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Within the framework of nuclear field theory (NFT), the spectrum of atomic nuclei is described in terms of
collective and quasiparticle degrees of freedom, that is, of elementary modes of excitation that are directly related
to experiment and of their coupling, whose strength and form factors are the basic ingredients entering in the
calculations of absolute cross sections of inelastic and of one- and two-particle transfer reactions. We present a
detailed discussion of the solution of the Dyson equation, also known as the Nambu-Gor’kov equations in the
case of a superfluid system, which propagates medium polarization processes calculated making use of NFT to
all orders of perturbation, resulting in the dressing of quasiparticles and in the induced pairing interaction. The
formalism is applied to the superfluid nucleus 120Sn. Results concerning the low-energy spectrum, that is, the
quasiparticle strength distribution of the neighboring odd-A nuclei 119Sn and 121Sn, are presented and compared
with the experimental findings.
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I. INTRODUCTION

Collective and single-particle (quasiparticle) degrees of
freedom constitute the elementary modes of nuclear excitation
which relate directly to experiment, namely, to the outcome of
elastic, inelastic, and one- and two-particle transfer reactions.
A central theme in the development of the modern view of
nuclear structure has been that of achieving a proper balance
in the use of these two apparently contrasting aspects of nuclear
dynamics.

The development of nuclear field theory (NFT) (cf.,
e.g., Ref. [1] and references therein) provided a rigorous
theoretical framework to describe nuclear structure in terms of
elementary modes of excitation and was instrumental to show
that collective and quasiparticle degrees of freedom are not
contradictory but complementary facets of nuclear dynamics,
as evidenced by their interweaving and by the associated
renormalization effects. This is in keeping with the fact that
collective and quasiparticle degrees of freedom constitute a
basis that is overcomplete: Vibrations and rotations are built of
the same quasiparticle degrees of freedom as those involved in
independent particle motion. As a consequence, aside from the
mean-field and the collective terms, there is a (coupling) term
HC in the NFT Hamiltonian, which is linear in both the single-
particle and the collective coordinates. NFT provides the rules
to work out, one at a time, the different processes dressing
quasiparticle and collective modes. Summing up the different
contributions (diagrams) to appropriate order of perturbation,
eventually also to infinite order, one can diagonalize HC and
thus renormalize the variety of elementary modes of nuclear
excitation. The results of these calculations can be directly
compared to experiment, in particular, to effective masses
and level densities close to the Fermi energy, as well as to
fragmentation of the single-particle strength as observed in
one-particle transfer processes. Though these processes have
been extensively studied in normal nuclei [2,3], their conse-
quences on pairing correlations have been less investigated.

The basic matrix elements (processes) implied by HC are
those describing the scattering of a quasiparticle from an initial
to a final state through the creation of a collective mode.
The corresponding form factors and strengths determine the
particle-vibration coupling vertex.

A powerful technique to propagate the different lowest-
order NFT diagrams such as single-particle and collective
vibration dressing processes, as well as induced (phonon-
mediated) interactions, in particular, pairing induced interac-
tions, is through Dyson’s equation, or, in the case in which the
system under consideration is superfluid (superconducting),
through the Nambu-Gor’kov equations [4–6]. These equations,
which imply the calculation of energy-dependent normal and
abnormal self-energies, take into account the pairing interac-
tion induced by the exchange of collective vibrations between
members of Cooper pairs and lead to theoretical predictions
concerning the low-energy part of the nuclear spectrum; they
also produce the structure elements needed for a consistent
calculation of one- and two-nucleon transfer reactions [7].
In the present study we extend our previous investigations
of medium polarization effects on pairing correlations (cf.,
in particular, Refs. [8–13]). In Sec. II we provide a detailed
account of the formalism, comparing two different schemes for
dealing with the Nambu-Gor’kov equations, either solving first
the BCS equations with the bare nucleon-nucleon force and
then adding renormalization effects (two-step diagonalization;
cf. Sec. II A) or dealing at the same time with both sources of
pairing (one-step diagonalization; cf. Sec. II B). The coupling
between quasiparticle and vibrations is computed according
to the basic rules of NFT [14–16] (see also Ref. [17]).
Though one is forced to introduce numerical approximations
in connection with the calculation of particular quantities and
effects, our description contains most of the physics required
by the systematic treatment of collective and quasiparticle
degrees of freedom and their interweaving as required by
NFT. In particular, though we do not consider the coupling of
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one- to two-phonon states, essential for the renormalization
of the collective degrees of freedom, use is made of empirical
collective vibrations, which display the observed collectivity.
Within this context, we follow the collective model [16] to
calculate the properties of vibrational states in the quasiparticle
random phase approximation (QRPA) with a separable force
and with a coupling constant chosen so as to reproduce the
experimental properties of low-lying collective surface modes.

In most of the computations we use the SLy4 effective
interaction, which provides a good reproduction of the over-
all mean-field properties and which leads, after including
renormalization effects, to a sensible single-particle level
density around the Fermi energy. Following work carried out
in the study of superconductivity in metals use is made of
gap equations which generalize the usual BCS expression,
allowing one to make contact with other studies. In Sec. III
we present results obtained with a self-consistent iterative
solution of the Nambu-Gor’kov equations in the case of 120Sn,
comparing the theoretical low-lying spectrum of neighboring
odd nuclei with experimental data derived from one-neutron
transfer reactions. We also compare the results obtained
making use of the solution of the Nambu-Gor’kov equations
with the quasiparticle approximation. We find that it is possible
to separate the contributions to the pairing gap associated with
the bare nucleon-nucleon force and with the renormalization
effects. The two contributions have comparable magnitudes, in
keeping with previous studies. The role played by spin modes,
which is known to lead to a repulsive contribution in the pairing
1S0 channel, whose magnitude in nuclei is very uncertain, is
briefly considered, but not discussed in detail. Conclusions are
presented in Sec. IV. The sensitivity of our results to various
elements of the calculations, is discussed in the Appendix,
where we also present a comparison between the one-step and
the two-step diagonalization schemes.

II. THE FORMALISM

The objects of our study are pairing correlations in
superfluid nuclei taking into account both the contribution
of the bare nucleon-nucleon interaction and the many-body
effects associated with the coupling between particles and
vibrations (cf. Fig. 1).

Our approach is based on two basic assumptions.

(i) The single-particle basis is obtained making use of a
Hartree-Fock (HF) calculation with an effective force.

FIG. 1. Basic diagrams taken into account in the present study,
which renormalize the normal and abnormal self-energies obtained in
mean-field calculations: (a) polarization, (b) correlation, (c) induced
pairing interaction, processes.

FIG. 2. In NFT the collective vibrational modes are to be calcu-
lated in the RPA approximation (see inset and Fig. 6.14 [16]). Con-
sequently, the self-energy graph (a) is, within the framework of NFT,
not allowed; neither is any graph that contains any number of bubbles,
as they are already considered to infinite order in the collective mode
displayed to the left of the identical (≡) symbol in the inset. Within
this context graph (c) of Fig. 6-11 of Ref. [16] is not allowed. Graphs
(b1) and (b2) are the lowest order, particle and vertex renormalization
processes of the collective mode displayed in the inset. Similarly,
the QRPA transition strength (c) (Tamm-Dancoff contribution) is
renormalized by the corresponding diagrams (d1) and (d2).

We have mostly used the SLy4 interaction, mainly
because the value of the associated effective mass
(mk = 0.7m in nuclear matter) leads, after renormal-
ization, to a level density in overall agreement with
experiment.

(ii) We do not consider the renormalization processes
affecting the vibrations of the system [11,18–20].
The lowest-order diagrams renormalizing the energy
of the phonons are shown in Fig. 2(b1) (self-energy
correction) and Fig. 2(b2) (vertex correction) while the
diagrams shown in Figs. 2(d1) and 2(d2) renormalize
the transition strength. The explicit inclusion of renor-
malization effects on phonons, on par with those on
single-particle levels, represents an ambitious program
that has been attempted only in a few cases [21–25].
We take the transition densities which are at the basis
of the interweaving of single-particle (quasiparticle)
degrees of freedom and collective modes from the
collective macroscopic Bohr-Mottelson model [16]. We
determine the strength of these couplings from a QRPA
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calculation adjusted so as to reproduce the experimental
properties of the low-lying phonons, using a mean field
with an effective mass m∗ = m that reproduces the
experimental single-particle level density (see Sec. III
for more details). In other words, we assume that vertex
corrections are effectively included in our couplings. Of
course, this is not consistent with the NFT. However,
arguably, this represents a reasonable approximation
for the renormalization of single-particle properties, as
well as for the pairing interaction induced by phonon
exchange.

Within this frozen-phonon approximation, as a possible
alternative, one can calculate the matrix element 〈a; λ|HC |b〉
microscopically making use of the transition density of the
QRPA phonons obtained from a self-consistent calculation
performed with the same effective force employed to obtain the
HF mean field. Calculations of this kind have been performed
several times in the past for nonsuperfluid nuclei, with various
degrees of approximation [2]; see Ref. [26] for a recent
calculation aiming at a complete self-consistence. The main
drawback in this approach lies in the fact that QRPA leads to
a relatively poor reproduction of the experimental energy and
the transition strength of the low-lying collective vibrational
states in semimagic nuclei (for recent QRPA calculations
cf., e.g., [27,28]), which provide the main contribution to
renormalization effects of quasiparticle properties. This is
consistent with the fact that processes beyond QRPA can
strongly renormalize the phonon properties.

The actual implementation of assumptions (i) and (ii)
(see above) is presented below in the next sections. Other,
less essential assumptions are adopted in our calculation to
reduce the computational complexity. First of all, we limit the
investigation of renormalization processes to states lying close
to the Fermi energy. We then take into account the fact that
the bare interaction, even considering its soft-core or Vlowk

versions, couples the single-particle states lying close to the
Fermi energy with states lying up to several hundreds of MeV,
while the phonon-mediated pairing interaction acts between

pairs of states separated by a few MeV [12,29]. This suggests
the convenience of a separate treatment of the two interactions
in the pairing problem by performing a HF + BCS calculation
prior to the calculation of many-body effects. We refer
to this approach as the two-step diagonalization scheme.
Otherwise, one is forced to consider the bare and the induced
interaction on the same footing (one-step diagonalization). In
the following we first illustrate in detail the two-step scheme,
which is used in most calculations presented in this paper. We
then outline the main modifications involved in the one-step
diagonalization scheme.

A. Two-step diagonalization scheme

A convenient formalism for the calculation of the properties
of quasiparticles in superfluid nuclei within the two-step
diagonalization scheme was given by Van der Sluys et al.
[30], although they did not devote particular attention to the
renormalization of pairing correlations. In this approach one
first accounts for the action of the bare force with a HF + BCS
calculation, discussed in more detail in Sec. III A1, leading
to quasiparticle energies Ea , quasiparticles amplitudes ua and
va , and to a pairing gap �BCS

a . One then renormalizes the
obtained quasiparticles including the coupling to vibrations
calculated in the QRPA. The derivation of the formalism
was based on the equation-of-motion method, which has a
very close relation to the Green’s functions formalism used
to derive the Nambu-Gor’kov equations, commonly used to
study superconductivity in condensed-matter physics [31].

To calculate the renormalization of a quasiparticle in
spherical nuclei, denoted by its associated quantum numbers
a ≡ {nlj}, one has to solve a system of linear equations
obtained coupling the quasiparticle with more complex con-
figurations including phonon states (see Fig. 1). The phonons
are characterized by their angular momentum λ and by their
energy h̄ωλ,ν . We assume that phonons have natural parity,
π = (−1)λ (see, however, Sec. III A3). For illustration, we
write the diagonalization problem including only two other
quasiparticle states b and c, and a single phonon λ, ν:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ea V (abλν) V (acλν) W (abλν) W (acλν) 0

V (abλν) h̄ωλν + Eb 0 0 0 W (abλν)

V (acλν) 0 h̄ωλν + Ec 0 0 W (acλν)

W (abλν) 0 0 −h̄ωλν − Eb 0 −V (abλν)

W (acλν) 0 0 0 −h̄ωλν − Ec −V (acλν)

0 W (abλν) W (acλν) −V (abλν) −V (acλν) −Ea

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

xa(n)

Ca(n),b,λν

Ca(n),c,λν

−Da(n),b,λν

−Da(n),c,λν

−ya(n)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

= Ẽa(n)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

xa(n)

Ca(n),b,λν

Ca(n),c,λν

−Da(n),b,λν

−Da(n),c,λν

−ya(n)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1)
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Many eigenvalues Ẽa(n) and eigenstates a(n) are obtained
from the diagonalization of the matrix (1), giving rise to a
fragmentation of the associated quasiparticle strength. For
a given eigenvalue Ẽa(n) > 0 there exists a corresponding
eigenvalue Ẽa(−n) = −Ẽa(n). As in standard BCS theory, we
keep only positive energy solutions, n > 0.

The amplitudes obey the normalization condition

x2
a(n) +

∑
b,λ,ν

[
C2

a(n),b,λν

] + y2
a(n) +

∑
b,λ,ν

[
D2

a(n),b,λν

] = 1, (2)

Ca(n),b,λν and −Da(n),b,λν being the components on the complex
1qp ⊗ 1ph states α

†
b�

†
λν and αb̄�λν̄ , while xa(n) and −ya(n) are

the components on the original 1qp states α
†
a and αā , where

ā denotes the time-reversed state. The fragment a(n) carries a
fraction of the strength

Na(n) = x2
a(n) + y2

a(n) < 1, (3)

which is to be compared with the experimental quasiparticle
strength, as determined, for example, in one-particle-transfer
reactions.

The excitation operator derived from Eq. (1),

Õ
†
a(n) = α̃

†
a(n)qp

+ Ca(n),b,λνα
†
b�

†
λν − Da(n),b,λναb̄�λ̄ν

contains the quasiparticle component

α̃
†
a(n)qp

= xa(n)α
†
a − ya(n)αā.

Taking into account the BCS Bogoliubov transformation,
α†

a = uaa
†
a + vaaā,

one can write
α̃
†
a(n)qp

= ũa(n)a
†
a + ṽa(n)aā,

where the quantities
ũa(n) = xa(n)ua − ya(n)va, (4)
ṽa(n) = xa(n)va + ya(n)ua,

represent the new quasiparticle amplitudes associated with
a given fragment a(n): Their squares give the spectroscopic
factors associated with one-nucleon transfer reactions.

We can then calculate the renormalized pairing gap as
[cf. below Eq. (38)]

�̃a(n) = 2Ẽa(n)ũa(n)ṽa(n)

ũ2
a(n) + ṽ2

a(n)

. (5)

The quasiparticle-phonon matrix elements V (abλν) and
W (abλν) in Eq. (1) are given by

V (abλν) =
[

2λ + 1

2ja + 1

]1/2 ∑
c�d

(1 + δcd )−1/2

× [Xcd (λν)V (cdλb; a) + (−1)ja−jb+λ

×Ycd (λν)V (cdλa; b)] (6)

and

W (abλν) =
[

2λ + 1

2ja + 1

]1/2 ∑
c�d

(1 + δcd )−1/2

× [Xcd (λν)R(abcd; λ) + Ycd (λν)Q(abcd; λ)] ,

(7)

where Xcd and Ycd are the forward and backward amplitudes
resulting from the QRPA calculation.

The terms V (cdλb; a), Q(abcd; λ) and R(abcd; λ) are
given by

V (cdλb; a) = −(uavbucud − vaubvcvd )G(abcdλ)

+ (uaubucvd − vavbvcud )F (abcdλ)

+ (−1)jc−jd+λ(uaubvcud − vavbucvd )

×F (abdcλ), (8)

Q(abcd; λ) = (uaubucud + vavbvcvd )G(abcdλ)

+ (uavbucvd + vaubvcvd )F (abcdλ)

+ (−1)jc−jd+λ(uavbvcud + vaubucvd )

×F (abdcλ), (9)

R(abcd; λ) = −(uaubvcvd + vavbucud )G(abcdλ)

+ (uavbvcud + vaubucvd )F (abcdλ)

+ (−1)jc−jd+λ(uavbucvd + vaubvcud )

×F (abdcλ), (10)

where F (abcdλ) and G(abcdλ) denote the angular momentum
coupled antisymmetrized particle-hole and particle-particle
〈abλ|V |cdλ〉as matrix element, respectively. Note that in the
limit of nonsuperfluid nuclei (all u, v terms equal to 0 or
1), the matrix elements V (abλν) connect pairs of states a, b

above or below the Fermi energy through the F terms and
pairs of states on opposite parts of the Fermi energy through
the G terms, though the opposite is true for the W (abλν)
matrix elements. In the following we do not take into account
the coupling with pair vibration modes, neglecting the G

terms in Eqs. (8)–(10). While this coupling is known to be
relevant for closed-shell nuclei, it is expected to be much
less important for the superfluid case, because most of the
two-particle transfer strength is already incorporated in the
BCS ground-state (gauge space deformed) wave function [32].

The F and G matrix elements were obtained in [30]
from a calculation performed using the same force adopted
in the HF + BCS calculations. In our approach, the QRPA
calculation is instead decoupled from the renormalization
process, in keeping with the main assumption (ii) discussed
above. In our QRPA calculation we use the separable force

V (�r1, �r2) = −κself r1
∂U

∂r1
r2

∂U

∂r2

∑
λμ

χλY
∗
λμ(θ1)Yλμ(θ2),

(11)

where U (r) is a potential that gives a good reproduction
of the experimental single-particle levels. In practice, we
adopt the Woods-Saxon parametrization given in Ref. [33]
[cf. Eq. (2-182)] together with an empirical pairing coupling
constant adjusted to reproduce the pairing gap deduced from
the experimental odd-even mass difference. The parameters χλ

are determined so as to get a good agreement with the observed
properties (energy and transition strength) of the low-lying
surface modes. More precisely, we reproduce the polarizability
β2

λ1/h̄ωλ1 of the low-lying modes, where βλν denotes the
experimental nuclear deformation parameter. In fact, the
matrix elements of the phonon-induced pairing interaction for
levels close to the Fermi energy are approximately proportional
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to the polarizability of the mode [cf. Eq. (30) below]. The
resulting values of χλ turn out to be close to 1 (cf. Sec. III),
indicating that the QRPA coupling constant is close to
the Bohr-Mottelson self-consistent coupling constant κself =
−[

∫
r

∂ρ

∂r
r ∂U

∂r
r2dr]−1.

This scheme is the coupling scheme given by Bohr and
Mottelson [16] [cf. Eqs. (6-207)–(6-209)]. The particle-hole
matrix elements, neglecting the exchange terms [cf. on this
point Ref. [34], Eq. (14.54) and Chap. 16], are given by

F (abcdλ) = −κselfχλ〈abλμ|r1
∂U

∂r1
Y ∗

λμ(θ1)|0〉〈0|r2
∂U

∂r2
Y ∗

λμ(θ2)|cdλμ〉, (12)

where μ is any of the z projections of the angular momentum λ. In this expression the QRPA-like single-particle indices (c, d)
and the scattered particle indices (a, b) appear in separated factors, so that one gets the angular momentum reordering property
F (abdcλ) = (−1)jc−jd+λF (abcdλ) = (−1)ja−jb+λF (bacdλ) and

V (abλν) = −κselfχλ(uaub − vavb)〈abλμ|r1
∂U

∂r1
Y ∗

λμ(θ1)|0〉
[

2λ + 1

2ja + 1

]1/2

×
∑
c�d

(1 + δcd )−1/2

{
[Xcd (λν) + Ycd (λν)](ucvd + vcvd )〈0|r2

∂U

∂r2
Y ∗

λμ(θ2)|cdλμ〉
}

. (13)

The quantity in the summation is precisely the transition amplitude M(λν) of the M̂ = r2
∂U
∂r2

Y ∗
λμ(θ2) operator, which is usually

expressed in terms of the so-called collective deformation parameter as M(λν) = αo
λν/κself , assuming a collectively deformed

density δρ = −r
∂ρ

∂r

∑
λμ Y ∗

λμ(θ )αλμ, where αλμ = i−λαo
λν[�†

λμ + (−1)μ�λ−μ]ν .
In this way we can write

V (abλν) = −χλ(uaub − vavb)〈abλμ|r1
∂U

∂r1
Y ∗

λμ(θ1)|0〉
[

2λ + 1

2ja + 1

]1/2

αo
λν. (14)

Finally, following the notation in Ref. [16], Eqs. (6-207)–
(6-209) using the reduced matrix element 〈jb||Yλ||ja〉 =
(−1)ja−jb 〈jajb; λμ|Yλμ|0〉√2λ + 1 and the relation αo

λν =
βλν/

√
2λ + 1, we can write

V (abλν) = h(abλν)(uaub − vavb), (15)

where

h(abλν) = −(−1)ja−jbβeff
λν 〈a|r1

∂U

∂r1
|b〉

× 〈jb||Yλ||ja〉
[

1

(2ja + 1)(2λ + 1)

]1/2

, (16)

which is the basic vertex in Ref. [16] corrected by an effective
deformation parameter βeff

λν = χλβλν .
Analogously, one finds

W (abλν) = h(abλν)(uavb + vaub). (17)

A self-consistent renormalization procedure is then car-
ried out by iterating the diagonalization process, using the
previously renormalized quasiparticles to build the complex

1qp ⊗ 1ph states. This means that the basic V,W matrix
elements are now calculated as

V (ab(m)λν) = h(abλν)(uaũb(m) − vaṽb(m)),
(18)

W (ab(m)λν) = h(abλν)(uaṽb(m) + vaũb(m)),

where the ua and va amplitudes obtained from the initial
HF + BCS calculation are kept fixed in the iteration process,
while ũb(m) and ṽb(m) refer to the amplitudes associated with
the m fragment resulting from the renormalization of the
state b in the previous iteration step. In this way a consistent
fragmentation of the different states is constructed through the
iterative procedure.

The iteration process gives rise to the so-called no-line
crossing rainbow series of the self-energy (see below), in
which all orders are summed up coherently and which is
expected to play an important role in the limit of strong
coupling (cf. Fig. 3). The size of the matrix to be diagonalized
increases exponentially at each iteration, and some sort of
numerical approximation is needed, as is discussed in Sec. III.

FIG. 3. The coupling of the quasiparticle to many-phonon states, corresponding to the rainbow diagrams shown in the figure, is included
in our approach through the iteration of the self-consistent diagonalization of the Nambu-Gor’kov matrix.
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1. Energy-dependent, BCS-like formulation

Projecting onto the 1qp-particle space, the diagonalization
of the eigenvalue problem (1) can be written as a 2 × 2 energy-
dependent eigenvalue problem, which is equivalent to that
derived from an approach based on Green’s function formalism
(cf., e.g., Ref. [9]):(

Ea + �
11pho
a(n) �

12pho
a(n)

�
12pho
a(n) −Ea + �

22pho
a(n)

)(
xa(n)

ya(n)

)
= Ẽa(n)

(
xa(n)

ya(n)

)
,

(19)

where one has introduced the energy-dependent, normal self-
energies �

11pho
a(n) and �

22pho
a(n) given by

�
11pho
a(n) =

∑
b,m,λ,ν

V 2[ab(m)λν]

Ẽa(n) − Ẽb(m) − h̄ωλν

+
∑

b,m,λ,ν

W 2[ab(m)λν]

Ẽa(n) + Ẽb(m) + h̄ωλν

,

�
22pho
a(n) =

∑
b,m,λ,ν

W 2[ab(m)λν]

Ẽa(n) − Ẽb(m) − h̄ωλν

+
∑

b,m,λ,ν

V 2[ab(m)λν]

Ẽa(n) + Ẽb(m) + h̄ωλν

, (20)

and the abnormal self-energy,

�
12pho
a(n) = −

∑
b,m,λ,ν

V [ab(m)λν]W [ab(m)λν]

×
[

1

Ẽa(n) − Ẽb(m) − h̄ωλν

− 1

Ẽa(n) + Ẽb(m) + h̄ωλν

]
. (21)

We note that �11 evaluated at a given energy E is equal
to −�22 evaluated at −E, that is, �

11pho
a(n) = −�

22pho
a(−n) . The

normalization of the quasiparticle strength of the n fragment
[cf. Eq. (2)] is given by [35]

x2
a(n) + y2

a(n) − ∂�
11pho
a(n)

∂Ẽa(n)
x2

a(n) − ∂�
22pho
a(n)

∂Ẽa(n)
y2

a(n)

− 2
∂�

12pho
a(n)

∂Ẽa(n)
xa(n)ya(n) = 1. (22)

In this form one can easily make contact with the formalism
based on the Green’s function for superfluid systems,

Ĝa(Ẽa + iδ) = [(Ẽa + iδ)1 − Eaτ3 − �̂pho
a (Ẽa + iδ)]−1,

(23)

where τ3 denotes a Pauli matrix and where

�̂pho
a (Ẽa + iδ)

=
(

�
11pho
a (Ẽa + iδ) �

12pho
a (Ẽa + iδ)

�
12pho
a (Ẽa + iδ) �

22pho
a (Ẽa + iδ)

)
(24)

is our phonon-mediated self-energy matrix evaluated at the
complex energy Ẽa + iδ, which coincides with the matrix

introduced by Nambu and extensively used in condensed
matter to deal with strong coupling superconductivity [31].
Equations (23) and (24) must be solved self-consistently owing
to the fact that the quasiparticle strengths needed for the
evaluation of �̂

pho
a (Ẽa + iδ) through the V and W matrix

elements are obtained from the imaginary part of Ĝa(E + iδ)
[cf. Ref. [30], Eqs. (46) and (47)].

To get more insight concerning the respective contributions
of the bare and of the phonon-induced interaction to the pairing
gap, it is useful to rewrite the 2 × 2 eigenvalue problem (19)
in terms of the amplitudes ũ, ṽ, instead of x, y, by inverting
the relation (4), obtaining(

(εa − εF ) + �̃11
a(n) �̃12

a(n)
�̃12

a(n) −(εa − εF ) + �̃22
a(n)

) (
ũa(n)

ṽa(n)

)

= Ẽa(n)

(
ũa(n)

ṽa(n)

)
, (25)

where εa denotes the HF single-particle energy, while the new
normal self-energies are given by

�̃11
a(n) = u2

a�
11pho
a(n) + v2

a�
22pho
a(n) − 2uava�

12pho
a(n)

(26)
�̃22

a(n) = u2
a�

22pho
a(n) + v2

a�
11pho
a(n) + 2uava�

12pho
a(n) .

One can separate the abnormal self-energy into two terms,
writing

�̃12
a(n) = �BCS

a + �̃
12,pho
a(n) . (27)

The first term, �BCS
a , is the pairing gap associated with

the bare interaction obtained in the HF + BCS calculation,
while the second term is associated with the phonon-induced
interaction and is given by

�̃
12,pho
a(n) = �

12pho
a(n)

(
u2

a − v2
a

) + uava

(
�

11pho
a(n) − �

22pho
a(n)

)
. (28)

Using Eqs. (18), (20), and (21) this expression can be
simplified and the abnormal self-energy can be rewritten as

�̃
12,pho
a(n) = −

∑
b,m

(2jb + 1)

2
Vind[a(n)b(m)]ũb(m)ṽb(m), (29)

where we have introduced the induced pairing interaction:

Vind[a(n)b(m)] =
∑
λ,ν

2h2(abλν)

(2jb + 1)

[
1

Ẽa(n) − Ẽb(m) − h̄ωλν

− 1

Ẽa(n) + Ẽb(m) + h̄ωλν

]
. (30)

Furthermore, we can symmetrize the matrix (25) to get a 2 × 2
eigenvalue equation which is formally identical to the BCS
eigenvalue equation. This can be achieved multiplying Eq. (25)
by the Za(n) energy-dependent function,

Za(n) =
(

1 − �̃odd
a(n)

Ẽa(n)

)−1

, (31)

where �̃odd is the odd part of �̃11
a(n)

�̃odd
a(n) = �̃11

a(n) + �̃22
a(n)

2
= �

11pho
a(n) + �

22pho
a(n)

2
. (32)
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We note that according to the definition above, Z is the inverse
of the correspondent quantity as defined in Refs. [9] and [31].
We also note that the symbol Z is often used instead of N

to define the quasiparticle strength. In fact, the two quantities
tend to take similar values close to the Fermi energy (cf. Fig. 7
below). This similarity can be explained by noting that for the
lowest pole, the finite difference in the expression of Z can be
approximated by a derivative:

Za(n) =
(

1 − �11
a(n) − �11

a(−n)

2Ẽa(n)

)−1

≈
(

1 − ∂�11
a(n)

∂Ẽa(n)

)−1

. (33)

Furthermore, in the normalization of the strength of quasipar-
ticles close to the Fermi energy, x 
 y so that, using Eq. (22),

Na(n) = x2
a(n) + y2

a(n) ≈ x2
a(n) ≈

(
1 − ∂�11

a(n)

∂Ẽa(n)

)−1

. (34)

Having multiplied by Za(n), it is possible to rewrite Eq. (25)
as(

ε̃a(n) − εF �̃a(n)

�̃a(n) −(ε̃a(n) − εF )

)(
ũa(n)

ṽa(n)

)
= Ẽa(n)

(
ũa(n)

ṽa(n)

)
, (35)

where

ε̃a(n) − εF = Za(n)
[
(εa − εF ) + �̃even

a(n)

]
, (36)

and where �̃even
a(n) is the even part of �̃11

a(n):

�̃even
a(n) = �̃11

a(n) − �̃22
a(n)

2
= (u2

a − v2
a)

�
11pho
a(n) − �

22pho
a(n)

2

− 2uava�
12pho
a(n) . (37)

The term ε̃a(n) in Eq. (35) represents the renormalized single-
particle energy, and one can now identify the pairing gap with
the term �̃a(n) [31]:

�̃a(n) = Za(n)�̃
12
a(n)

= Za(n)

(
�BCS

a + �̃
12,pho
a(n)

)
≡ �̃bare

a(n) + �̃
pho
a(n). (38)

On the other hand, eliminating ε̃a(n) − εF from Eq. (35), one
obtains the expression (5) introduced above, which can be used
when solving the energy-independent problem (1), because
it involves only quasiparticle energies and amplitudes. Note
also that the quasiparticle energy relates to the new gap and
single-particle energy as in the usual BCS equations:

Ẽa(n) =
√

(ε̃a(n) − εF )2 + �̃2
a(n) (39)

It is now possible to write a generalized gap equation. In-
troducing the total quasiparticle strength for a given fragment,

ũ2
an

+ ṽ2
an

= Na(n), (40)

the product ũa(n)ṽa(n) may be obtained in the usual way from
the 2 × 2 secular equation as

ũa(n)ṽa(n) = Na(n)
�̃a(n)

2
√

(ε̃a(n) − εF )2 + �̃2
a(n)

, (41)

or, equivalently, by using Eqs. (37) and (38), as

ũa(n)ṽa(n) = Na(n)
Za(n)�̃

12
a(n)

2
√

Z2
a(n)

(
εa − εF + �̃even

a(n)

)2 + (
Za(n)�̃

12
a(n)

)2
.

(42)
Substituting in Eq. (29) one obtains

�̃12
a(n) = �BCS

a −
∑
b,m

Vind[a(n)b(m)]Nb(m)

× �̃12
b(m)

2
√(

εb − εF + �̃even
b(m)

)2 + (
�̃12

b(m)

)2
. (43)

The second term in this equation is a generalization of the
usual BCS gap equation and clearly demonstrates how the
action of the different fragments of the original quasiparticles is
modulated by their quasiparticle strength Nb(m). The equation,
however, is of little practical use as it stands because it
involves the energy dependent interaction Vind which contains
a “dangerous” denominator [cf. Eq. (30)]. The formula is
further discussed in Sec. III A4, and we present a similar
expression in Sec. II B [cf. Eqs. (53) and (54)].

The approach presented so far (and in Ref. [30]) neglects the
1qp-exchange interaction between the complex 1qp ⊗ 1ph

states (see Figs. 6.10(c) and 6.10(d) in Ref. [16]). In fact, the
associated matrix elements are set to 0 in the matrix (1). The
ignored processes would account for violation of the Pauli
principle arising from the microscopic structure of the
QRPA phonons, which may imply double occupation of the
quasiparticle state in the complex 1qp ⊗ 1ph state. These
violations are small for the calculation reported in this paper.

Those processes account also for vertex renormalization
terms in the self-energy, which are not taken into account
in the rainbow series we have considered. While in condensed
matter they are usually neglected based on the Migdal theorem,
in nuclear physics they are usually considered to be of
minor importance because their contribution to the self-energy
implies a recoupling of angular momenta that owing to the
incoherent contributions from all possible intermediate states
is expected to lead to a rather strong cancellation [36,37].
As we have mentioned discussing approximation (ii) above,
we assume that they are implicitly included in our effective
〈a; λ|HC |b〉 coupling matrix elements, computed making use
of phenomenological phonons and single-particle levels.

Although within NFT tadpole diagrams should be included
[17], we neglect the energy-independent contributions associ-
ated with them (cf. Fig. 4), which take into account the effect
of zero-point fluctuations on the quasiparticle energy [38].
This kind of diagram modifies the nuclear density (cf. Fig. 5)
and plays an important role in the calculation of nuclear
radii [39–41], representing the leading correction beyond mean
field for closed-shell nuclei, and producing sizable isotopic
effects [42]. However, they lead to relatively small changes
in the mean-field potential. The shifts of the single-particle
energies for A = 120 can be estimated to be of the order of
150 keV [43], and, being of static nature, we assume that
they are effectively taken into account in the mean field. The
tadpole diagrams can also influence the abnormal density
and the calculation of the bare pairing gap [44], but no
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FIG. 4. Lowest-order diagrams representing the renormalization
of the quasiparticle self-energy by zero-point fluctuations.

calculations have been performed for superfluid nuclei. We
have estimated that the effect of diagrams (a) and (b) displayed
in Fig. 5 changes the pairing field by about 5%, evaluating the
expression

δκ(r) =
∑
abλ

(2λ + 1)Y 2
abλκa(r)/(2ja + 1), (44)

for the change introduced in the abnormal density κ , where
Yabλ denotes a backward amplitude calculated in QRPA.
Diagrams (c) and (d) give, in the normal case, a contribution to
the renormalization of the mean square radius which is about
three times larger than the one produced by (a) and (b) [39].
This can be considered as an upper limit because the strong
r2 dependence tends to enhance their relative importance.

Thus, we estimate that total effect of tadpole diagrams
on the pairing field should be less than 20%, that is, less
than 200 keV, which is a number rather consistent with that
estimated above for the normal single-particle energy.

Finally, it is of note that the formalism presented in this
section is similar to the one adopted by Avdeenkov and
Kamerdzhiev [45,46]. However, it is difficult to make a
precise comparison of their results with ours, because they
have followed a different approach, trying to extract “bare”
single-particle levels and pairing gaps from the experimental
levels, instead of renormalizing the levels obtained from an
effective mean field.

B. The one-step diagonalization scheme

In the previous section we have outlined the two-step
diagonalization scheme in the calculation of the pairing

FIG. 5. Lowest-order diagrams representing the renormalization
of the density operator (represented by the cross) by zero-point
fluctuations in closed-shell nuclei.

properties of superfluid nuclei. That is, we have started from
a HF + BCS calculation which accounts for the bare pairing
interaction and we have then added medium renormalization
effects by diagonalizing the matrix in Eq. (1). However,
one could also adopt a different scheme (which we call
the one-step diagonalization scheme) in which one starts
from the HF solution and then one includes simultaneously
both renormalization effects and the bare pairing interaction
through the iterative procedure. This approach is particularly
appropriate when the phonon-induced pairing provides the
leading contribution to pairing correlations and is certainly
needed when the bare interaction alone is not able to produce
a superfluid solution. This is the case, for instance, in
calculations of the structure of halo nuclei [47,48]. However,
the two-step diagonalization is more natural, in the framework
of general schemes based on the corrections to mean-field
properties.

In the Appendix we apply the one-step diagonaliza-
tion scheme to the calculation of pairing properties in
120Sn, which is a well-bound, superfluid nucleus. In this
case we expect that the two schemes should give similar
results concerning physically relevant quantities, namely,
quasiparticle energies, spectroscopic factors, and pairing
gaps.

The one-step diagonalization is performed by introducing
the bare pairing field �12bare associated with the bare interac-
tion in Eq.(1) by writing

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ea V (abλν) V (acλν) W (abλν) W (acλν) ∓�12bare
a

V (abλν) h̄ωλν + Eb 0 0 0 W (abλν)
V (acλν) 0 h̄ωλν + Ec 0 0 W (acλν)
W (abλν) 0 0 −h̄ωλν − Eb 0 −V (abλν)
W (acλν) 0 0 0 −h̄ωλν − Ec −V (acλν)
∓�12bare

a W (abλν) W (acλν) −V (abλν) −V (acλν) −Ea

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

xa(n)

Ca(n),b,λν

Ca(n),c,λν

−Da(n),b,λν

−Da(n),c,λν

−ya(n)

⎞
⎟⎟⎟⎟⎟⎟⎠

= Ẽa(n)

⎛
⎜⎜⎜⎜⎜⎜⎝

xa(n)

Ca(n),b,λν

Ca(n),c,λν

−Da(n),b,λν

−Da(n),c,λν

−ya(n)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(45)
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where now the unperturbed “quasiparticle” energy Ea

contains no contribution from pairing and is simply equal to
the difference between the HF single-particle energy and the
Fermi energy,

Ea = |εa − εF |,
where �12bare obeys the equation

�12bare
a = −

∑
b,m

Vbare[ab]
(2jb + 1)

2
ũb(m)ṽb(m), (46)

and the − (+) sign is to be used for particle (hole) states, that
is, εa > eF (εa < eF ).

The amplitudes ũa(n), ṽa(n) are given by Eq. (4), taking into
account the fact that the initial ua and va factors to be inserted
in the iterative solution of Eq. (1) are now equal to 1 or 0,
depending on whether the level is above or below the Fermi
energy:

ũa(n) = xa(n), ṽa(n) = ya(n), (47)

and

ũa(n) = −ya(n), ṽa(n) = xa(n), (48)

respectively, in the case of a particle and a hole state.
Note that, putting the V −W matrix elements to zero,

Eq. (46) reduces to the standard BCS equation for the pairing
gap. The solution must be obtained through a self-consistent
iterative procedure which in the general case involves simulta-
neously the bare interaction and the particle-vibration coupling
vertices V and W . In general, this is not equivalent to the
two-step diagonalization scheme, in which one considers first
only �12bare (which is exactly equivalent to solve the bare BCS
problem) and then takes into account the matrix elements V ’s
and W ’s. Nevertheless, the two schemes lead to similar results,
as long as the first diagonalization leads to a finite value of the
order parameter, the pairing gap (cf. Appendix, Fig. 26 and
related discussion).

As in the two-step scheme, one can use the 2 × 2 energy-
dependent BCS-like matrix to solve the problem. The only
difference with respect to Eq. (35) is that now the renormalized
pairing gap must include a term �12bare representing the
contribution of the bare pairing interaction:

�̃a(n) = Za(n)

(
�12bare

a + �̃
12,pho
a(n)

)
= �̃bare

a(n) + �̃
pho
a(n). (49)

This expression can be rewritten in the more appealing way,

�̃a(n) = −Za(n)

∑
b,m

(2jb + 1)

2
Veff[a(n)b(m)]ũb(m)ṽb(m),

(50)

where one has introduced the effective interaction Veff , which
is the sum of the bare and phonon-induced interactions:

Veff[a(n)b(m)] = Vbare[ab] + Vind[a(n)b(m)]. (51)

Furthermore, one can obtain a very closed form for the
gap equation by eliminating the amplitudes u and v using

Eq. (35):

ũa(n)ṽa(n) = Na(n)
�̃a(n)

2Ẽa(n)

= Na(n)
Za(n)�̃

12
a(n)

2
√

Z2
a(n)

(
εa − εF +�̃even

a(n)

)2+(
Za(m)�̃

12
a(n)

)2
,

(52)

leading to

�̃a(n) = Za(n)�̃
12
a(n)

= −Za(n)

∑
b,m

(2jb + 1)

2
Veff[a(n)b(m)]Nb(m)

× �̃12
b(m)

2
√(

εb − εF + �̃even
b(m)

)2 + (
�̃12

b(m)

)2
. (53)

We note that for levels near to the Fermi energy the Z factor
is very close to the quasiparticle strength N . A more compact
expression, bearing a direct resemblance to the standard BCS
gap equation, may be obtained by reintroducing the Z function
both in the numerator and in the denominator:

�̃a(n) = −Za(n)

∑
b,m

Veff[a(n)b(m)]Nb(m)
�̃b(m)

2Ẽb(m)
. (54)

This equation is a consequence of the Nambu-Gor’kov energy-
dependent problem and can be used as a useful starting
point for approximating gap equations (see Sec. III A4). In
particular, restricting the sum to the main peak m = 1 and
neglecting the difference between N and Z, Eq. (54) formally
reduces to an approximate gap equation previously presented
in the case of uniform matter ([49] [cf. Eq. (12)], [50]).

III. RESULTS

In the following we present the solution of the Nambu-
Gor’kov equations of NFT renormalization processes for 120Sn
in various approximations. In all cases, we limit our attention to
the five neutron levels belonging to the shell around the Fermi
energy (namely, the 1g7/2, the 2d5/2, the 3s1/2, the 2d3/2, and
the 1h11/2 orbitals). Most of the calculations are performed in
the two-step diagonalization scheme, making use of the
Argonne nucleon-nucleon interaction as the bare pairing
force in the 1S0 channel, which gives by far the dominant
contribution to T = 1, J = 0 pairing [51]. In the Appendix
we also show a few results obtained with the Vlowk potential.

In general, we iterate the renormalization process. This
requires looking for a self-consistent solution, either by suc-
cessive diagonalizations of the matrix (1) or (45) or by looking
for the solutions of the equivalent energy-dependent 2 × 2
problem (19). Nearly all of the results presented in this work
have been obtained from the first diagonalization procedure.
However, we have verified in several instances the numerical
agreement between the two methods of solution. To control
the iteration process, one must introduce a cutoff procedure,
or perform some averaging, to avoid the exponential increase
of the number of solutions, retaining at the same time the
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essential information [52,53]. We make use of two simple
numerical procedures. A cutoff procedure can be adopted when
one solves the energy-dependent problem. In this case one can
limit the number of solutions kept at each iteration by selecting
only those fragments carrying a quasiparticle strength larger
than a given cutoff Ncut. An extreme case is represented
by the so-called one-quasiparticle approximation, in which
one keeps only the most important pole for each orbital. We
instead make use of an averaging procedure when we solve the
energy-independent problem diagonalizing the matrices (1) or
(45). In this case, we define a number Nzones of energy zones.
The zones are generally not of the same size, but are chosen so
as to reflect the main features of the quasiparticle strength
function. After each iteration we collect all the strength
obtained within a given energy zone into a single fragment,
placed at the calculated average energy position. In this way,
the number of solutions associated with a given orbital a is kept
fixed to Ndim = 2 × [Npho × Nsps × Nzones + 1], where Nphon

is the number of RPA solutions retained in the diagonalization
and Nsps is the number of single-particle levels coupled to a.

We compute the basic vertices h [cf. Eq. (16)] controlling
the quasiparticle-vibration coupling by first performing a
QRPA calculation with the separable force (11) for the
multipolarities and parities λπ = 2+, 3−, 4+, and 5−. In each
case, the coupling constant is determined so as to reproduce the
experimental value of the ratio B(Eλ)/h̄ωλ,1 [cf. the discussion
about the approximation (ii) in Sec. II above]. Experimental
data are taken from Ref. [54]. The quasiparticle states used
in the QRPA calculation are obtained from a BCS calculation
with a monopole pairing interaction −G0P

†P based on the
levels of a Woods-Saxon potential parametrized as in Ref. [33],
Eq. (2-182). The pairing coupling constant G0 is adjusted so
as to reproduce the value �exp ≈ 1.4 MeV derived from the
experimental odd-even mass difference.

Concerning the QRPA spectrum, we adopt an averaging
procedure similar to that adopted for the quasiparticle strength.
We include explicitly the strong collective low-lying vibra-
tional states and we collect the remaining strength in a small
number of peaks, reflecting the gross structure of the response
for each multipolarity [9]. We have verified that the results
are not sensitive to the details of the distribution of high-lying
phonons. The properties of the low-lying phonons employed in
the calculations are listed in Table I, where they are compared
with the available experimental data. We remark that the values
of χλ [cf. Eq. (11)] are close to 0.9, reflecting the rather good
accuracy of the collective model.

A. Calculations with bare pairing potentials

In this section, we discuss solutions of the Nambu-Gor’kov
equations making use of bare nucleon-nucleon potentials as
pairing interactions. As we have remarked above, we adopt
the two-step diagonalization scheme. The practical difficulty
using a one-step diagonalization in this case is that the basis
needed to account for the realistic bare interactions must span a
broad energy interval (about 1 GeV in the case of the Argonne
v14 interaction and about 200 MeV in the case of Vlowk). This
implies a large numerical effort to handle Eq. (45), in particular

TABLE I. In the first columns we list the experimental energies
h̄ωλ1 in (MeV), deformation parameters βλ1, and polarizabilities
β2

λ1/h̄ωλ1 of the low-lying states associated with the 2+, 3−, 4+, and 5−

multipolarities. They are compared with the corresponding quantities
calculated in QRPA, making use of the effective deformation
parameter βeff

λν = χλβλν . In the last column we give the values of χλ.
In the case of 4+, the experimental low-lying strength is fragmented
in four peaks lying between 2.2 and 3.8 MeV; the numbers in the
table refer to an average weighted with the transition strength of each
peak.

Exp. Theory

λπ h̄ωλ1 βλ1 β2
λ1/h̄ωλ1 h̄ωλ1 βeff

λ1 (βeff
λ1 )2/h̄ωλ1 χλ

2+ 1.17 0.13 0.014 1.20 0.13 0.013 0.86
3− 2.40 0.16 0.011 2.71 0.16 0.010 0.95
4+ 3.10 0.11 0.004 2.33 0.10 0.004 0.91
5− 2.27 0.08 0.003 2.48 0.09 0.003 0.91

because the matrix associated with a given angular momentum
must include states with different numbers of nodes. We
further consider the relation between the one- and two-step
diagonalization schemes presented in Sec. II, making use of a
simplified bare interaction.

1. Bare pairing gap

The first step in our calculation is represented by the
solution of the HF + BCS equation with the bare force in the
pairing channel; we do not consider the influence of pairing
on the mean field.

It is of note that the calculation with the bare force is,
in fact, an extended BCS calculation. This is because for a
hard-core interaction it is essential to consider the coupling
between pairs of levels with different numbers of nodes to
take properly into account the coupling between bound and
continuum levels [55,56]. We include states up to 1 GeV. As a
consequence, for given quantum numbers {lj} one obtains
a set of quasiparticle energies {Ek}; to each quasiparticle
is associated an array of quasiparticle amplitudes unk and
vnk , which are the components of the quasiparticle states
over the HF basis states φnlj . Going to the canonical basis,
where the density matrix takes a diagonal form [57], we
look for the state having the largest value of the abnormal
density, umaxvmax. As a rule, for a stable nucleus such as
120Sn, this canonical state is dominated by the quasiparticle
state having the lowest value of the quasiparticle energy,
Emin. We then approximate the extended BCS calculation
associating the value of vmax and Emin, treating them as proper
BCS quantities; in particular, we derive an associated pairing
gap as �BCS = 2umaxvmaxEmin, which is very close to the
diagonal value of the gap in the original basis. The value of
umax, vmax, Emin are then employed as input values for the
solution of the Nambu Gor’kov equations in the two-step
diagonalization scheme described in Sec. II A [cf. Eqs. (1) and
(4), where they are denoted ua, va and Ea]. This approximation
leads to a substantial simplification of our numerical scheme.
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For nuclei close to the line of stability, where the canonical
states have significant weight on continuum state and the
basic vertices associated with the coupling term HC (see, e.g.,
Ref. [18]) can easily connect bound and continuum states, this
approximation would not be justified and one should rather
consider different numerical schemes, for example, based on
the continuum Green’s function.

The mean field is taken from a HF calculation with the SLy4
interaction [58]. This interaction gives a good reproduction of
the bulk properties of nuclei; moreover, the resulting level
density close to the Fermi energy (associated with an effective
mass mk ≈ 0.7m), once increased by renormalization effects,
is in reasonable agreement with the experimental one (the
associated effective mass increasing to m∗ = mkmω ≈ m).
The energies of the five single-particle levels lying closest to
the Fermi energies are shown in the Appendix (cf. Fig. 16). The
detailed features of our calculations are, of course, influenced
by the specific properties of the mean field and in particular by
its effective mass. To have some insight about the dependence
on the adopted mean field, in the Appendix we provide results
obtained making use of two different Skyrme interactions,
having effective masses smaller and larger than the SLy4
interaction. One should distinguish two different effects that
influence the pairing gap �BCS calculated with the bare pairing
interaction: On the one hand, the pairing gap is sensitive to the
detailed position of the levels close to the Fermi energy, which
could be influenced by static contributions not considered here,
as those produced from tensor correlations [59,60] and from
tadpole diagrams [44] (for the latter, cf. the comments at
the end of Sec. II A); on the other hand, the pairing gap is
also sensitive to the momentum dependence of mk for large
momenta.

In a previous work [11] we presented a solution of the
HFB equations using the Argonne v14 equation in the pairing
channel, which led to a pairing gap of the order of 700 keV.
There we used a modified SLy4 mean field, reducing the

spin-orbit coupling strength by about 15% (furthermore, we
included in the Hamiltonian the terms proportional to the
square of the spin density, which are instead not considered
in the following, and used a slightly larger particle vibration
coupling strength). This was done to improve the agreement
of the results obtained after renormalization with the experi-
mental spectrum and pairing gap. Here we prefer to take the
HF field obtained with the original SLy4 interaction. This
is associated with a larger level density around the Fermi
energy. As a consequence, the obtained pairing gap �BCS,
shown in Fig. 6(a) (full dots), is larger, being equal to about
1.1 MeV. Similar calculations have been performed with the
Vlowk potential using the same mean field [61]. In that case,
the result depends on the cutoff � adopted to obtain Vlowk: For
values of � smaller than about 4 fm−1, the gap is close to 1.4
MeV, (cf. Fig. 22), while for increasing values of � the Vlowk

potential reduces to the Argonne potential and one obtains
the result shown in Fig. 6(a). We notice that our numerical
results with the Argonne potential are in very good agreement
with those reported in Ref. [61] for very large values of �.
The reason for the difference between the results obtained
with the Argonne and Vlowk interaction has been discussed
in detail [61,62]: Using the Argonne potential implies using
the Skyrme effective mass mk (equal to about 0.7m inside the
nucleus) up to very high momenta, while the renormalization
process leading to Vlowk implies that mk goes to the free mass
for momenta larger than the cutoff �. The lower value of
mk at high momenta leads to a smaller level density and to a
reduction of about 300 keV in the value of the gap with the
Argonne interaction with respect to the values obtained with
Vlowk for cutoffs � up to about 4 fm−1. An analogous difference
shows up in calculation of the gap in uniform matter. While the
lack of momentum dependence of the effective mass associated
with Skyrme interactions is certainly unrealistic, the proper
momentum dependence is still to be established. On the other
hand, the density dependence of mk associated with the SLy4
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FIG. 6. (Color online) (a) The state-dependent neutron pairing gap �BCS calculated in BCS with the bare v14 interaction is shown as
a function of the SLy4 HF single-particle energy of the five valence orbitals (cf. Fig. 16) and is compared to the renormalized gap �̃ [cf.
Eq. (38)] obtained solving the Nambu-Gor’kov equations by iteration. The values of the Fermi energy εF and of the gap obtained from the
experimental odd-even mass difference �exp are also indicated. (b) We show the decomposition of the renormalized gap �̃ into the bare and
phonon contributions �̃bare and �̃pho. Also shown is the gap obtained at the first iteration.
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interaction in nuclear matter is not far from that resulting at the
Fermi energy from calculations based on Brückner theory [62].
Furthermore, a precise determination of the value of the bare
gap within the Vlowk scheme requires the consideration of the
effects of the three-body force, which is expected to provide a
repulsive contribution [63]. A calculation of three-body effects
within the Vlowk renormalization scheme [64,65] leads in fact
to a reduction of the gap, down to values close to those obtained
with the Argonne interaction shown in Fig. 6(a). An average
value of the bare gap close to 1 MeV was also derived in the
analysis of Refs. [45,46].

We have brought circumstantial evidence which testifies to
the fact that a pairing gap �BCS ≈ 1.1 MeV for the levels
around the Fermi energy obtained using the v14 potential
as bare pairing interaction and the effective mass associated
with SLy4 represents a reasonable starting point, being well
aware that the determination of the mean field and of the
associated effective mass is one of the most important issues
that remains to be fully clarified, for a quantitative and
microscopic calculation of the gap in finite nuclei. In the
Appendix we investigate the dependence of the results on the
adopted mean field, and we provide some results obtained
adopting Vlowk as bare pairing interaction.

2. Solution of the Nambu-Gor’kov equations

The state-dependent pairing gap obtained from the solution
of the Nambu-Gor’kov equations is compared to the bare gap
in Fig. 6(a). Renormalization effects lead to a total gap �̃

about 600 keV larger than �BCS. Most of the effect is obtained
already with the first diagonalization of the Nambu-Gor’kov
matrix. The self-consistent iteration process leads to a further
increase of the gap by about 10%. We recall that one can
distinguish two contributions to the renormalized gap �̃ =
Z[�BCS + �̃12,pho] = �̃bare + �̃pho, associated with the bare
and with the phonon-induced interaction [cf. Eq. (38)]. They
are shown in Fig. 6(b) and turn out to be of similar magnitude.
This confirms that the phonon-induced pairing interaction is
as important as the bare interaction in determining pairing
properties of heavy nuclei. Notice that a proper comparison
between the role of these two sources of pairing can only be
made analyzing their contribution to the final physical result
and not just by comparing the BCS and complete pairing gaps.
In fact, processes beyond mean field act in a complex way,
not only giving rise to the induced pairing interaction, but
also changing the effect of the bare interaction through the Z

factors. The values of Z for the five orbitals are shown in Fig. 7
where it can be seen that they are close to 0.7, bringing the
bare contribution �BCS ≈ 1.1 MeV down to �̃bare ≈ 0.8 MeV,
which is about one half of the total renormalized gap. The other
half is provided by the pairing induced interaction. The values
of Z are similar to the values of the quasiparticle strength
N = U 2 + V 2, except for the orbital d5/2. It is seen that these
values of N provide an overall account of the quasiparticle
strength measured in one-nucleon transfer reactions, shown
by stars in Fig. 7 (cf. also below Figs. 8–10 with the related
discussion), although one has to consider that the experi-
mental values are affected by a large error, estimated to be
about 30%.
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FIG. 7. (Color online) Comparison of the N and Z factors
associated with the lowest quasiparticle peaks in the Nambu-Gor’kov
calculation. Also shown by stars are the values of the experimental
quasiparticle strength [66], except for the d5/2 orbital, which shows a
pronounced fragmentation (cf. text).

The renormalized pairing gap exceeds the experimental
value obtained from the odd-even mass difference by about
300 keV, the value of �exp lying in between �BCS and �̃. It
is of note that the estimate of �exp varies by about ±100 keV
depending on which odd-even mass formula is used [67,68]
(the five-point formula �(5) yielding a value of 1.39 MeV) and
that a more consistent comparison would imply a theoretical
calculation of the binding energies. Such a precise comparison
of the gaps is probably not very significant at the present stage,
given the uncertainties that affect both the BCS calculation,
such as the dependence on the adopted HF mean field and the
effect of three-body forces mentioned above, and the renormal-
ization process, in particular the exchange of spin modes, not
included in this calculation (see the discussion in Secs. III A3
and IV). Nonetheless, the necessity of going beyond mean field
is very clear considering other physical quantities, in particular
the energy spectrum of neighboring odd nuclei together with
the associated strength functions and spectroscopic factors.
This can be seen in Fig. 8 where we compare the features
of the quasiparticle spectrum obtained at the different steps
of the calculation. In the first column (HF), we report the
absolute value of the difference |εa − εF | obtained in the HF
calculation with the SLy4 force, referred to the value of this
difference for the level d3/2, which lies closest to the Fermi
energy εF = −8.05 MeV (cf. Fig. 16). In the second column
(v14), we give the values of the quasiparticle energies obtained
in the HF + BCS calculation with the Argonne force, referred
to the lowest quasiparticle. In the third column (NFT0) we
show the spectrum obtained taking into account processes
beyond mean field calculated with the Nambu-Gor’kov equa-
tions without iterating, while in the fourth (NFT) we show the
self-consistent solution: In these cases we show the energy
of the lowest fragment for each quantum number (this is also
the one collecting the largest quasiparticle strength, except for
the d5/2 orbital, which is very fragmented and whose case is
discussed below). Finally, in the fifth and sixth columns we
give the position of the lowest peaks measured in 119Sn and
121Sn. The main discrepancy of the renormalized spectrum
concerns the 7/2+ state. This is probably related to the initial
position of the g7/2 orbital in the HF spectrum calculated with
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FIG. 8. The theoretical quasiparticle spectra obtained at the
various steps of the calculation are compared to the experimental
data. See the text for more explanation.

the SLy4 interaction, which lies too close to the Fermi energy
(cf. Fig. 16). The experimental energies of the lowest three
states are very close to each other, being separated by less than
100 keV, and are well separated from the other two levels. This
gross structure is already present in the HF result, which, how-
ever, greatly underestimates the density of levels. This remains
the case including pairing correlations at the BCS level (see
second column), which lead to a limited improvement. Renor-
malizing effects owing to the processes shown in Fig. 1 lead
to a denser spectrum, considerably improving the agreement
with experiment, although one should not expect a detailed
agreement in the order of the three lowest levels. The main
effect is already obtained with a single diagonalization (NFT0),
but the self-consistent treatment (NFT) leads to an appreciable
rearrangement of the spectrum, somewhat reducing the initial
compression of the levels, slightly improving the agreement
with experiment. The increase of level density can be expressed
as an increase of the neutron effective mass from m∗ ≈ 0.7m to
m∗ ≈ m. One could argue that a mean-field BCS calculation in
a potential with m∗ = 1 would lead to agreement with experi-
ment in a simpler and more direct way. However, such a calcu-
lation (still performed with the bare interaction) would greatly
overestimate the gap [69]. Thus, the simultaneous considera-
tion of gap and low-energy spectra clearly favors a description
that includes renormalization effects on both quantities.

The most specific fingerprint of the renormalization pro-
cesses is represented by the fragmentation of the quasiparticle
strength. Experimentally, the effects of such a fragmentation
lead to a breaking of the observed quasiparticle strength
into several peaks and consequently to a reduction of the
strength observed in the main peaks, as compared to the full
strength expected in mean-field calculations. In the present
case, strength functions measured in one-neutron trans-
fer experiments involving 119Sn or 121Sn [66,70,71] show
a strong, isolated peak for the quantum numbers Jπ =
1/2+, 3/2+, 7/2+, 11/2−. The case of 11/2− is shown in
Fig. 9, where we compare the theoretical values of ṽ2 (ũ2)
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FIG. 9. (Color online) The theoretical strength function calcu-
lated for the h11/2 orbital is compared to the spectroscopic factors
associated with experimental levels detected in one-neutron transfer
reactions.

with the observed peak in 119Sn (121Sn). Here, and in similar
figures (such as Fig. 10), to compare the experimental to the
theoretical strength functions, we have added the energy of the
lowest calculated quasiparticle to the experimental excitation
energy in the odd nuclei 119Sn and 121Sn. The summed strength
of the two main peaks is equal to 0.79 in experiment and to
0.8 in theory. The remaining theoretical strength is calculated
to lie at higher energy in 121Sn. Overall agreement between
theory and experiment is found also in the case of the other
three levels, as is shown in Fig. 7.

It is interesting to note that the main contribution to the
renormalization effects originates from the coupling to the
lowest vibrational state of each multipolarity: This demon-
strates the key role played by the interweaving of collective
and single-particle modes which is at the basis of the NFT
treatment of the elementary modes of nuclear excitation.
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FIG. 10. (Color online) The theoretical strength function calcu-
lated for the d5/2 orbital is compared to the spectroscopic factors
associated with experimental levels detected in one-neutron transfer
reactions.
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This is clearly seen in Fig. 11, where we compare the full
calculations with results obtained including only couplings to
the lowest vibrational states. It is seen that the coupling to
the 2+ low-lying mode is the dominant one, providing half
of the increase of the gap owing to the renormalization effects.
The other low-lying modes provide about one-third of the
remaining increase of the gap, while higher energy modes
(mainly giant resonances) complete the picture. The strength
of the various couplings is reported in Table II, where for
each pair of orbitals (a, b) we list the value of the squares
of the particle-vibration matrix elements summed over the
phonons of a given multipolarity,

∑
ν h2(abλν)/(2jb + 1),

which enter the numerator of the induced interaction [cf. Eq.
(30)]. We observe that although the deformation parameter
associated with the lowest 3− state is the largest one (cf.
Table I) its influence is hindered with respect to the 2+ by
its higher energy and by the fact that it acts efficiently only
between the d5/2 and the h11/2 orbitals, which are the only
ones having opposite parity and the same spin alignment. We
also note that the dominance of the coupling to low-lying
vibrational states found in the present calculation makes our
approach distinctly different from other approaches based on
microscopic calculations of the particle-vibration coupling
with zero-range forces, which need an energy cutoff to avoid
an ultraviolet divergence in the self-energy [72].

The experimental strength associated with the quantum
number 5/2+ (cf. Fig. 10) shows a number of low-energy
peaks, which exhaust about 63% of the strength. The the-
oretical distribution is considerably more fragmented than
observed in the data; moreover, most of the strength lies
about 1 MeV above the experimental findings. This represents
an interesting open question. In the calculation, the energy

TABLE II. For each pair (a, b) of the five valence orbitals, we list
the value of the sum

∑
ν h2(abλν)/(2jb + 1), in MeV2. For pairs of

orbitals of the same parity, the numbers in the upper (lower) row give
the contribution associated with λ = 2+ (λ = 4+) phonons; for pairs
of orbital of different parity, the numbers in the upper (lower) row
give the contribution associated with λ = 3− (λ = 5−) phonons.

d5/2 g7/2 s1/2 d3/2 h11/2

d5/2 0.190 0.016 0.467 0.071 0.340
0.088 0.041 0 0.266 0.138

g7/2 0.016 0.130 0 0.236 0.020
0.041 0.071 0.168 0.081 0.043

s1/2 0.467 0 0 0.461 0
0 0.168 0 0 0.389

d3/2 0.071 0.236 0.461 0.253 0
0.266 0.081 0 0 0.092

h11/2 0.340 0.020 0 0 0.169
0.138 0.043 0.389 0.092 0.100

of the d5/2 quasiparticle is lowered by its strong coupling
with s1/2 state (through the 2+ vibrations) and with the h11/2

state (through the 3− vibrations), as can be seen in Table II.
These couplings bring the energy of the d5/2 state close to the
energies of the s1/2 ⊗ 2+

1 and d3/2 ⊗ 2+
1 configurations. The

matrix elements of the induced interaction Vind [cf. Eq. (30)]
are listed in Table III. They are calculated using the values
of the renormalized quasiparticle energies Ẽa(1) of the lowest
fragment for each orbital. Their values can be compared to the
typical value of the matrix elements of the bare interaction,
which is about G0 = −0.22 MeV (cf. the Appendix ). They
are rather well correlated with the matrix elements reported
in Table II, with the remarkable exception of d5/2: In the
latter case, the induced interaction with the orbitals s1/2 and
d3/2 takes large values, associated with the almost degeneracy

TABLE III. Contribution of the phonons of a given multipo-
larity to the matrix elements of the induced interaction Vind[a(1)b(1)]

[cf. Eq. (30)] between the lowest fragments of the five valence orbitals,
in MeV. For pairs of orbitals for the same parity, the numbers in
the upper (lower) row give the contribution of the matrix elements
involving 2+ (4+) phonons; for pairs of orbital of different parity, the
numbers in the upper (lower) row give the contribution of the matrix
elements involving 3− (5−) phonons.

d5/2 g7/2 s1/2 d3/2 h11/2

d5/2 −0.223 −0.031 −1.701 −1.230 −0.309
−0.054 −0.030 0 −0.245 −0.075

g7/2 −0.015 −0.157 0 −0.513 −0.016
−0.023 −0.045 −0.117 −0.062 −0.021

s1/2 −0.383 0 0 −0.686 0
0 −0.100 0 0 −0.177

d3/2 −0.055 −0.219 −0.503 −0.319 0
−0.139 −0.047 0 0 −0.041

h11/2 −0.183 −0.012 0 0 −0.212
−0.051 −0.017 −0.167 −0.042 −0.067
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of the renormalized energy of the d5/2 quasiparticle with the
configurations s1/2 ⊗ 2+

1 and d3/2 ⊗ 2+
1 , which leads to the

fragmentation of the d5/2 strength.
These results may indicate that the unperturbed quasipar-

ticle energy of the d5/2 orbital lies too high. In fact, shifting
the energy of the single-particle energy by 600 keV toward the
Fermi energy, and leaving everything else unchanged, and then
solving the BCS and Nambu-Gor’kov equations, one obtains
a better agreement with experiment, as is shown below in
Sec. IV [cf. Fig. 15(d)]. This is also the case, making use of
effective forces different from SLy4 (cf. also the Appendix).
This shows that a detailed study of the fragmentation process
can give important indications about how to improve the mean
field.

3. Effects of spin modes

In the previous sections we have discussed in detail the
medium effects associated with the coupling to collective
surface vibrations. In this section we make some remarks
concerning the coupling to spin modes. Their contribution
represents the leading renormalization effect in calculations in
uniform neutron matter, where it induces a repulsive contribu-
tion on the pairing interaction that wins over the attractive
contribution associated with density modes—thanks to the
larger multiplicity of spin modes—leading to a quenching of
the pairing gap [73–76]. However, one expects that the relative
weight of spin modes should be considerably less important in
finite nuclei, where there is no equivalent to low-lying surface
collective vibrations.

The repulsive character of spin modes, as opposed to density
modes, arises from their different transformation properties
under time reversal. This is reflected in a sign change in
the basic V,W vertices (cf. Eq. (6–207) in Ref. [16]), which
become [cf. Eq. (18)]

V (ab(m)λν) = hS=1(abλν)(uaũb(m) + vaṽb(m)),
(55)

W (ab(m)λν) = hS=1(abλν)(−uaṽb(m) + vaũb(m)).

It can be shown that, as a consequence, the induced pairing
interaction Vind changes its sign, leading to a repulsive
contribution. On the other hand, the normal self-energies
depend on the square of V and W so that their value is increased
by the action of spin modes. There is furthermore a change in
the expression of the basic vertex h, which is given by

hS=1(abJν) = −(−1)ja−jbβJν〈a|fJ (r)|b〉〈jb||(Yλσ )J ||ja〉

×
[

1

(2ja + 1)(2J + 1)

]1/2

, (56)

where fJ (r) is the form factor associated to the S = 1 modes
transition density.

The contribution of spin modes to pairing correlations
in 120Sn was estimated in Ref. [77], based on a QRPA
calculation performed with the SkM∗ interaction. There it
was found that, performing a calculation of the pairing gap
including only the induced interaction, and using the simplified
expression discussed in Sec. III A4 [cf. Eq. (60)], the spin
modes decreased the gap arising from the coupling with S = 0
modes by about 25%. We have incorporated this effect in our
present calculation by introducing a schematic S = 1 response
function, consisting of a single peak at an energy of about
1h̄ωosc, in keeping with the fact that, as a rule, there are no
low-lying S = 1 modes in finite nuclei.

The values obtained for �̃ and for the quasiparticle strength
N are shown, respectively, in Figs. 12 and 13. In keeping with
their contribution to the normal self-energy, the action of spin
modes tends to reduce, although slightly, the value of Z and
N . Spin modes also lead to a reduction of �̃pho by about 25%
(150 keV), which reflects directly the reduction introduced in
�̃12pho, while the value of �̃bare is practically unaffected. Of
course, a systematic study of the role that spin, as well as σ · τ

and τ · τ modes, aside from the density modes considered
in the present paper, play in the nuclear spectrum, is needed
for a more quantitative assessment of renormalization effects,
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FIG. 12. (Color online) (a) The BCS pairing gap �BCS (cf. Fig. 6(a)) is compared with the renormalized pairing gap �̃(spin) associated
with the lowest quasiparticle peaks obtained solving the Nambu-Gor’kov equations including the schematic spin-induced interaction discussed
in the text. (b) We show the decomposition of the gap �̃(spin), shown in (a), into the bare and phonon contributions �̃bare(spin) and �̃pho(spin).
Also shown in the renormalized gap �̃ obtained without the spin-induced interaction (cf. Fig. 6(b)).
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quasiparticle peaks in the bare HF + BCS calculation (dots) and
solving the Nambu-Gor’kov equations (triangles) is compared to
the result obtained including the schematic spin-induced interaction
discussed in the text (diamonds).

considering also T = 0 pairing. This will be the main subject
of a future presentation.

4. One-quasiparticle approximation and the gap equation

We have seen that the quasiparticle strength function for
the states close to the Fermi energy displays a limited amount
of fragmentation. If one is only interested in the properties
of the main quasiparticle peaks, it may be interesting to
solve the Nambu-Gor’kov problem by keeping only the main
quasiparticle for each orbital in the iteration process.
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FIG. 14. (Color online) The pairing gaps obtained in the quasi-
particle calculation (triangles) are compared to the results obtained
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and Z.

We recall the gap equation Eq. (43):

�̃12
a(n) = �BCS

a −
∑
b,m

Vind[a(n)b(m)]Nb(m)

× �̃12
b(m)

2
√(

εb − εF + �̃even
b(m)

)2 + (
�̃12

b(m)

)2
. (57)

The q.p. approximation consists in restricting the sum in
Eq. (57) to m = 1, obtaining the q.p. self-energy �̃

12q.p.
a . The

resulting values for the q.p. gap �̃
q.p.
a = Za�̃

12q.p.
a , displayed

in Fig. 14, are in excellent agreement with the complete
calculation shown in Fig. 6. It is important to note that to
get such a good agreement one must include the factors N and
Z associated with the quasiparticle peaks. Neglecting them,
that is, attributing the full quasiparticle strength to the single
peak retained in the calculation, leads to an increase of the
gap by about 50%, in keeping with the typical values Z ≈ 0.7
and N ≈ 0.8. Neglecting N produces a smaller effect than
neglecting Z, because N affects only the induced part of the
gap in Eq. (57). The error is especially pronounced for the case
of d5/2, where the one-quasiparticle approximation selects the
lowest peak, which is associated with a small value of N

and Z (cf. Fig. 7). From this result, one concludes that the
gap receives only very small contributions from the fragments
with m > 1, which, however, account for more than 20% of
the quasiparticle strength. This is mostly attributable to the
energy dependence of Vind, which is strongly peaked at the
Fermi energy [12].

A gap equation equivalent to Eq. (57) has been obtained in
the one-step diagonalization scheme [cf. Eq. (54)]:

�̃a(n) = −Za(n)

∑
b,m

Veff[a(n)b(m)]Nb(m)
�̃b(m)

2Ẽb(m)
. (58)

This expression lends itself to approximations, which are
useful to make a connection with previous works about
renormalization effects on pairing. The most important feature
of these approximations is the use of simplified expressions
for the induced interaction Vind [cf. Eq. (30)],

Vind[a(n)b(m)] =
∑
λ,ν

2h2(abλν)

(2jb + 1)

[
1

Ẽa(n) − Ẽb(m) − h̄ωλν

− 1

Ẽa(n) + Ẽb(m) + h̄ωλν

]
, (59)

based on the Feynman diagram (1c) in Fig. 1 and neglecting
fragmentation:

Vind(ab) ≈
∑
λ,ν

2h2(abλν)

(2jb +1)

2

E0− |εa− εF |−|εb − εF | − h̄ωλν

,

(60)

in which E0 is the pairing energy per Cooper pair (equal
to about −2�) [8]. This expression was inserted in the
BCS gap equation, without taking explicitly into account the
renormalization effects on the single-particle density, namely,
setting the N and Z factors equal to one, and using a mean-field
potential characterized by an effective mass m∗ = m. One then

014331-16



QUASIPARTICLE RENORMALIZATION AND PAIRING . . . PHYSICAL REVIEW C 85, 014331 (2012)

0.2

0.4

0.6

0.8

-12 -10 -8 -6
ε (MeV)

0

1

Z
N

(b)

0

0.5

1

1.5

2

2.5

3

E
*

(M
eV

)

(c)

3/2
+

1/2
+

5/2
+

11/2
-

7/2
+

NFTFH SCB
119

Sn
121

Sn

E (MeV)

S

119
Sn

121
Sn

Theory
Exp.d

5/2

(d)0.1

0.2

0.3

0.4

0

0.5

-6 -4 -2 0 2 4 6

-12 -10 -8 -6
ε (MeV)

0

0.5

1

1.5

2

2.5

Δ
(M

eV
) Δ

exp

5/2
+
7/2

+
1/2

+
3/2

+
5/2

+

ΔBCS

~Δ
~Δbare

~Δpho

(a)

FIG. 15. (Color online) Results obtained solving the Nambu-Gor’kov equations including the coupling to spin modes with the SLy4 mean
field, shifting the energy of the d5/2 orbital by 600 keV toward the Fermi energy: (a) renormalized gaps, (b) Z and N factors, (c) quasiparticle
spectrum, (d) 5/2+ strength function.

found gaps about 20% larger than those obtained solving the
Nambu-Gor’kov equations [9,10]. The simplified expression
for Vind was also employed in a more elaborate calculation [13],
which used HF levels calculated with the SLy4 interaction and
a constant value N = 0.7. However, �̃12 was identified with
the pairing gap, which then tended to be overestimated by a
factor 1/Z.

B. Summary of the main results

In Fig. 15, we show the results of a calculation with the
bare pairing interaction, including all the elements discussed
in the previous sections. The calculation is analogous to that
reported in Figs. 6–10, but the effect of spin modes has been
included, and the energy of the unperturbed d5/2 orbital in the
SLy4 mean field has been shifted.

The spectroscopic factors and the induced pairing gap are
not much affected by the details of the mean field or of the
effective mass associated with the effective forces we have
examined (cf. the Appendix). These quantities are essentially
determined by the interweaving with low-lying collective
surface vibrations, which shifts the quasiparticle energies,
increasing the level density close to the Fermi energy, and
leads to spectroscopic factors (Z and N factors) in the range
0.6–0.8 [cf. Fig. 15(b)] and to an induced pairing gap �̃pho of
about 0.8 MeV. The coupling of spin modes, owing to their
higher energy and smaller collectivity, is likely not to affect
much the spectroscopic results. With our very simple estimates
we find that this coupling reduces the induced pairing gap by
about 0.2 MeV, leading to a final induced pairing gap �̃pho

close to 0.6 MeV [cf. Fig. 15(a)].

The calculated strength function of fragmented levels lying
not far from the Fermi surface (the d5/2 in the present case)
depends on the detailed position of the levels in the mean-
field potential, and the comparison with experiment provides
important information on it. In particular, we have shift the
position of the d5/2 orbital in the SLy4 mean field by about
600 keV, to improve the agreement with the observed strength
function [cf. Fig. 15(d), to be compared with Fig. 10].

We find that the calculated total pairing gap �̃ provides
an overall account of the value derived from the experimental
odd-even mass difference. Starting from the value �BCS =
1.1 MeV obtained with the value of mk associated with the
SLy4 interaction [cf. Fig. 15(a)]. In fact, �̃ = �̃pho + �BCS ×
Z = 0.6 MeV + 0.8 MeV = 1.4 MeV.

We remark that microscopic pairing forces lead to a weak
state dependence for the orbitals close to the Fermi energy, so
that in this region we obtain essentially the same results—both
at the BCS level and after the renormalization process—with
a simple monopole interaction, using a suitable value of the
pairing constant (cf. Fig. 24 in the Appendix). Furthermore,
different values of �BCS, associated with different momentum
dependences of mk far from the Fermi energy, essentially lead
to a shift of the final gap �̃, but do not alter significantly
the spectroscopic results shown in Figs. 15(b)–15(d) (cf.
Figs. 24–26 in the Appendix). It is of notice that a conclusive
theoretical calculation of mk is not yet available.

IV. CONCLUSIONS

We have discussed in detail a well-known formalism to
deal with the basic renormalization processes induced by
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the coupling between quasiparticle and collective vibrations
in superfluid spherical nuclei. We have solved the Nambu-
Gor’kov equations determining the normal and abnormal
energy-dependent self-energies self-consistently. This allows
for a calculation of the low-energy part of the nuclear spectrum
in odd nuclei taking into account the fragmentation of the
quasiparticle strength, as well as the calculation of the pairing
gap of the system including the pairing interaction induced by
the exchange of collective modes. The mean field is based
on a HF calculation with the effective SLy4 interaction,
while the coupling between quasiparticles and vibrations
is determined by a QRPA calculation that reproduces the
empirical polarizability of the low-lying vibrational modes.

We emphasize several points which are novel as compared
to previous work.

(i) We have derived a gap equation [cf. Eqs. (38)
and (43)] that takes into account renormalization effects
in a compact way, distinguishing the role of the nor-
malization factors and extending previous expressions
by including the contribution of the energy dependent
induced interaction.

(ii) We have introduced two different calculational schemes
depending on whether the bare pairing interaction
and the renormalization effects are taken into account
simultaneously (one-step diagonalization) or sequen-
tially (two-step diagonalization), performing first a
BCS calculation with the bare force. We have shown
(cf. the Appendix) that the two schemes lead to similar
results for states close to Fermi energy in the case of a
simple monopole pairing force with a realistic coupling
strength. The two-step scheme is computationally much
simpler in the case of realistic nucleon-nucleon forces
which can scatter particles to very high energies.

(iii) Last but not least, we have stressed the importance of
a global analysis of the quasiparticle properties that
includes on the same footing energies, spectroscopic
factors, and pairing gaps. Only by comparing all
these quantities with the experimental findings does
it become possible to make a meaningful comparison
between different theoretical schemes and to appreciate
the full importance of medium polarization effects.

The formalism allows also for a clear separation between
the contribution of the bare force and of renormalization
effects: Their contributions to the pairing gap turn out to be of
similar magnitude, confirming previous studies.

From our results, summarized in Sec. III B, we conclude
that it is possible, at least in the case of 120Sn, to draw
a picture that is consistent with the available experimental
data concerning the quasiparticle properties close to the
Fermi energy. The results appear to be stable with respect
to reasonable changes in the ingredients of our calculations
(cf. the Appendix).

Several elements remain to be further investigated, before
one can reach firm quantitative theoretical results, in particular
concerning the absolute value of the total pairing gap. On
the one hand, the mean field should be either derived
microscopically [78], or at least refitted comparing theory
and experiment taking into account renormalization effects;

SKa
m  = 0.61k

SLy4
m  = 0.70k

SG II
m  = 0.79k

(M
eV

)
FIG. 16. Energies of the five HF single-particle levels lying close

to the Fermi energy in 120Sn, calculated with the effective interactions
SKa, SLy4, and SGII. The effective mass associated with these forces
at saturation density is also indicated.

on the other hand, contributions that are expected to provide
a repulsive contribution to the pairing interaction, associated
with three-body effects and with the influence of spin modes,
have started only recently to be examined.
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APPENDIX

In this Appendix we consider the sensitivity of our results to
some of the prescriptions and ingredients of the calculations.

1. Mean field

The results obtained in the main text have been obtained
with a HF mean field produced by the SLy4 interaction, whose
effective mass at saturation is mk = 0.7m. In this section
we show results obtained with two different interactions of
the Skyrme type: the SKa [80] and the SGII [81], having
respectively a lower (mk = 0.61m) and a larger (mk = 0.78m)
effective mass. All the other features of the calculations are the
same as for SLy4. In particular, the particle-vibration matrix
elements are the same, because in our approach they only
depend on the properties of the phenomenological phonons and
are calculated with the wave functions of a fixed potential with
effective mass equal to one. As expected, the SGII interaction
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FIG. 17. (Color online) The state-dependent pairing gap �BCS

calculated in BCS with the bare v14 interaction is compared to the
renormalized gap �̃ [cf. Eq. (38)] obtained solving the Nambu-
Gor’kov equations. We compare results obtained with a mean field
produced with the SGII interaction (a) and with the SKa interaction
(b) (cf. Fig. 6 for the corresponding calculation with the SLy4 mean
field) [79]. The symbols refer to the position of the various valence
orbitals in the SGII HF potential. We also show the decomposition of
�̃ into the bare and phonon contributions �̃bare and �̃pho. The value
of the Fermi energy εF and of the gap obtained from the experimental
odd-even mass difference �exp are also indicated.

produces a mean field associated with a higher level density,
leading to a larger pairing gap in the BCS calculation with
the v14 potential, as shown in Fig. 17(a): The value of �BCS is
equal to about 1.6 MeV, to be compared with the value 1.1 MeV
previously obtained with the SLy4 interaction (cf. Fig. 6(a)).
The value obtained with the SKa interaction is instead equal
to about 1 MeV [cf. Fig. 17(b)].

The renormalization processes act in a very similar way, as
was previously found in the case of SLy4. The average value
of the phonon induced gap �̃pho is in all cases equal to about
0.8 MeV: In the case of SGII �̃pho accounts for about 30% of
the total gap, while in the case of SKa �̃pho and �̃bare are of
similar magnitude, as in the case of SLy4.

The low-lying spectra are shown in Fig. 18, while the Z

and N factors of the lowest fragments are reported in Fig. 19.
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FIG. 18. The theoretical quasiparticle spectra obtained at the
various steps of the calculation are compared to the experimental
data. We compare results obtained with a mean field produced with
the SGII interaction (a) and with the SKa interaction (b) (cf. Fig. 8
for the corresponding calculation with the SLy4 mean field).

Also in this case, medium renormalization effects are similar to
those already discussed in the case of the SLy4 interaction (cf.
Fig. 7 and Fig. 8). However, the agreement with experiment
is better than obtained previously. This is attributable to the
initial position of the d5/2 and g7/2 orbitals, which are closer
to each other; furthermore, the d5/2 single-particle calculated
with SGII lies at a distance of about 2.2 MeV from the Fermi
energy, instead of 2.8 MeV as in the case of SLy4: This leads
to a good description of the fragmentation of this orbital, as
shown in Fig. 20, that in the case of SLy4 was obtained only
shifting the energy of this level (cf. Figs. 10 and 15(d)). The
quality of the quasiparticle spectrum obtained with SKa is
almost as good as with SGII; however, the orbital g7/2 lies
more distant from the Fermi energy and becomes fragmented,
contrary to experiment (the calculated value of Ng7/2 is about
0.35, cf. Fig. 19). It is interesting to notice that taking the
SLy4 mean field, and changing the energies of the five valence
orbitals with those associated with the SGII interaction, one
obtains practically the same spectrum and the same Z and N

factors as with SGII. This in spite of the fact that �BCS becomes
equal to about 1.25 MeV, to be compared with 1.1 MeV (SLy4)
and 1.6 MeV (SGII). At the same time, the average value of
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FIG. 19. (Color online) Comparison of the N and Z factors
associated with the lowest quasiparticle peaks in the Nambu-Gor’kov
calculation shown in Fig. 17. We compare results obtained with a
mean field produced with the SGII interaction (a) and with the SKa
interaction (b) (cf. Fig. 7 for the corresponding calculation with
the SLy4 mean field). Also shown by stars are the values of the
experimental quasiparticle strength [66], except for the d5/2 orbital,
which shows a pronounced fragmentation.

�̃ is equal to about 1.7 MeV, to be compared with 1.6 MeV
(SLy4) and 2.1 MeV (SGII) (cf. Fig. 21). These results show
that the low-energy spectrum is determined by the position of
the valence orbitals, while the absolute value of the gaps also
depends on the effective mass associated with distant levels.

We can conclude that renormalization effects are similar
for the three mean fields we have considered. The comparison
with the odd-even mass difference favors forces having low
effective mass (SLy4 or SKa). Renormalization effects im-
prove the agreement of the spectral properties with experiment.
However, the quality of this agreement depends on the specific
position of the mean-field single-particle levels close to the
Fermi energy. The value of the effective mass far from the
Fermi energy affects the magnitude of the final gap �̃ by
shifting the value of �BCS, while the value of �̃pho and the
properties of the low-lying spectrum are not very sensitive
to it.
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FIG. 20. (Color online) The theoretical strength function calcu-
lated for the d5/2 orbital is compared to the spectroscopic factors
associated with experimental levels detected in one-neutron transfer
reactions. We compare results obtained with a mean field produced
with the SGII interaction (a) and with the SKa interaction (b) (cf.
Fig. 10 for the corresponding calculation with the SLy4 mean field).

2. Bare pairing interaction

The calculations reported in the main text have been carried
out adopting v14 as the bare pairing force. However, the Vlowk

version of the Argonne potential has been used by several
groups and here we show the results using this bare pairing
force in our Nambu-Gor’kov formalism. The corresponding
bare and renormalized gap are shown in Fig. 22. The average
value of the bare gap is equal to about 1.4 MeV, in agreement
with Ref. [61], to be compared with the value 1.1 MeV obtained
with the Argonne interaction. The effect of the renormalization
processes increases the gap on average by about 500 keV,
similar to the case of v14 (600 keV, cf. Fig. 6). Also the values
of the phonon-induced component �̃pho are quite similar. The
results of the calculations with v14 and Vlowk turn out to be quite
similar to those obtained using the monopole force respectively
with coupling constants G0 = 0.22 and G0 = 0.25 MeV (cf.
Fig. 26).
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FIG. 21. (Color online) The same as in Fig. 17, for the pairing
gaps calculated with the SLy4 mean field, but substituting the
single-particle energies of the five valence orbitals with the energies
calculated in the SGII mean field.

3. QRPA

We recall (cf. Sec. II) that the results shown in the main text
are based on effective particle-vibration vertices calculated
with single-particle levels and wave function associated with
a Woods-Saxon potential, with an associated effective mass
m∗ = m. Another reasonable choice, often adopted in the lit-
erature, would be to use instead the same single-particle levels
used in the HF + BCS calculation. Using this prescription and
readjusting the coupling constants χλ of the QRPA calculation
so as to reproduce the experimental properties of the low-lying
vibrational states, we obtain the renormalized pairing gaps
shown in Fig. 23. It is seen that the difference is not critical,
because our preferred choice leads to gaps which are smaller
by only about 10%.
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FIG. 22. (Color online) The state-dependent pairing gap �BCS

calculated using the Vlowk potential with a cutoff � = 4 fm−1 as
pairing force is compared to the renormalized gap �̃ [cf. Eq. (38)]
obtained solving the Nambu-Gor’kov equations. The symbols refer to
the position of the various valence orbitals in the SLy4 HF potential.
We also show the decomposition of �̃ into the bare and phonon
contributions �̃bare and �̃pho. We thank A. Pastore for providing us
with the HFB calculation with the Vlowk potential.
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FIG. 23. (Color online) The renormalized pairing gap �̃, cal-
culated using the levels of a Woods-Saxon potential to compute
the QRPA spectrum and the particle-vibration vertices, is shown by
triangles (cf. Fig. 6) and is compared to the results obtained using
SLy4 single-particle levels (squares). We also show the pairing gap
�BCS calculated in BCS (dots).

4. Comparison of the one-step and two-step diagonalization
schemes with the monopole pairing force

Solving the Nambu-Gor’kov equations in the one-step
diagonalization scheme is numerically very demanding in
the case of realistic nucleon-nucleon interactions. In this
appendix we want to compare the one-step and the two-step
diagonalization schemes using a simple monopole pairing
force, −G0P

†P acting only in our valence space. The present
calculation is similar to that presented in Ref. [9], except for
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FIG. 24. (Color online) Comparison of the renormalized pairing
gaps �̃ associated with the lowest energy fragments, obtained
solving the Nambu-Gor’kov equations in the two-step (solid line with
triangles) and the one-step diagonalization (dashed line) schemes.
We also show the bare (�̃bare) and the phonon (�̃pho) components
of the renormalized gaps in the two-step diagonalization (solid lines
with diamonds and squares) and the one-step diagonalization (dashed
lines) schemes. The pairing interaction is a monopole force with
coupling constant G0 = 0.22 MeV, acting in the valence shell around
the Fermi energy in 120Sn, which produces the gap �BCS (solid lines
with dots) obtained in the BCS calculation. The symbols refer to the
position of the various valence orbitals in the SLy4 HF potential. The
value of the gap �exp obtained from the experimental odd-even mass
difference is also indicated.

014331-21



A. IDINI, F. BARRANCO, AND E. VIGEZZI PHYSICAL REVIEW C 85, 014331 (2012)

-12 -10 -8 -6
ε (MeV)

0

0.2

0.4

0.6

0.8

1

Z
,N

N
Z

5/2
+

7/2
+

1/2
+

3/2
+

11/2
-

FIG. 25. (Color online) Z and N factors associated with the
various valence orbitals, for the calculation presented in Fig. 24. The
values obtained in the one-step and the two-step diagonalizations are
indistinguishable on the scale of the figure.

details in the mean field (here obtained from a SLy4 interaction
instead of a Woods Saxon potential with effective mass m∗=
0.7), in the QRPA spectrum and in the determination of the
particle-vibration coupling. We, however, present new results
that will extend our previous investigation.

In Fig. 24 we compare the results obtained in the one-
and the two-step schemes, for a value G0 = 0.22 MeV,
corresponding to a bare pairing gap �BCS = 1.08 MeV. We
have chosen this particular value of G0 to reproduce the
average value of the gap �BCS obtained previously with the
v14 interaction (cf. Fig. 6(a)). We see that the renormalized
pairing gaps are very similar in the one-step and the two-step
diagonalization schemes. Moreover, the results are also
similar to those obtained with the Argonne interaction, shown
in Fig. 6(b), not only for the total gap �̃ but also concerning
the decomposition into bare and phonon contribution. The
similarity extends also to the Z and N factors, shown in
Fig. 25 (cf. Fig. 7). The fact that the results turn out to be close
to those obtained using the Argonne interaction is easy to
understand in the two-step diagonalization scheme, which is
based on the quasiparticle and occupation amplitudes obtained
with the bare interaction. In fact, the realistic nucleon-nucleon
interaction displays a limited state dependence over the
valence orbitals, with an average value �BCS = 1.1 MeV.
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FIG. 26. (Color online) Renormalized gaps �̃ obtained solving
the Nambu Gor’kov equations in the one-step and the two-steps
diagonalization schemes with the monopole pairing force as a
function of the pairing constant G0, averaged over the five valence
orbitals. Also shown is the gap �BCS obtained solving the BCS
equation.

In Fig. 26 we show the value of the gap, averaged over the
five valence orbitals, as a function of the pairing strength G0.
In the two-step diagonalization scheme, one starts from the
ua, va amplitudes obtained in a previous BCS calculation with
the bare force, which for G0 smaller than 0.1MeV produces
no superfluid solution. However, the induced interaction Vind

is able to produce a pairing gap by itself. As a consequence, in
the two-step diagonalization scheme only �̃12

phon contributes to
the gap, which is therefore underestimated and independent of
G0 for G0 < 0.1. Instead, using the one-step diagonalization
scheme, the gap grows as a function of G0 because the bare
interaction can provide a contribution to pairing correlations
even for small values of G0 when it is added to the induced
interaction through the effective interaction Veff = Vbare +
Vind. For values of G0 larger than 0.1 MeV, the gaps in the
one-step and the two-step diagonalization scheme become
closer and closer, until the two-step diagonalization scheme
becomes satisfactory for values of the order of G0 = 0.2
MeV. It is interesting to note that the calculations for the
bare and renormalized gaps performed with G0 = 0.25 MeV
reproduce quite well the results obtained using the Vlowk

interaction as bare pairing force (cf. Fig. 22). This indicates
that Fig. 26 can be used to assess in a simple way the effect
of renormalization processes on pairing correlations for the
adopted QRPA spectrum.
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in Proceedings of the International School of Physics “Enrico
Fermi,” Course CLIII, edited by A. Molinari, L. Riccati, W. M.
Alberico, and M. Morando, p. 65 (IOS Press, Amsterdam, 2003).

[21] C. Barbieri and W. H. Dickhoff, Phys. Rev. C 65, 064313 (2002).
[22] C. Barbieri and W. H. Dickhoff, Phys. Rev. C 68, 014311 (2003).
[23] C. Barbieri and M. Hjorth-Jensen, Phys. Rev C 79, 064313

(2009).
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