again, assuming equal numbers of particles and antiparticles,
〈nα〉 = 〈nᾱ〉, and assuming that μab is small,

gαβ(η1, η2) = 〈[nα(η1) − nᾱ(η1)][nβ(η2) − nβ̄(η2)]〉 = 〈nα(η1)〉〈nβ(η2)〉 exp

{∑
ab

qα,aμab(η1, η2)qβ,b

}

+〈nᾱ(η1)〉〈nβ̄(η2)〉 exp

{∑
ab

qα,aμab(η1, η2)qβ,b

}
− 〈nα(η1)〉〈nβ̄(η2)〉 exp

{
−

∑
ab

qα,aμab(η1, η2)qβ,b

}

−〈nᾱ(η1)〉〈nβ(η2)〉 exp

{
−

∑
ab

qα,aμab(η1, η2)qβ,b

}
� 4〈nα(η1)〉qα,aμab(η1, η2)qβ,b〈nβ(η2)〉. (18)

From Eq. (9), one then finds an expression for the balance
function,

Bαβ(η1|η2)

= 2
∑
ab

〈nα(η1)〉qα,aμab(η1, η2)qβ,b

= 2
∑
abcd

〈nα(η1)〉qα,aχ
(−1)
ac (η1)gcd (η1, η2)χ (−1)

db (η2)qβ,b.

(19)

One test of this result is to see whether, integrating the balance
function over all η1, summing over all α, and weighting with
qα,a , one should get the net amount of charge a found in other
particles due to the condition of having observed a particle of
species β at position η2. Performing these operations from the

expression for B in Eq. (19),

∑
α

∫
dη1qα,aBαβ(η1|η2)

= 2
∫

dη1

∑
αbcd

qα,a〈nα(η1)〉qα,bχ
(−1)
bc (η1)

× gcd (η1, η2)χ (−1)
db (η2)qβ,b

= 2
∫

dη1χab(η1)χ (−1)
bc (η1)gcd (η1, η2)χ (−1)

db (η2)qβ,b

=
∫

dη1gac(η1, η2)χ (−1)
cb (η2)qβ,b

= 2
∑
cd

χac(η2)χ (−1)
cd (η2)qβ,d = 2qβ,a. (20)
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The second-to-last step used the sum rule for integrating g in
Eq. (6). The factor of 2 comes from the fact that the sum over
all species, α, double-counted the contributions. For instance,
the term for which α = π+ also includes the contribution from
π−, and the term for α = π− also includes the contribution
from the π+.

III. CALCULATING WEIGHTS FOR BOTH COMPONENTS
FOR ALL HADRONIC SPECIES

From Eq. (8), one expects two components to the charge
correlation gab(η1, η2). Assuming a boost-invariant system,
one can assume a dependence on �η = η1 − η2, rather than
on η1 and η2 individually. This expectation inspires one to
write the balance function for all species Bαβ(�η) in terms of
two components,

Bαβ(�η) = w
(QGP)
αβ b(QGP)(�η) + w

(had)
αβ b(had)(�η), (21)

where b(QGP) and b(had) are both normalized so that∫
d�ηb(�η) = 1.
The weights, w(QGP) and w(had), can be determined from the

charge correlations, which in turn depend on the matrices χab.
From Eq. (8),

gab(�η) = χ
(QGP)
ab b(QGP)(�η) + [

χ
(had)
ab

−χ
(QGP)
ab

]
b(had)(�η). (22)

Here, the δ function in Eq. (8) was replaced by a Gaussian
of finite width, where the width is determined by the charge
diffusion between hadronization and breakup. The correlation
before hadronization, g

(QGP)
ab , should be diagonal if quarks are

good quasiparticles,

χ
(QGP)
ab = 〈na + nā〉δab, (23)

where na is the density of up, down, or strange quarks,
and nā is the density of the antiquarks. In this formulation
there is an explicit assumption that the diffusive widths of
the charge correlation before hadronization are independent
of flavor. Whereas the form of χ (QGP) is model dependent,
χ

(had)
ab = 〈nα〉qα,aqβ,b is determined from final-state yields.

After inserting the above expression for gab into Eq. (19),
one obtains Bαβ , from which one can read off the weights in
Eq. (21),

w
(QGP)
αβ = 2

∑
abcd

〈nα〉qα,aχ
−1(had)
ab χ

(QGP)
bc χ

−1(had)
cd qβ,d ,

(24)
w

(had)
αβ = 2

∑
ab

〈nα〉qα,aχ
−1(had)
ab qβ,b − w

(QGP)
αβ .

The characteristic width of b(QGP) is determined by the
charge correlation before hadronization, g

(QGP)
ab (�η), and one

might expect it to be of the order �0.5. In contrast, b(had) is
characterized by a narrow width describing the diffusion of
charge after hadronization and might have a width �0.1–0.2.
Although the derivations assumed that the species were locally
populated according to local thermal equilibrium, the weights
are completely determined given the populations for quarks

TABLE I. Hadronic yields used to calculate weights. Yields were
calculated from a hydrodynamic or cascade model with no net baryon
number, where the initial hadronic populations were set according to
a thermal distribution with a temperature of 165 MeV. An additional
factor, fB , was applied to the baryon yields listed here to account
for the experimental uncertainties and for greater consistency with
experimental observations.

Hadron species Yields, nα

p, n, p̄, n̄ 22.5
�, �̄ 8.5
�+, �−, �̄−, �̄+ 3.4
�−, �0, �̄0, �̄+ 1.95
�, �̄ 0.35
π+, π 0, π− 268
K+, K− 54

just before hadronization, and the rapidity density for hadronic
species 〈nα〉.

Whereas the hadronic populations can be taken from
experiment (or from a thermal model tuned to experiment),
the number density of quarks just before hadronization is
dependent on model assumptions. Even if one uses entropy
arguments to infer the number of quarks, neglecting the
entropy created during hadronization, the number of quarks
can depend on how much entropy was carried by gluons. For
that reason the ratio of the rapidity density of quarks before
hadronization to the rapidity density of final-state hadrons was
varied. Three ratios were explored: nquarks/nhad = 0.7, 0.85,
and 1.0. The hadron density included neutral hadrons, and the
decay products of strange baryons and the Ks .

Despite the wide coverage and detailed analysis of RHIC
data, the uncertainty in the yields of particular species at
RHIC can be rather large. Whereas the yields of pions
are known to better than the 10% level, yields of protons
and antiprotons are uncertain at the 25% level. Given these
uncertainties, we use yields from a thermal calculation based
on a temperature of 165 MeV. The calculation involved
generating particles thermally from a hydrodynamic evolution.
Particles of all hadronic species were then evolved through
a hadronic cascade, whose main purpose was to model the
hadronic decays. Because only the yields were sought, the
dynamical evolution of the cascade was rather inconsequential.
Weak decays were not performed. The remaining species
and their yields for central collisions are given in Table I.
The yields given in the table were then modified by an
additional factor fB , which reduced the yields of all baryons
by the same factor. Given that the number of antibaryons
is less than the number of baryons at RHIC by a factor of
0.7, and given that only antibaryons are accompanied by an
additional charge, one might expect a factor of fB ≈ 0.85.
Comparing the numbers below to proton yields from PHENIX
[13], one would expect fB ≈ 0.5, whereas a value closer
to 0.7 might be expected from STAR’s yields [14,15]. The
cascade code did not include baryon-baryon annihilations,
and it is not clear whether a thermal calculation followed
by hadronic processes would be more consistent with the
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STAR or the PHENIX values. Given these uncertainties,
calculations were performed for three values, fB = 0.5, 0.6,
and 0.7.

Only a partial list of resonances was applied in the
calculation of weights—those that survive to the final state
aside from weak decays. For baryons this includes pro-
tons, neutrons, �+/−, �−/0, �−, and the corresponding
antibaryons. The included mesons are π+/0/− and K+,−,0.
The thermal model provides yields, 〈n〉α , at midrapidity,
which are listed in Table I. The “thermal” model was a
hydrodynamic model followed by a cascade simulation, where
hadronization was performed thermally with a temperature of
165 MeV.

The resulting weights for the default calculation (fB = 0.6,
nquarks/nhad = 0.85) are shown in Table II. The weights for the
π+π− balance functions were not surprising. In the default
calculation the hadronization process is responsible for nearly
two-thirds of the final quarks (two for a meson plus three for a
baryon). Pions represent ∼80% of the final-state particles, and
given these facts it was not surprising that the hadronization
component of the ππ balance functions integrated to 0.636,
while the QGP component integrated to 0.239. The sum did
not integrate to unity because observing a charged pion does
not ensure that the remainder of the system has one extra pion
of the opposite charge due to the possibility of the charge
being balanced by other species. If one could measure the
balance function in coordinate space, i.e., as a function of η,
there would be a large narrow peak from the hadronization
component and a smaller broader structure from the QGP
component.

The default results for the K+K− balance functions
were also in line with expectations. Because rather few
additional strange quarks are produced during hadronization,
the hadronization component turned out to be quite small.
Observing the lack of a narrow peak in K+K− balance
functions would confirm the notion that the QGP was indeed
rich in strangeness.

The pp̄ balance function came out contrary to expectations
expressed in previous papers [1]. Even though protons are
composed entirely of up and down quarks, and even though
a large fraction of up and down quarks are produced at
hadronization, the hadronization component is small, or
perhaps negative. This comes from the fact that the strength
of the hadronization component, as determined by the sum
rule in Eq. (8), depends on the density of observed baryons.
Because the observed number of baryons is rather small,
the sum rule can be saturated by the number of baryons
in the QGP component. If one were to consider baryons alone,
the sign of the hadronization component in the baryon-baryon
correlation depends on the sign of χ

(had)
bb − χ

(QGP)
bb , where

bb would refer to the baryon charge. Since the baryon
number of a single quark is 1

3 , the sign switches when the
number of quarks is more than nine times the number of
baryons.

Another surprising result in Table II concerns the pK−
balance function. Even though the K− meson has an antiup
quark, the QGP component is negative. This derives from μab

being larger for us than for uu. For the range of parameters

explored here, the hadronization component of the pK−
balance function was always positive. This makes it easy to
recognize the existence of both the QGP and hadronization
components, and if such a structure were observed experimen-
tally, it would be difficult to explain without a two-component
picture of quark production.

The upper two tables in Table III show the dependence of
the weights for variations of the baryon suppression fB , which
scales the final baryon yields relative to thermal yields. The
values of fB roughly span the range of uncertainties from
the experimental measurement. Whereas the default value
of fB was set to 0.6, Table III shows results for fB = 0.5
and fB = 0.7. The number of quarks per unit rapidity in
the QGP just before hadronization is also uncertain; hence,
a range of quark numbers is explored. Bracketing the default
ratio of quarks before hadronization to final-state hadrons of
0.85, results for nquarks/nhad = 0.7 and nquarks/nhad = 1.0 are
shown in the bottom two tables. The pp̄ balance function is
especially sensitive to both numbers. The hadronization peak
is strengthened by raising fB or by lowering nquarks/nhad. For
lower baryon yields, or higher quark densities, the hadroniza-
tion peak becomes smaller, and can even become negative.
These would lead to a dip in the pp̄ balance function at small
relative rapidity, which would both provide striking evidence
of the two-wave nature of quark production and suggest that
the QGP was rather quark-rich. This latter conclusion could
be better strengthened by better measurements of baryon
yields, which differ from collaborations by several tens of
percent.

IV. BLAST-WAVE PREDICTIONS FOR
BALANCE FUNCTIONS

Once one has calculated the weights described in the pre-
vious section, one can calculate the balance function between
any two species in coordinate space given the characteristic
widths of the distributions, σ(QGP) and σ(had). There is no firm
understanding of the scale σ(QGP), as the value depends on the
microscopic details of how quark-antiquark pairs are created in
the prethermalization stage. In a flux-tube picture, the quarks
are pulled apart longitudinally, using the tube’s energy to
create the particles. From balance functions of pp collisions,
one would estimate σ(QGP) � 0.5 units of rapidity. Even if the
balancing quark pairs are created atop one another, one would
still expect the range to be near 0.5 once one accounted for
diffusion, which spreads logarithmically with the time [1].
The characteristic spread for σ(had) should be determined by
the diffusion that occurs after hadronization. Although the
time from hadronization (∼7 fm/c) to breakup (∼14 fm/c)
is similar to the time from creation to hadronization, the
diffusion width grows logarithmically with time, and the
posthadronization diffusion should be �0.2 units of rapidity.
Because the spread from final-state thermal motion is likely
larger than σ(had), the choice of 0.1 versus 0.2 for the width
should not strongly impact the results. Because the purpose
of this section is to give an example providing a crude idea
of what one might suspect, the values are picked with some
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arbitrariness to be σ(QGP) = 0.6, σ(had) = 0.2, i.e.,

Bα,β(�η) = w
(had)
αβ

(2π )1/2σ(had)
e−(�η)2/(2σ 2

(had))

+ w
(QGP)
αβ

(2π )1/2σ(QGP)
e−(�η)2/(2σ 2

(QGP)). (25)

Unfortunately, the balance function is not measured in
coordinate space. The mapping of η → y has a spread from
the thermal motion of the particles at breakup. For pions this
can be a half unit of rapidity, whereas for protons the thermal
spread is only a few tenths. Additionally, particles decay. To
include both decays and the thermal spread, the correlations
in coordinate space were overlaid onto a simple blast-wave
parametrization. The blast-wave parametrization models the
collective and thermal motion by assuming that the radial flow
grows linearly in radius, ui = umaxri/rmax, with umax = 1.0,
and that the breakup temperature is 100 MeV. Decays of
unstable particles (λ’s, neutral kaons, �’s, cascades, and �’s)
were also accounted for by a Monte Carlo simulation.

Three of the resulting balance functions are presented in
Fig. 1 and are broken down by components. The π+π− balance
function is dominated by the hadronization component, with
the QGP component contributing to the tail. The contribution
from final-state decays is small, but non-negligible. Owing to
large thermal spread for pions, it is difficult to distinguish the
two components.

The pp̄ balance function, displayed in the middle panel
of Fig. 1, is dominated by the QGP component, with the
hadronization component being small or negative. The calcula-
tion includes the contribution to protons from weak decays, and
the hadronization component from hyperon balance functions
makes the hadronization component more negative. Higher
quark densities in the QGP or lower final-state baryon yields
push this component toward being negative. If it is negative,
as in the case of the default calculation in Fig. 1, the resulting
balance function has a plateau or perhaps a dip at small �y. The
existence of such a dip would provide striking evidence for the
two-wave nature of charge production. If the hadronization
component were zero, one could still see evidence of two
components by comparing with the π+π− balance functions.
Because the pp̄ balance function is dominated by the QGP
component while the π+π− balance function is driven by the
hadronization component, one could perform a single-wave fit
to the width of the balance function in coordinate space ση.
One would expect the width for pp̄ to be significantly larger
than that for π+π−. The width ση for π+π− in coordinate
space was determined by a blast-wave analysis in Ref. [11].
By using blast-wave parameters fit to spectra and elliptic flow
observables, the analysis determined that the width of the
balance function in coordinate space, assuming a single scale
for the charge correlation, was ση ∼ 0.22 for the most central
collisions. By performing the blast-wave fit, the contribution
from final-state thermal motion was effectively subtracted
to find the width in coordinate space. This width fell for
increasing centrality from 0.6 to nearly 0.2. For the pp̄ balance
function one might see ση stay roughly constant with centrality.
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FIG. 1. (Color online) Balance functions for π+π− are shown
as a function of relative rapidity (black circles) in the upper panel
as calculated with the default values given in Table II. The widths
assumed are σ(had) = 0.2, σ(QGP) = 0.6. The blast-wave model is
used to map B(�η) to B(�y). The hadronization component (green
squares) is larger and narrower than the QGP component (red upward
triangles), due to the fact that most quark-antiquark pairs are created
at hadronization. The contribution from weak decays (blue downward
triangles) to two pions is also shown. Because the QGP contribution
is rather small and because the thermal spread for pions is large,
one cannot distinguish the two components but must be content with
the width being consistent with being dominated by a single narrow
contribution. In contrast, the pp̄ and pK− balance functions shown
in the middle and lower panels clearly illustrate the two-component
nature. Because the pp̄ balance function has contributions with
opposite signs, one can expect to see a plateau or even a dip at small
relative �y. Because the pp̄ balance function is dominated by the
QGP contribution while the π+π− balance function is largely driven
by the hadronization contribution, one would expect the apparent
width ση for a single-wave fit to be much broader for the pp̄ case
than for the π+π− case. For the pK− balance functions, adding the
two contributions results in a balance function that is narrower than
what one could get from a model with a single wave. Furthermore, one
may even see the balance function become negative for �y ∼ 1.0.

The pK− balance function, from the lower panel of Fig. 1,
offers yet more promise for demonstrating the two-component
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nature of the balance function. Because the weights of the two
components have different signs with the stronger component
having the smaller width, one finds both positive and negative
regions of the balance function. If there were only one
component, or if the two components had similar widths, this
behavior would not ensue. Furthermore, because protons and
kaons are more massive, the thermal spread is reduced and the
reduction in smearing allows more resolving power into the
correlations in coordinate space. The negative dip for �y ∼
1.0 might be reduced if the two waves of charge production
are not well separated. For instance, if hadronization was more
gradual the narrow peak would have a long non-Gaussian tail
which could overwhelm the smaller negative contribution from
the QGP component. However, even in this case the overall
width of the pK− balance function would be narrowed by the
second component. Thus, the signal for two waves of charge
production which are only semidistinct would be a narrow
pK− balance function, whose width might even be narrower
that what one would predict from a single-wave model with
zero width after one corrects for thermal broadening. The
difficulty with pK− balance functions comes from the fact
that they are smaller, by nearly an order of magnitude, than
the π+π− balance functions and thus require high-statistics
data sets. Fortunately, both STAR at RHIC and ALICE at the
LHC provide both high statistics and, due to the installation of
large-coverage time-of-flight detectors, large acceptances for
identified particles.

V. SUMMARY

A central feature of the canonical picture of the chemical
evolution of the quark-gluon plasma is the two-wave nature of
quark production. Investigating balance functions over a large
range of species pairs provides the means to test this hypothesis
in great detail. Once baryon production is better understood,
the only parameter affecting the calculation of weights is
the quark density in the QGP. The blast-wave parameters
used to model the thermal broadening of the balance-function
structures are already well determined by spectra. This leaves
three parameters, nquarks/nhad, σ(had), and σ(QGP), for fitting
the entire array of balance functions. If one were to also
question the assumption that the strange quark density was
close (�90%) to the up- or down-quark density, one would
add a fourth parameter.

The existence of two waves of charge production could
have several clear signatures:

(i) The width of the π+π− balance function in �η

(coordinate space rapidity) should be small for central
collisions. This was reported in Ref. [11].

(ii) In central collisions the width of the pp̄ and K+K−
balance functions in �η should be larger than that of the
π+π− balance function. Whereas the width for pions
has been observed to shrink with centrality, these widths
may well stay fixed, or even broaden for increasing
centrality.

(iii) The pp̄ balance function could have a plateau or even
a dip at small �y.

(iv) The pK− balance function should be narrower than can
be fit with a single-wave picture, and might dip negative
for �y ∼ 1.0.

Aside from qualitatively demonstrating the two-wave na-
ture of quark production, the numerical parameters one might
extract by fitting to data are also of high interest. To date, there
has not been a convincing means for extracting the number
density of quarks in the plasma, nquarks, from experiment.
Determining the width, σ(QGP), would provide insight into the
dynamical mechanism for the creation and diffusion of quarks
in the plasma.

Potentially, the most important implication of charge
balance function would be to quantitatively constrain the
charge correlations in the QGP. For this study, the density of
quarks was varied, which then determined the magnitude of
the diagonal components of gab(�η) in the QGP. Several
of the hadronic balance functions were then found to be
sensitive to this number. Additionally, there was an explicit
assumption that the off-diagonal elements were zero in the
QGP. This would not be the case if quark-antiquark pairs, such
as pionic fluctuations, made significant contributions to the
entropy of the QGP. Observing that the off-diagonal elements
were small or zero would make a strong case that quarks
are the dominant quasiparticles in the QGP. In principle, one
could extend the ideas presented here and vary the off-diagonal
elements to determine the ranges to which they are constrained
by experiment.

The calculations presented here are somewhat schematic
in nature and can be improved during the coming years.
Most immediately, the list of resonances considered was
small and omitted the short-lived hadronic states such as the
ρ or �, which should have some measurable effect [16].
Although almost all particles have a decay in their history,
on the order of 10% of the charged particles produced at
RHIC come from the decays of neutral resonances, other
than the weak decays accounted for here, where both charges
escape untouched from the decay. Thus, several of the weights
might be affected at the 10% level in a more thorough
calculation. If the data indeed seem addressable with this
schematic model, one could consider more sophisticated
models of quark production, diffusion, hadronization, and
emission.
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