
PHYSICAL REVIEW C 85, 014326 (2012)

Tensor part of the Skyrme energy density functional. III. Time-odd terms at high spin

V. Hellemans,1,2 P.-H. Heenen,1 and M. Bender3,4
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This article extends previous studies on the effect of tensor terms in the Skyrme energy density functional by
the breaking of time-reversal invariance. We have systematically probed the impact of tensor terms on properties
of superdeformed rotational bands calculated within the cranked Hartree-Fock-Bogoliubov approach for different
parametrizations covering a wide range of values for the isoscalar and isovector tensor coupling constants. We
analyze in detail the contribution of the tensor terms to the energies and dynamical moments of inertia and study
their impact on quasiparticle spectra. Special attention is devoted to the time-odd tensor terms, the effect of
variations of their coupling constants, and finite-size instabilities.
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I. INTRODUCTION

Recent years have seen a renewed interest in the role
of the effective nucleon-nucleon tensor force for nuclear
structure, sparked by the finding that it provides one of the
possible sources for the evolution of nuclear shell structure
with neutron and proton numbers. Indeed, the contribution
of tensor interactions to single-particle energies depends on
the filling of shells. It (nearly) vanishes in spin-saturated
nuclei, whereas it might be significant when only one of two
spin-orbit partner levels is filled for one or even both nucleon
species [1].

Up to now, none of the standard parametrizations of
any mean-field approach considered an explicit tensor part
(cf. Ref. [2] for a historical overview). The first studies of
the effective tensor interaction within self-consistent mean-
field approaches concentrated on single-particle spectra in
chains of semimagic spherical nuclei covering all successful
models, that is, the nonrelativistic Gogny force [3,4] and
Skyrme interactions [2,5–7], as well as relativistic mean-field
approaches [8,9]. More recently, the impact of the tensor terms
on more complex structure properties has been studied as
well, such as the topography of deformation energy surfaces
[10] and various spin- and spin-isospin excitation modes
in quasiparticle random phase approximation (QRPA) using
Skyrme functionals [11–17] and Gogny interactions [4].

These QRPA calculations deal with a very different aspect
of an effective tensor interaction than the analysis of single-
particle energies. This becomes most obvious when using the
Skyrme energy density functional (EDF). The Skyrme EDF
can be separated into two parts: the first one composed of
densities and currents that are even under time reversal such
as the normal and kinetic densities and a second one grouping
combinations of time-odd densities such as spin density or
current. The latter part of the EDF is usually called the “time-
odd” part, although strictly speaking the EDF itself is time-
even by construction. While these time-odd densities are zero
for the HFB ground states of even-even nuclei, they become
nonzero for

(i) blocked quasiparticle states, that is, the self-consistent
calculation of noncollective low-lying states in odd-A
and odd-odd nuclei, or K isomers in even-even ones
(the time-odd terms contribute to the total energy
[7,18–23] and their presence can strongly modify the
expectation values of time-odd observables such as
magnetic moments [24,25]);

(ii) rotational states calculated by the cranked HFB method
[26–32], where they affect the alignment of single-
particle levels with the rotational axis and thereby the
moments of inertia;

(iii) time-dependent Hartree-Fock (-Bogoliubov)
[TDHF(B)] [33–35] and its linear response limit,
the (quasiparticle) random phase approximation
[(Q)RPA];

(iv) configuration mixing such as symmetry restoration or
generator coordinate method calculations, or adiabatic
time-dependent Hartree-Fock-Bogoliubov (ATDHFB)
calculations [33,36,37].

The study of excitation modes of unnatural parity, such
as for example M1, spin-dipole, or Gamow-Teller excitations
in (Q)RPA provides a sensitive benchmark for the time-odd
terms in the EDF. Indeed, for those the residual interaction is
entirely determined by the time-odd terms (cf., for example,
Refs. [38–43] and references therein). For the other phenom-
ena listed above, the time-odd terms provide a correction to
the dominant time-even terms that might become substantial
in some cases. One such observable consists of the moments
of inertia at high spin in superdeformed (SD) rotational bands
of heavy nuclei [44–46]. These are the object of our study.

Skyrme’s two-body tensor force contributes to the time-
even and time-odd parts of the EDF. Studies of the eigenvalue
spectrum of the single-particle Hamiltonian of even-even
nuclei only probe the contribution to the time-even part. The
corresponding time-odd terms affect how the nucleus responds
to its collective rotation, thereby modifying its moment of
inertia and how it evolves with spin. Of course, the time-even
tensor terms also influence the moments of inertia.
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The aim of the present study is to investigate the generic in-
fluence of tensor terms on high-spin properties. The following
questions are addressed.

(i) How do the time-odd tensor terms behave when
increasing the total spin of the nucleus?

(ii) How does the presence of time-even and time-odd
tensor terms influence the dynamical moments of
inertia in SD rotational bands at high spin?

(iii) How much of these changes is caused by the time-even
part of the EDF, that is, the modification of the single-
particle spectrum at spin zero, and how much by the
time-odd part of the EDF?

(iv) How much of these changes is caused by the tensor
terms themselves, and how much is caused by the
rearrangement of all other terms during the fit of the
parametrizations?

Studies of the impact of time-odd terms on the moments of
inertia in SD bands have been performed before in the context
of Skyrme interactions [28,40] and relativistic mean-field
Lagrangians [30,32], but none of these studies considered
time-odd terms associated with genuine tensor interactions.

The present article complements the studies of spherical
single-particle energies of Ref. [2] and of the deformation
energy curves of Ref. [10]. We refer to these references as
Articles I and II. The present article is structured as follows:
In Sec. II we briefly review the properties relevant for our
discussion of the Skyrme EDF including tensor terms. In
Sec. III, we analyze in detail how sensitive is the SD rotational
band in 194Hg when the coupling constants of the Skyrme
EDF are varied. In Sec. IV, we check the generality of our
conclusions for 194Hg by similar calculations for the SD
ground-state band of 152Dy, and Sec. V summarizes our results.
Appendixes provide further technical information about the
interrelations between the coupling constants of the Skyrme
EDF (Appendix A), the representation of local densities and
currents in our code (Appendix B), and the Landau-Migdal
interaction corresponding to the standard Skyrme EDF with
tensor terms (Appendix C).

II. THE SELF-CONSISTENT MEAN-FIELD METHOD

The energy of the atomic nucleus can be expressed by
means of an EDF [47–50], containing five parts: the kinetic
energy, a Skyrme potential energy functional modeling the
strong force in the particle-hole channel, a pairing energy
functional, a Coulomb energy functional, and terms to ap-
proximately correct for the spurious-motion caused by broken
symmetries,

E = Ekin + ESk + Epairing + ECoulomb + Ecorr. (1)

For the kinetic energy and the Coulomb energy functional
comprising a direct term and the exchange term in Slater
approximation we use the same expressions as presented in
Ref. [48]. For all parametrizations used throughout this article,
the center-of-mass recoil effect is approximately taken into
account by subtracting Ecorr = 〈∑k p2

k〉/2mA from the total
energy, which amounts to an A-dependent renormalization

of the nucleon mass. In the following sections we introduce
the ingredients of the Skyrme EDF, its explicit form, and the
equations of motion.

A. Densities and currents

Under the assumption that the single-particle states are
either neutron or proton states, the Skyrme part of the EDF
ESk depends on the following local densities and currents:

ρq(r) = ρq(r, r′)|r=r′, (2a)

τq(r) = ∇ · ∇′ ρq(r, r′)|r=r′ , (2b)

Jq,μν(r) = − i

2
(∇μ − ∇′

μ) sq,ν(r, r′)|r=r′ , (2c)

jq(r) = 1

2i
(∇ − ∇′) ρq(r, r′)|r=r′ , (2d)

sq(r) = sq(r, r′)|r=r′ , (2e)

Tq(r) = ∇ · ∇′ sq(r, r′)|r=r′ , (2f)

Fμ,q(r) = 1

2

∑
ν=x,y,z

(∇μ∇′
ν + ∇′

μ∇ν)sq,ν(r, r′)|r=r′ , (2g)

which are the density ρq(r), the kinetic density τq(r), the spin-
current (pseudotensor) density Jq,μν(r), the current (vector)
density jq(r), the spin (pseudovector) density sq(r), the spin-
kinetic (pseudovector) density Tq(r), and the tensor-kinetic
(pseudovector) density Fq(r) for protons and neutrons (q =
n, p), respectively. All densities and currents can be recoupled
to isoscalar t = 0 and isovector (t = 1, t3 = 0) densities [e.g.,
ρ0(r) = ρp(r) + ρn(r) and ρ1(r) = ρn(r) − ρp(r)]. They are
constructed from the density matrix in coordinate space and
its derivatives up to second order [50,51]

ρq(r, σ, r′σ ′) = 〈a†(r′, σ ′, q)a(r, σ, q)〉
= 1

2ρq(r, r′)δσσ ′ + 1
2 〈σ |σ̂ |σ ′〉 · sq(r, r′), (3)

with

ρq(r, r′) =
∑

σ=±1

ρq(rσ, r′σ ), (4)

sq(r, r′) =
∑

σσ ′=±1

ρq(rσ, r′σ ′) 〈σ ′|σ̂ |σ 〉, (5)

and σ̂ are the Pauli spin matrices. From the properties of the
density and the spin density matrices under time reversal [33],

ρT
q (r, r′) = ρq(r′, r), (6)

sT
q (r, r′) = −sq(r′, r), (7)

it follows that

ρT
q (r) = ρq(r), τ T

q (r) = τq(r), J T
q,μν(r) = Jq,μν(r),

sT
q (r) = −sq(r), jTq (r) = −jq(r), TT

q (r) = −Tq(r), (8)

FT
q (r) = −Fq(r).

One notes that ρq (r), τq(r), and Jq,μν(r) are time-even, whereas
sq(r), jq(r), Tq(r), and Fq(r) are time-odd. When time reversal
is a self-consistent symmetry, the time-odd densities vanish.
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When intrinsic time-reversal invariance is broken, both time-
even and time-odd densities contribute to the energy and the
single-particle Hamiltonian.

For the part of the EDF that describes the pairing correla-
tions, Epairing, we also need to introduce the skew-symmetric
pair tensor [52]

κq(r, σ, r′, σ ′) = 〈a(r′, σ ′, q)a(r, σ, q)〉 (9)

or, equivalently, the pair density matrix [53]

ρ̃q(r, σ, r′, σ ′) = −σ ′〈a(r′,−σ ′, q)a(r, σ, q)〉
= −σ ′κq(r, σ, r′,−σ ′). (10)

The pair density matrix presents the interest that it enables to
construct a local pair density

ρ̃q(r) =
∑

σ=±1

ρ̃q(r, σ, r, σ ), (11)

that facilitates the construction of a local pairing EDF as used
here. The pair density ρ̃q(r) is neither time-even nor time-odd
and becomes complex when intrinsic time-reversal symmetry
is broken.

B. The energy density functional

1. The Skyrme energy functional

Skyrme functionals have been discussed extensively in the
literature [2,27,33,49–51,54]. We restrict ourselves here to
aspects relevant for this work. As outlined in the Introduction,
the Skyrme EDF can be separated into two parts,

ESk =
∫

d3r
∑
t=0,1

[
Ht.e.

t (r) + Ht.o.
t (r)

]
, (12)

a part Ht.e.
t that contains only time-even densities,

Ht.e.
t = C

ρ
t [ρ0]ρ2

t + C
�ρ
t ρt�ρt + Cτ

t ρt τt

+C∇·J
t ρt∇ · Jt − CT

t

z∑
μ,ν=x

Jt,μνJt,μν

− 1

2
CF

t

⎡
⎣
(

z∑
μ=x

Jt,μμ

)2

+
z∑

μ,ν=x

Jt,μνJt,νμ

⎤
⎦ , (13a)

and another one, Ht.o.
t , that contains bilinear combinations of

time-odd densities,

Ht.o.
t = Cs

t [ρ0]s2
t + C∇s

t (∇ · st )
2 + C�s

t st · �st − Cτ
t j2

t

+CT
t st · Tt + CF

t st · Ft + C∇·J
t st · ∇ × jt . (13b)

The common practice to call these energy densities “time-
even” and “time-odd” refers to the properties under time
reversal of the densities and currents they are built from and
not to the properties of the energy density itself, as the EDF is
time-reversal invariant by construction [55].

All coupling constants of Eqs. (13a) and (13b) could be
chosen to be density dependent.1 In practice, however, the
density dependence is usually restricted to the C

ρ
t and Cs

t

coupling constants and chosen to be a noninteger power of the
isoscalar density [54,56],

C
ρ
t [ρ0] = C

ρ
t [0] + (

C
ρ
t [ρnm] − C

ρ
t [0]

) ( ρ0

ρnm

)α

, (14)

Cs
t [ρ0] = Cs

t [0] + (
Cs

t [ρnm] − Cs
t [0]

) ( ρ0

ρnm

)α

, (15)

where ρnm is the value of the isoscalar density ρ0 in saturated
infinite nuclear matter.

2. Choice of independent coupling constants in the EDF

The Skyrme EDF can be introduced in two nonequivalent
ways [49]. One can start from a density-dependent zero-range
two-body interaction as proposed by Skyrme [57,58] and
define the Skyrme EDF as its Hartree-Fock expectation value
[33,50,54]. We refer to this approach as force-generated EDF.
It is customary that the pairing functional is calculated from
a different pairing interaction, such that only the direct and
exchange terms in the particle-hole channel refer to the same
interaction, but not those in the pairing channel. The same
expression for the energy densities Ht.e.

t and Ht.o.
t is obtained

when writing down all possible bilinear combinations of
the local densities [Eqs. (2a)–(2g)] up to second order in
the derivatives that are invariant under parity, time reversal,
rotations, and Galilean transformations [28,55]. Then, the
coupling constants of most time-odd terms can be chosen
independently of those of the time-even terms. By contrast, in a
force-generated EDF, the coupling constants of time-odd terms
depend on those of the time-even ones; the 9 free parameters of
the most general density-independent two-body Skyrme force
determines all 18 coupling constants C of the corresponding
EDF equations [Eqs. (13a) and (13b)]. The various possible
choices for the coupling constants of time-odd terms that
correspond to the same time-even part of the EDF have been
reviewed in Article II.

Galilean invariance is a necessary constraint to obtain a
functional that depends only on the relative momenta of the
nucleons, but not on the total momentum. This invariance
is particularly important for dynamical calculations such as
TDHF and TDHFB [34] or cranked HFB such as performed
here [59–61] because it ensures that the results of the calcula-
tion will not depend on the frame of reference. In relativistic
approaches, the EDF has to be constructed to be Lorentz
invariant instead [30,32]. Galilean invariance is automatically
fulfilled for an EDF generated from the Skyrme force. In a
functional approach, it is automatically fulfilled for some terms
and has to be imposed by taking specific combinations of other
terms [28,33]. This results in the presence of Cτ

t , C∇·J
t , CT

t ,

1If all coupling constants are density-dependent, there appear
additional terms containing the nabla or Laplacian operator acting
on a local density, as some bilinear forms are not equivalent under
partial integration anymore [55].
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and CF
t in both the time-even and the time-odd energy density

[Eqs. (13a) and (13b)]. Because several time-odd terms of
an EDF are not constrained by symmetry requirements, the
number of independent coupling constants is always smaller
for a force-generated EDF. This renders the mapping of an
arbitrary local EDF onto a density-dependent Skyrme force a
priori impossible when time-reversal invariance is broken.

In the literature, there also exist hybrid approaches which
adopt the larger freedom of functionals for some terms in the
functional only and follow the “force-generated” philosophy
for all others. We come back to this in Sec. II F.

3. Skyrme’s tensor interaction

A zero-range tensor force with two terms was originally
proposed by Skyrme [57,58]:2

vt(r) = te

2
{[3(σ 1 · k′)(σ 2 · k′) − (σ 1 · σ 2)k′2]δ(r)

+ δ(r)[3(σ 1 · k)(σ 2 · k) − (σ 1 · σ 2)k2]}
+ to

2
{3(σ 1 · k′)δ(r)(σ 2 · k) − 2(σ 1 · σ 2)k′ · δ(r)k

+ 3(σ 2 · k′)δ(r)(σ 1 · k)}. (16)

The inclusion of this tensor force gives rise to new terms in
the force-generated energy density [2]:

Ht = BT
t

(
st · Tt −

z∑
μ,ν=x

Jt,μνJt,μν

)

+B�s
t st · �st + C∇s

t (∇ · st )
2

+CF
t

⎡
⎣st · Ft − 1

2

(
z∑

μ=x

Jt,μμ

)2

− 1

2

z∑
μ,ν=x

Jt,μνJt,νμ

⎤
⎦ .

(17)

The first two terms also appear in the EDF constructed from a
central Skyrme force, whereas the latter two occur for genuine
two-body tensor forces only. They differ in the way derivatives
and Pauli matrices are coupled. In the first two terms, the scalar
products are between one derivative and the other and between
one Pauli matrix and the other. In the last two terms, the scalar
products are between derivatives and Pauli matrices.

In a force-generated EDF, each coupling constant CT
t

and C�s
t results from two contributions. Following Article I,

we label the contributions coming from the central Skyrme
interaction by the letter A and those generated by the tensor
part of the interaction by B. The inclusion of a tensor force thus
increases the flexibility for the choice of the coupling constants
CT

t and C�s
t in a force-based approach. At the same time, the

tensor force introduces additional terms in the EDF that couple
derivatives and Pauli-spin matrices in a unique manner.

The most appropriate way would be to label tensor terms
as those generated by the tensor force [Eq. (16)]. However,

2Skyrme’s tensor force is sometimes given in a different, slightly
simpler form [2,10,62–64]. Both forms give rise to the same EDF,
but not to the same residual interaction, for example, in QRPA.

the above discussion shows that these terms cannot be easily
singled out with respect to similar terms generated by the
central part of the EDF. Therefore, throughout this article, we
call “tensor terms” those terms in the EDF that couple two
Pauli matrices and two derivatives. Although not all of them
are related to a two-body tensor force, they are of the same
order as the terms bilinear in the spin-current tensor density
that have been called tensor terms in Articles I and II.

4. The pairing energy

As in our previous studies, we have chosen a density-
dependent zero-range interaction to describe the pairing
correlations [49,53,65], which leads to a functional of the form

Epairing =
∑

q=p,n

Vq

4

∫
d3r

[
1 − ρ0(r)

ρc

]
ρ̃q(r)ρ̃∗

q (r), (18)

where the switching density ρc determines whether the pairing
is more active in the volume of the nucleus or on its surface.
The functional depends on the local pair density ρ̃q and the
local density ρq .

C. The cranked HFB method

The SD rotational bands are calculated by the self-
consistent cranked HFB approach. This method can be seen
as a semiclassical description of the collective rotation of a
finite system with a constant angular velocity ω. In particular,
it takes into account the distortion of the nucleus’ intrinsic state
owing to the centrifugal and Coriolis forces that are induced
by the collective rotation [52,59,66,67].

The variation of the EDF including constraints on particle
number, orthonormality of the quasiparticle states, and rota-
tional frequency leads to the cranked HFB equation(

h − λ − ωzJz �

−�∗ −h∗ + λ + ωzJ
∗
z

)(
Uμ

Vμ

)
= Eμ

(
Uμ

Vμ

)
,

(19)

where Uμ and Vμ are the two components of the quasiparticle
wave functions and Eμ the quasiparticle energies, often called
Routhian in this context. The effective interaction enters the
HFB Hamiltonian through the mean-field Hamiltonian h and
the pairing field �,

hij = δE
δρji

, �ij = δE
δκ∗

ij

. (20)

The Fermi energies λ for protons and neutrons and the
rotational frequency ωz in Eq. (19) are the Lagrange multipliers
of the constraints, which are self-consistently adjusted to fulfill
auxiliary conditions for the mean values of the particle number
and of the projection along z of the angular momentum. The
component Jz of the angular momentum J is chosen along the
axis perpendicular to the axes of longest elongation. At high
spins and large deformation, the solution of Eq. (19) can be
shown to be an approximation of a variation after projection
on angular momentum [68]. As such, the model is particularly
well adapted for the description of SD bands.
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All calculations have been carried out using the triaxial self-
consistent cranking code CR8 documented in Refs. [27,65,69].
The HFB equation is complemented by the Lipkin-Nogami
(LN) prescription to avoid a sudden breakdown of pairing
correlations as a function of rotational frequency.

We recall that for constrained calculations, as discussed
below, the constraints do not contribute to the observable total
energy, whereas the eigenvalues Eμ of the HFB Hamiltonian
used to construct the quasiparticle Routhians contain a contri-
bution from the constraint.

D. The single-particle Hamiltonian

The isospin representation of the EDF is the most appropri-
ate one to discuss its physics content. However, a representa-
tion where proton and neutron densities are explicitly used is
more convenient for numerical implementations. In this case,
one possibility to write the Skyrme EDF is [27]

ESk =
∫

d3r

[
H(r) +

∑
q=p,n

Hq(r)

]
, (21)

with

H(r) = b1 ρ2 + b3 (ρτ − j2) + b5 ρ�ρ + b7 ρ2+α

+ b9 (ρ∇ · J + j · ∇ × s) + b10 s2 + b12 ραs2

+ b14

(
z∑

μ,ν=x

JμνJμν − s · T

)

+ b16

⎡
⎣( z∑

μ=x

Jμμ

)2

+
z∑

μ,ν=x

JμνJνμ − 2 s · F

⎤
⎦

+ b18 s · �s + b20 (∇ · s)2, (22)

containing the total density ρ = ρp + ρn and similar for all
the other local densities and currents,3 and

Hq(r) = b2 ρ2
q + b4

(
ρqτq − j2

q

)+ b6 ρq�ρq + b8 ρα
0 ρ2

q

+ b9q (ρq∇ · Jq + jq · ∇ × sq) + b11 s2
q + b13 ραs2

q

+ b15

(
z∑

μ,ν=x

Jq,μνJq,μν − sq · Tq

)

+ b17

⎡
⎣( z∑

μ=x

Jq,μμ

)2

+
z∑

μ,ν=x

Jq,μνJq,νμ−2 sq · Fq

⎤
⎦

+ b19 sq · �sq + b21 (∇ · sq)2, (23)

containing the proton and neutron local densities and currents.
The relation between the coupling constants in the isospin
representation [Eqs. (13a) and (13b)] and the parameters
in the proton-neutron representation [Eq. (21)] is given in

3Even though the “total” local densities and currents are identical
to the “isoscalar” local densities and currents, we use a different
notation to clearly distinguish between the isospin representation and
the proton-neutron representation used in our codes.

Appendix A. The single-particle Hamiltonian for protons and
neutrons is given by

ĥq = −∇ · Bq(r)∇ + Uq(r) + Sq(r) · σ̂

− i

2

z∑
μ,ν=x

[Wq,μν(r)∇μσν + ∇μσνWq,μν(r)]

− i

2
[Aq(r) · ∇ + ∇ · Aq(r)]

−∇ · [σ̂ · Cq(r)]∇ − ∇ · Dq(r)σ̂ · ∇. (24)

The expressions obtained in Ref. [27] for the inverse effective
mass Bq(r), the single-particle potential Uq(r), and the time-
odd field Aq(r) are not affected by the introduction of tensor
terms. The local potentials that contain contributions from the
tensor terms are given by

Wq,μν(r) = −
z∑

κ=x

εκμν

(
b9∇κρ + b9q∇κρq

)+ 2b14Jμν

+ 2b15Jq,μν + 2b16

(
Jνμ +

z∑
κ=x

Jκκδμν

)

+ 2b17

(
Jq,νμ +

z∑
κ=x

Jq,κκδμν

)
, (25a)

Sq,μ(r) = −(b9∇ × j + b9q∇ × jq
)
μ

+ 2b10sμ + 2b11sq,μ

+ 2b12ρ
αsμ + 2b13ρ

αsq,μ − b14Tμ − b15Tq,μ

− 2b16Fμ − 2b17Fq,μ + 2b18�sμ + 2b19�sq,μ

− 2b20∇μ(∇ · s) − 2b21∇μ(∇ · sq), (25b)

Cq,μ(r) = −b14sμ − b15sq,μ, (25c)

Dq,μ(r) = −2b16sμ − 2b17sq,μ. (25d)

The scalar central potential Uq(r) ≡ δE/δρq(r), the
position-dependent inverse effective mass Bq(r) =
h̄2/2m∗

q(r) ≡ δE/δτq(r), and the spin-current tensor
potential Wq,μν(r) ≡ δE/δJq,μν(r) are all time-even
fields, whereas Aq(r) ≡ δE/δjq(r) and Sq(r) ≡ δE/δsq(r),
Cq(r) ≡ δE/δTq (r), and Dq(r) ≡ δE/δFq (r) are time-odd
fields. The vector potentials Aq(r) and Sq(r) are nuclear
counterparts of electromagnetic potentials that couple orbital
movement and spin to magnetic fields. The field Cq(r)
introduces a spin dependence of the position-dependent
effective masses of protons and neutrons. Finally, the field
Dq(r) contributes to a nondiagonal tensor effective mass
that is position and spin dependent. As long as time-reversal
invariance is not broken, the time-odd fields remain zero.

For density-independent Cτ
t , CT

t , and CF
t , in a static

calculation, and for our choice of symmetries (see Appendix B
on conserved symmetries) the single-particle Hamiltonian (24)
can be reduced to

ĥq = −∇ · Bq(r)∇ + Uq(r) + Sq(r) · σ̂

− i

z∑
μ,ν=x

Wq,μν(r)∇μσν − iAq(r) · ∇

−∇ · [σ̂ · Cq(r)]∇ − ∇ · Dq(r)σ̂ · ∇. (26)
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As already mentioned in the Introduction, the contribution
of the tensor interaction to the eigenvalues of the single-particle
Hamiltonian depends on the filling of shells. This is attributable
to the near cancellation of the contributions of two spherical
spin-orbit partners to the spin-current tensor Jμν when both
levels are filled. As a consequence, the time-even terms bilinear
in Jμν (nearly) vanish in spin-saturated nuclei, whereas they
might be quite large when only one level out of two spin-orbit
partners is filled (cf. the discussion in Articles I and II and
references given therein). It is noteworthy that none of the
various time-odd terms associated with the tensor force has
such property. Apart from the usual cancelation of Kramers-
degenerate levels that are connected by time reversal, there
is no additional dependence of these time-odd terms on shell
structure as such.

Further technical information about the detailed form and
symmetries of the local densities and fields as implemented in
the CR8 code is presented in Appendix B.

E. Landau parameters

The gross properties of the spin-spin interaction in nu-
clei are often characterized by the so-called Landau-Migdal
parameters [14,39,40,70,71]. In Landau theory for normal
Fermi liquids [72], the Landau-Migdal parameters represent
the strength of the residual interaction between particles on
the Fermi surface. Being a simple number in each partial wave
and spin-isospin channel of the central and tensor interaction,
they cannot represent all details of the effective interaction in a
finite system. Still, they provide an often useful first indication
about its relative strength. Relevant for our present study are
the Landau parameters in the spin- and spin-isospin channels
of the central residual interaction and in the tensor channel

g0 = 2N0
[
Cs

0 + (
CT

0 + 1
3CF

0

)
k2
F

]
,

g′
0 = 2N0

[
Cs

1 + (
CT

1 + 1
3CF

1

)
k2
F

]
,

g1 = −2N0
(
CT

0 + 1
3CF

0

)
k2
F ,

(27)
g′

1 = −2N0
(
CT

1 + 1
3CF

1

)
k2
F ,

h0 = 1
3N0C

F
0 k2

F ,

h′
0 = 1

3N0C
F
1 k2

F .

We use the convention of Refs. [39,40] where the normal-
ization factor is defined as the average level density N0 ≡
2kF m∗

0/h̄
2π2 at the Fermi momentum kF = ( 3

2π2ρ0)1/3, in
which m∗

0 is the isoscalar effective mass associated with a
given parameterization, but other choices are sometimes found
in the literature. All higher Landau parameters are zero by
construction for a Skyrme EDF that contains only terms up to
second order in derivatives.

In a force-based framework, the central and tensor parts
remain separated in the residual Landau interaction, such that
h0 and h′

0 are entirely determined by te and to of Eq. (16),
which at the same time do not contribute to f�, f ′

� , g�, or
g′

� (cf. the expressions given in Ref. [14]). In a functional-
based framework as assumed in Eq. (27), however, this clear
separation is lost, as can be seen from the appearance of CF

t

in all six Landau parameters. The reason is that one has to
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FIG. 1. Coupling constants CJ
0 and CJ

1 , where CJ
t = −CT

t +
1
2 CF

t , for the parameterizations discussed in the article.

combine contributions from the JμνJμν , JμνJνμ, Jμμ, s · F,
and s · T terms to recover the structure of the tensor operator
that multiplies h0 and h′

0, cf. Appendix C for details of the
derivation.

F. Parameterizations

In Article I, a set of 36 parametrizations for the
Skyrme interaction including a zero-range tensor force has
been determined using a fitting protocol almost identical
to the one used for the SLyx parametrizations [47,48].
These parametrizations, labeled TIJ , systematically cover a
wide range of the CJ

t ≡ −CT
t + 1

2CF
t coupling constants of

the tensor terms in spherical symmetry (see Articles I and II
for further details). In the present study, we restrict ourselves
to a subset of four of these parameterizations, T22, T26, T44,
and T62 (see Figs. 1 and 2). T22 has been constructed to
give vanishing contributions of the tensor terms in spherical
symmetry and time-reversal invariance. It is aimed to have
properties close to those of SLy4, which does not include a
tensor interaction and for which the contributions of the central
part of the interaction to tensor terms have been neglected.
However, the tensor terms of T22 can be different from
zero when spherical symmetry or time-reversal invariance are
broken (cf. Article II for the breaking of spherical symmetry).
In the same way, time-odd terms CT

t st · Tt and CF
t st · Ft do a

priori not cancel each other.
The T22 and T44 parametrizations have an isovector CJ

1
coupling constant equal to 0. The isoscalar coupling constant
CJ

0 has the same value 120 MeV fm5 for T26, T44, and T62,
while the isovector CJ

1 coupling constants, respectively, take
the values 120, 0, and −120 MeV fm5. As a consequence,
the tensor terms in spherical symmetry are purely between
particles of same isospin for T26, purely proton-neutron for
T62 and a mixture of both for T44.

As is discussed in Sec. III B, the force-generated values of
at least one of the C�s

t and C∇s
t coupling constants of all TIJ

parametrizations leads to an unphysical solution of the cranked
HFB equation at high spin (see Fig. 3). Unless noted otherwise,
we have set C�s

t and C∇s
t to zero for those parameterizations.
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FIG. 2. Coupling constants CT
t and CF

t for the parameterizations
discussed in the article.

As a reference without tensor terms, we have also performed
calculations with the SLy4 parametrization [48] for which CT

t

is put to zero during the fit. To fix the time-odd terms, we have
adopted a hybrid point of view that has already often been used
in the literature before [27,73–76]: A force-generated point of
view is taken for the coupling constant Cs

t , whereas we use
the functional point of view to set the coupling constant of the
C�s

t st · �s to zero such that all three terms of second order in
the derivatives and Pauli matrices vanish C�s

t = CT
t = 0. This

choice is not unique. Other groups use SLy4 in their cranked
HFB or QRPA calculations by setting just CT

t = 0, keeping
Cs

t and C�s
t at their Skyrme-force values [21,28,40].

For the pairing EDF (18), we choose a surface-type interac-
tion with ρc = 0.16 fm3 and a strength of Vq = −1250 MeV
fm−3 for both protons and neutrons, together with a 5-MeV
cutoff above and below the Fermi level as explained in
Ref. [73].

III. RESULTS FOR SUPERDEFORMED BANDS IN 194Hg

A. General comments

In contrast to SD bands in nuclei around A = 150, the
high-spin properties of nuclei in the Hg region are sensitive
to pairing correlations. In cranked Woods-Saxon and Nilsson-
model calculations [77,78], the gradual increase of the dynam-
ical moments of inertia J (2) as a function of the rotational
frequency results from both the alignment of the intruder
orbitals and a gradual disappearance of pairing correlations.
The properties of the ground SD bands have been studied
extensively within self-consistent cranked HFB models using
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FIG. 3. Coupling constants C�s
t and C∇s

t as obtained in a force-
generated EDF for the parametrizations discussed in the article.

an effective EDF. In general, a very good agreement with
experiment is obtained for the Hg region [65,69,79–81]. In
view of this success, we choose the ground SD band in 194Hg
as a laboratory for the study of tensor terms on high-spin
properties.

Our discussions are mainly based on the behavior of the
dynamical moment of inertia J (2) as a function of h̄ω,

J (2) = ∂〈Jz〉
∂ω

, (28)

where 〈Jz〉 is the average value of the projection of the angular
momentum on the rotation axis. The relevance of this quantity
for the purpose of our study becomes clearer when realizing
that J (2) is proportional to the derivative of the EDF with
respect to rotational frequency [67,82,83],

J (2) = 1

ω

∂E
∂ω

, (29)

which makes it possible to calculate the contribution of each
term in the EDF Eqs. (13a) and (13b) to J (2) separately. The
moment of inertia can also be decomposed into the neutron and
proton contributions to Jz using Eq. (28). These contributions,
however, do not correspond to the decomposition of the
EDF into neutron-neutron, proton-proton, and proton-neutron
terms.

The numerical determination of J (2) is far from being
trivial. To obtain a smooth dependence of J (2) as a function
of h̄ω, it requires a very high degree of convergence of the
calculations. The derivatives with respect to ω are determined
by finite differences formulas. It should be noted that Eqs. (28)
and (29) might lead to slightly different J (2), especially when
convergence to a very high degree is difficult to attain. In
general, the 〈Jz〉 are converged to a higher degree than the
energy E ; hence, Eq. (28) is expected to be more stable.

The experimental value of h̄ω is given by Eγ /2, and the
one of the dynamical moment of inertia by J (2) = 4h̄2/�Eγ ,
where �Eγ is the difference between two successive γ -ray
energies populating and depopulating a level. Note that both
can be determined without an angular momentum assignment
of the level, as is the case for the ground-state SD band in 194Hg.

B. Finite-size instabilities

In our calculations of the SD rotational bands with
TIJ parameterizations mentioned before, we systematically
encountered nonconvergence of the code when using force-
based coupling constants for all time-odd terms. After careful
analysis, this behavior turned out not to be a numerical
problem, but a property of these parameter sets. Switching
to a functional framework, systematic variation of coupling
constants reveals that large positive or negative values of either
C�s

t or C∇s
t lead to an unphysical finite-size instability of a

given parametrization of the interaction.
As a typical example, Fig. 4 presents the energies of

time-odd terms containing the spin density for the SD Jz = 54h̄
state in 194Hg as a function of the value of C�s

0 for a variant
of the T22 parametrization. Panel (a) displays the absolute
energy of the C�s

0 s0 · �s0 term, whereas panel (b) presents the
evolution of other time-odd terms that contain the spin density
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FIG. 4. (Color online) (a) Dependence of the C�s
0 s0 · �s0 term

of a variant of the T22 parametrization on the value of C�s
0 for

the Jz = 54h̄ state in the ground-state SD band of 194Hg (see text).
(b) Dependence of all other time-odd terms containing the spin density
st relative to their value at C�s

0 = 0 in the same calculations.

relative to their value at C�s
0 = 0. In this calculation, the

coupling constants of all time-even and time-odd terms are set
to their force-based values, except for C�s

1 = C∇s
0 = C∇s

1 = 0,
which are set to zero, and C�s

0 that is systematically varied.
For larger or smaller values of C�s

0 than those shown in
Fig. 4 our calculations do not converge. When approaching
C�s

0 ≈ 36 MeV fm5, the energy of the C�s
0 s0 · �s0 term

displays a steep downward slope. Simultaneously, all other
terms containing the spin density are strongly amplified, in
particular the Cs

0s2
0 term, indicating a strong change in spin

polarization. Still, in spite of their strong variation, the absolute
contribution of all these terms to the total energy of 194Hg
remains less than 0.3% even at the threshold of the finite-size
instability. Also, a strong dependence of the spin terms on the
coupling constant is not a necessary condition for the onset
of an instability of the C�s

0 s0 · �s0 term. This can be seen
when approaching C�s

0 ≈ −24 MeV fm5, beyond which the
interaction also becomes unstable. Similar results are obtained
for the variation of the C�s

1 ; an instability sets in at the same
values as for C�s

0 . In fact, the instability of the C�s
t st · �st

terms at large positive values of C�s
t � 36 MeV fm5 has

already been pointed out [21,84].
In a similar manner, we find that values of C∇s

t outside
the interval [−56, 92] MeV fm5 lead to instabilities as well.
The limits of the stable regions, however, should be taken
with a grain of salt because their values are sensitive to the
details of the calculation, the mass number of the nucleus, or
the other parameters of the EDF. In fact, even when using
an a priori unstable parametrization, a finite-size instability

might fortuitously remain undetected in the calculation of a
finite nucleus, depending on convergence criteria, cutoffs in
the numerical representation, the initial conditions of the cal-
culations, and other numerical choices made. An unambiguous
way to identify one class of finite-size instabilities is through
the calculation of the response function of the model system
of isotropic homogeneous infinite nuclear matter (INM) to
perturbations of the density in random phase approximation
(RPA) [84]. When an instability occurs at infinite wavelength,
the entire bulk of homogeneous nuclear matter undergoes a
transition into a different homogeneous state of nuclear matter.
This kind of instability can be identified from the values
of the Landau parameters discussed in Sec. II E [14,70,84].
If instead the instability occurs at a finite wavelength, the
homogeneous nuclear matter can undergo a phase transition
into an inhomogeneous phase; that is, it exhibits a finite-size
instability. The former instabilities are driven by the bulk terms
in the EDF, whereas the latter are driven by the terms that
contain a nabla or Laplacian acting on a density and that are
zero in homogeneous INM. Recently, the calculation of the
linear response in INM of the full Skyrme EDF [Eqs. (13a)
and (13b)] with tensor terms in force-based [85] and general
functional [86] frameworks have become available. Recently,
the calculation of the linear response of the full Skyrme
EDF [Eqs. (13a) and (13b)] with tensor terms in force-based
[85] and general functional [86] frameworks has become
available. There might also be, however, a second class of
instabilities which are related to surface modes [87]. A more
detailed analysis of the finite-size instabilities will be reported
elsewhere [88].

In a force-base framework and for the forces considered
here, there is at least one of the C�s

t st · �st and C∇s
t (∇ · st )2

terms causing nonconvergence (see also Fig. 3). To suppress
this unphysical behavior, these four coupling constants are
set to zero in all calculations reported below unless stated
otherwise.

C. General features

Before discussing the rotational properties of 194Hg, we
analyze the evolution of the total energy and the single-particle
spectra as a function of deformation.

The total contribution of the tensor terms relative to their
value at spherical shape is plotted in Fig. 5(a). For T22, the
time-even tensor EJJ contribution is close to zero for all defor-
mations. For the other parametrizations, it increases relative at
small deformations and then follows an almost “oscillatory”
pattern. As can be seen from panel (b), the differences between
the parametrizations seen in panel (a) are strongly attenuated
in the energy curves. As discussed in Article II, this last result
comes from an intricate compensation between all energy
contributions to the EDF. The location and depth of the SD
minimum around β2 = 0.65 that is the key point for the
subsequent discussion is very similar for all parametrizations.

The proton and neutron Nilsson diagrams are presented in
Fig. 6. We recall the conclusion of Article II on deformed
nuclei that for parametrizations with different strength of the
tensor terms the differences between the single-particle spectra
at sphericity are almost compensated at large deformation by
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(a)

(b)

FIG. 5. (Color online) Change of the (a) contribution from the
tensor terms relative to the values at the spherical shape and
(b) deformation energy relative to the spherical shape for 194Hg
obtained with the parametrizations T22, T26, T44, and T62. The
energy scale is the same for the two panels.

the changes in slope for of the single-particle energies in the
Nilsson diagram. Hence, the single-particle spectra around the
Fermi energy for strongly deformed nuclei are often found
to be very close for all TIJ tensor parametrizations in spite

FIG. 6. (Color online) Proton and neutron Nilsson diagrams in
194Hg for the T22, T26, T44, and T62 parametrizations.

of significant changes at sphericity. The same property is
observed in the case of 194Hg. At the Z = 80 SD shell gap,
the single-particle spectra for all parametrizations except T62
lie on top of each other. The neutron single-particle spectra
follow each other closely for T22 and T44 with some small
deviations for T26 and T62.

1. SLy4, T22, and T44

We first compare results obtained with the SLy4, T22, and
T44 parameterizations.

The dynamical moments of inertia J (2) are plotted as a
function of h̄ω in Fig. 7(a) and the charge quadrupole moments
Qc in panel (b). The differences between the J (2) calculated
with SLy4 and T22 are marginal, even though they correspond
to very different coupling constants CT

t and CF
t . The J (2)

obtained with T44 increases slightly faster with a plateau
appearing for a smaller value of h̄ω but, overall, the moments
of inertia obtained with three interactions present the same
behavior. As discussed in Article II, the position of deformed
minima may depend on the parametrization but this is not the
case here as can be checked from Fig. 7(b) and also Fig. 5.
The charge quadrupole moments Qc values obtained with the
three parametrizations differ only by about 1% at all spins.
This indicates that the differences between the moments of
inertia are mainly attributable to the differences in the relative
weight of the contributions in the EDF and not to a change in
the shape of the nucleus.

In Figs. 8 and 9, we present the contributions of various
time-even and time-odd terms to the total energy as a function
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FIG. 7. (Color online) (a) Proton (π ), neutron (ν), and total
(t) dynamical moments of inertia as a function of the rotational
frequency for the SD band in 194Hg with the SLy4, T22, and T44
parameterization. (b) The charge quadrupole moment as a function of
the rotational frequency for the SLy4, T22, and T44 parametrizations.
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FIG. 8. (Color online) Evolution of the time-even terms in the
EDF as a function of the rotational frequency h̄ω for SLy4, T22, and
T44 for the ground-state SD band of 194Hg.

of h̄ω. Their labels refer to their density content in the EDF.
The total energy is the sum of the kinetic (Ekin + Ec.m.), pairing
(Epair + ELN), time-even [ESk (time-even)], and time-odd [ESk

(time-odd)] Skyrme parts of the EDF.
The excitation energy at 〈Jz〉 = 54h̄, which is the value at

which we stopped the calculations, is 14.1 MeV for SLy4
and T22 and 13.6 MeV for T44. All parts of the EDF
contribute to this excitation energy in a very similar way for
all parametrizations, around 7 MeV for the pairing energy,
5 MeV for kinetic energy, 2 MeV for the Skyrme EDF, and
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FIG. 9. (Color online) Same as Fig. 8, but for the time-odd terms
in the Skyrme EDF.

0.5 MeV for Coulomb. The Skyrme contribution results from
a cancellation between the time-even (5 MeV) and time-odd
(−3 MeV) parts.

As expected from the Coriolis-antipairing effect [52], the
pairing energy shows the largest variation with h̄ω, decreasing
to less than half its value at spin zero. The energies of the
kinetic, Coulomb, and time-even terms of the Skyrme EDF
change only by a small fraction of their absolute values when
going from 〈Jz〉 = 0h̄ to 〈Jz〉 = 54h̄. The time-odd terms of
the EDF start from zero at spin zero and increase in absolute
value with h̄ω. The sum of all time-odd contributions is
negative and cancels more than half of the contribution brought
by the time-even terms in the Skyrme EDF.

Let us first discuss the energy contributions of the time-
even terms, plotted in Fig. 8. As discussed in Article II, the
relative contributions of all terms in the EDF differ between
each of the TIJ parametrizations. As a result, the magnitude
of the various energy contributions is slightly different for
the three parametrizations. Their h̄ω dependence, however, is
very similar. By construction, the tensor contribution EJJ is
exactly zero for SLy4 and almost zero for T22 at all angular
momenta. One can note that the energy contribution Eρ∇J is
more attractive for T44 than for T22 and SLy4. As discussed
in Article I, this results from the strong correlation between
the spin-orbit and tensor coupling constants. In fact, the ratio
of Eρ∇J (T 22)/Eρ∇J (T 44) is very close to the ratio of the
coupling constants C∇J

t (T 22)/C∇J
t (T 44).

The time-odd contributions to the EDF are plotted in Fig. 9.
From top to bottom and left to right are shown (a) the spin terms
Ess , (b) the time-odd terms coupled by Galilean invariance to
the time-even effective mass Ejj , (c) the spin-current tensor
EsT + EsF , and (d) the time-odd spin-orbit Es∇×j . The sum
of the spin terms that contribute to the equation of state of
infinite homogeneous spin-polarized nuclear matter is shown
in panel (e) and the sum of all time-odd contributions in panel
(f). We recall that the Es�s and E∇s∇s terms not shown in
the figure are set to zero as they cause finite-size instabilities
(see Sec. III B). All time-odd terms start from zero and change
rapidly with increasing h̄ω. The EsT + EsF term is zero by
construction for SLy4 and is negligible for T22. For T44, it
decreases down to −800 keV at 〈Jz〉 = 54h̄.

All other time-odd contributions are very similar for SLy4
and T22. This is not surprising because the coupling constants
of these terms are very similar. It indicates also that the
additional CT

t st · Tt and CF
t s · Ft terms of T22 do not introduce

a large polarization. The situation is different for T44, for
which all time-odd terms but −Cτ

t j2
t take very different

values. These changes are attributable to the larger CT
t and

CF
t coupling constants and the increased spin-polarization

they induce. All time-odd terms containing the spin density,
however, tend to cancel each other for all parametrizations,
such that the sum of all time-odd terms is very close to Ejj .

Using Eq. (29), the dynamical moment of inertia can be
decomposed into various contributions to the EDF that are
plotted in Figs. 10 and 11. The offset in total energy between
the parametrizations has no effect on the moments of inertia.

The evolution with h̄ω of the energy contributions being
similar for all parametrizations, the general pattern of the
contributions to J (2) is the same for most terms. At low
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FIG. 10. (Color online) Dynamical moments of inertia of differ-
ent terms in the EDF as a function of the rotational frequency for
SLy4, T22, and T44 in the calculation of the ground-state SD band
of 194Hg.

h̄ω, the main contribution to J (2) is provided by the pairing
energy Epair + ELN and represents about 75%. The Skyrme
contribution brings the remaining 25%, the contributions
from Ekin + Ec.m. and Ecoul being very small. These two
contributions grow rapidly with h̄ω reaching about 65% at high
spin whereas the pairing contributions shrink to approximately
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FIG. 11. (Color online) Same as Fig. 10, but for the time-odd
terms in the Skyrme EDF.

25%. The Coulomb contribution grows slowly with spin but
never exceeds 10% of the J (2).

The time-even and time-odd contributions coming from
the Skyrme EDF have opposite signs and to a large extent
cancel each other at high spin as the total contribution of the
Skyrme EDF toJ (2) does not exceed ±10%. This cancellation,
however, is not a generic feature, as will be seen with the
examples of other parametrizations and other nuclei, although
the ESk (time-even) and ESk (time-odd) counteract each other
in all cases encountered. For all parametrizations Ejj is the
largest time-odd contribution. This was already found in an
earlier study of the time-odd components of the Skyrme EDF
[55], where it was concluded that the cranking term mainly
induces a nonzero flow of nuclear matter as measured by the
Ejj term.

Concentrating on the tensor contributions, the time-even
EJJ for T44 is small and varies between −4% at low spin
and 2% of the J (2) at high spin. On a similar scale, the time-
odd EsT + EsF contribution lowers the J (2) by at most 7%.
Moreover, Ess and EsT + EsF tend to counteract each other
for T44, the total contribution Ess + EsT + EsF being less
than 1%. As argued in Articles I and II, the presence of the
tensor terms has an impact through rearrangements of other
coupling constants in the fit and through self-consistency of
the HFB. This combined effect modifies all time-even and
time-odd Skyrme J (2)contributions, whereas the pairing and
Coulomb contributions do not change.

In Figs. 12 and 13, we present the proton and neutron
quasiparticle Routhians, that is, the eigenvalues of Eq. (19), as
a function of h̄ω for SLy4, T22, and T44. All Routhians are
characterized by their parity and signature, by the j component
of the dominant single-particle state in the quasi-particle wave
function along the axis of largest elongation at h̄ω = 0, and
by their particle (p) or hole (h) character. As discussed before,
the proton and neutron Nilsson diagrams of T22 and T44
display only small differences (Fig. 6). This is reflected in
the quasiparticle spectra in Figs. 12 and 13. At h̄ω = 0, the
ordering of the lowest quasiparticle states is the same for
SLy4, T22, and T44, although the values of the energy are
parametrization-dependent. For the protons, the three lowest
quasiparticle Routhians are the p 5/2+ and the h 1/2− and h
1/2+. The first significant difference between T44 and the two
other parametrizations is the position of the h 3/2+ state, which
is much closer to the h 1/2+ level for T44. This position affects
the alignment of the p 5/2+ Routhian with increasing h̄ω, mak-
ing it slightly faster for T44 because of a stronger interaction
with the higher-lying positive-parity states. In the same way,
for the neutrons, the exchange in position of the h 3/2− and
the p 5/2− quasiparticle states at h̄ω = 0 has an impact on the
alignment of the h 5/2− state. Indeed, the h 3/2− quasiparticle
Routhian occurs lower in energy for T44. Because it aligns
more rapidly than the p 5/2− state, the interaction with the h
5/2− state takes place at a lower frequency, which affects the
alignment of this last quasiparticle Routhian.

2. T26, T44, and T62

We now proceed to a comparison between results obtained
using the T26, T44, and T62 parametrizations. They differ by
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FIG. 12. Proton quasiparticle Routhians for the ground-state SD
band of 194Hg for the SLy4, T22, and T44 parametrizations. The
(parity, signature) combinations are indicated in the figure. All
Routhians are additionally characterized by the j component of the
dominant single-particle state in the quasiparticle wave function along
the axis of largest elongation at h̄ω = 0 and by their particle (p) or
hole (h) character.

their value of the isovector CJ
1 coupling constant while they

share the isoscalar CJ
0 = 120 MeV fm5 constant. This com-

parison probes the direct impact of a variation of CJ
1 , but also

its indirect impact owing to the changes of the other coupling
constants that are readjusted for each parametrization.

The dynamical moments of inertia J (2) and the charge
quadrupole moments are presented, respectively, in Figs. 14(a)
and 14(b), respectively.

Whereas the J (2) obtained with the T22 and T44
parametrizations (Fig. 7) have a different slope, the behavior
of the J (2) for T26, T44, and T62 is similar up to 0.3h̄ω and
differs at large spins by the height of the plateau. The proton
moment of inertia displays a peak for T62, which is absent
for the other parametrizations. This difference can be related
to the proton quasiparticle Routhians, presented in Fig. 15
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FIG. 13. Same as Fig. 12 but for neutrons.
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FIG. 14. (Color online) (a) Proton (π ), neutron (ν), and total (t)
dynamical moments of inertia in 194Hg as a function of the rotational
frequency for the SD band in 194Hg with the T26, the T44, and the
T62 parametrization. (b) The charge quadrupole moment in 194Hg as
a function of the rotational frequency for the T26, the T44, and the
T62 parametrizations.

(see Fig. 16 for the neutron case). In contrast to the other
parametrizations, it is not the p 5/2+ but the h 3/2+ Routhian
that is the lowest quasiparticle state for T62. The p 1/2+ is at
1.8 MeV for T26 and higher for all other parametrizations but
T62 for which it is only at 1.6 MeV. With increasing h̄ω, the
energy of its negative signature partner decreases quickly up
to a bending around 0.4 h̄ω, which is the frequency at which
the moment of inertia displays a peak for T62. The charge
quadrupole moments differ by less than 1% [see Fig. 14(b)].

The contributions to the dynamical moments of iner-
tia J (2) of respectively the time-even and the time-odd
terms in the Skyrme EDF are presented in Figs. 17 and
18. All contributions to the J (2) have a similar behavior
for the three parametrizations, except for the Eρρ + Eρτ

terms.
As for the total moment of inertia, the peaks obtained in

most terms at large h̄ω are the most pronounced for T62 and
the smoothest for T26. Similar to the decomposition of the
J (2) for SLy4, T22, and T44, the time-even and time-odd
Skyrme contributions are of equal importance because they are
of the same order of magnitude. The more pronouncedly
peaked the behavior of the other contributions to the J (2),
the more the Skyrme contribution tends to counteract it.
Indeed, whereas the difference in height of the peak be-
tween the T26 and the T62 parametrization is approximately
60 h̄2 MeV−1 for the Ekin + Ec.m. contribution, a difference that
is even more intensified by the contribution of Epair + ELN and
Ecoul, the difference between the total J (2) of the respective
parametrization in Fig. 14 is only about 30 h̄ MeV−1.
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FIG. 15. Same as Fig. 12, but for the T26, T44, and T62
parametrizations.

The Skyrme contributions are responsible for the decreased
difference in peak height of the J (2).

D. Time-odd terms

The parameters of the EDF are usually adjusted to binding
energies and r.m.s. radii of doubly magic nuclei and on
properties of INM [47]. As discussed in Sec. II B2, for a force-
generated EDF, the coupling constants of the time-odd part
are entirely fixed by those of the time-even part although they
are rarely directly constrained by observables. By contrast,
the coupling constants of the time-odd terms that are not
constrained through Galilean invariance are a priori unde-
termined in a more general EDF. Their adjustment has been
the subject of several studies [22,26,28,31,32,40,55,89,90].
The possibility of using band terminating states to constrain
the time-odd terms is discussed in Refs. [31,89] and in
Ref. [40] the effect of the spin-isopin coupling constants of the
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FIG. 16. Same as Fig. 15, but for neutrons.
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FIG. 17. (Color online) Same as Fig. 10 but for the T26, T44, and
T62 parametrizations.

Skyrme EDFs on predictions for Gamow-Teller distributions is
investigated. In the latter study, a local fit of the Cs

1[0], Cs
1[ρnm],

C�s
1 , and CT

1 coupling constants to the existing data was
performed.

To study the effect of time-odd tensor terms in rotat-
ing nuclei, we proceed in the following way. Until now,
the coupling constants of the st · �st and (∇ · st )2 terms have
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FIG. 18. (Color online) Same as Fig. 10, but for the time-
odd terms in the Skyrme EDF with the T26, T44, and T62
parametrizations.
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[Eq. (18)]. The SLy4 parametrization was chosen in the particle-hole
channel of the interaction and the pairing strength is given in units of
MeV fm−3.

been set to zero for all TIJ parametrizations because these
terms can induce finite-size instabilities. In Sec. III B, we have
determined empirical limits between which these instabilities
do not appear. To maximize the effect of these time-odd terms
on J (2), we have taken values for C�s

t and C∇s
t close to their

respective limits of stability.
The other time-odd tensor terms st · Tt and st · Ft are related

to time-even tensor terms through Galilean invariance. It is
therefore not desirable to vary their coupling constants directly
and we have proceeded in an indirect way. We have seen
in Sec. III C1 that the contributions of Ess and EsT + EsF

to J (2)act in opposite ways. We have therefore changed the
values of Cs

t [ρnm] by ±50 MeV fm3 around their Skyrme
force values at the saturation density of nuclear matter, which
are Cs

0[ρnm] ≈ 150 MeV fm3 and Cs
1[ρnm] ≈ 100 MeV fm3
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FIG. 20. (Color online) Dynamical moments of inertia as a
function of the rotational frequency for different density-independent
choices of the Cs

t coupling constant. If the isoscalar Cs
0 is varied,

then the density-independent Cs
1 is chosen to be equal to Cs

1[nm] and
vice versa. All other coupling constants in ESk are determined by the
SLy4 parametrization and the Cs

t coupling constant is given in units
MeV fm3.

for all parametrizations. In addition, all Cs
t have been taken

independent of density, choosing its value at the saturation
density of nuclear matter for the coupling constant that is not
varied. All variations stay within the stability limits of the
conditions outlined in Ref. [14]. The discussion of Fig. 26
below indeed confirms that a variation of the Cs

t [ρ0] coupling
constant has an indirect effect on the st · Tt and st · Ft tensor
terms.

1. SLy4

Let us first limit ourselves to the SLy4 parametrization
and determine whether the effect of the variation of the time-
odd coupling constants can be differentiated from a pairing
effect. The dynamical moments of inertia determined with
reduced and increased pairing strengths are plotted in Fig. 19.
As expected at low spins, a reduction of pairing increases
J (2), whereas an increase lowers it. The height of the plateau
at high spins moves in opposite direction but it appears for
similar values of h̄ω.

In Fig. 20, we show the dependence of J (2) on the isoscalar
Cs

0 and isovector Cs
1 coupling constants. The only noticeable

change in J (2) is a slight shift of the plateau for Cs
0. The effect

is small but clearly different from the effect of a variation of
the pairing strength; also, it is larger for t = 0 than for t = 1.

2. T22, T26, T44, T62

We now turn to interactions including a tensor term. In
Figs. 21–24 we present the variations of J (2) as a function
of (a) C�s

t , (b) C∇s
t , and (c) Cs

t for T22, T26, T44, and T62,
respectively. In panels (a), one can see that the dynamical
moment of inertia presents a significant decrease at high h̄ω

for a positive value of C�s
t (t = 0 and t = 1) and is nearly

unaffected by the st · �st for a negative value. The result
is inverted for the (∇ · st )2 term [panels (b)], for which the
coupling constant has to be negative to have a visible effect.

This behavior can be understood by looking to Fig. 4,
which is devoted to C�s

0 but is representative for all four
coupling constants. The energy of the s0 · �s0 term varies
rapidly as a function of C�s

0 when it is positive and close to
the value leading to instabilities. Owing to self-consistency
effects, several other time-odd terms vary rapidly for values
of C�s

0 close to its maximal value before instabilities appear.
For negative values of C�s

0 , the corresponding energy behaves
much more smoothly and therefore does not affect significantly
the moment of inertia. The picture is the same for C�s

1 and and
for C∇s

t , except that then rapid changes of some energy terms
are obtained for negative values of the coupling constant.

The panels (c) show how J (2) is affected by variations
of Cs

t . The changes are very similar for T22 and T26 and
much larger for T44 and T62 when the t = 0 coupling
constant is varied. Naively, one would expect that the changes
of the J (2)with respect to the “original” J (2) (obtained
with the force-generated value of Cs

t ) should be similar for
all parametrizations. Our result clearly indicates that the
dynamical moment of inertia is not sensitive to the individual
values of the various coupling constants but rather to some
specific combinations of them.
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FIG. 22. (Color online) Same as Fig. 21, but for the T26 parametrization.
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FIG. 23. (Color online) Same as Fig. 21, but for the T44 parametrization.
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FIG. 24. (Color online) Same as Fig. 21, but for the T62 parametrization.

The values of the Landau parameters (see Sec. II E) in the
spin and the spin-isospin channels are given in Table I for all
parametrizations considered in this work. Table II presents the
g0 and g′

0 Landau parameters corresponding to the variations
of Cs

t that we consider in Figs. 21–24. A close inspection of
these tables and of Figs. 21–24, panels (c), puts in evidence
some clear trends.

(i) For a given interaction, an increase (decrease) of g0 in-
creases (decreases) the value of h̄ω, where the moment
of inertia is maximum. It also broadens (sharpens) the
peak of the J (2)curve.

(ii) Similar values of g0 lead to a comparable dependence
of J (2) on h̄ω, as is, for example, the case for T22
and T26 for the three values of g0 given in the tables
but also for T22, T26, and T44 (Cs

0 = 200 MeV fm3),
which have g0 ≈ 0.9, or for T44 (Cs

0 = 100 MeV fm3)
and T62, where g0 ≈ −0.1.

(iii) The behavior of J (2) as a function of h̄ω does not
depend much on g0 values larger than 0.4. Its variation
as of a function of g0 is much larger for g0 lower
than 0.4.

This confirms and extends a conclusion of Bender et al.
[40]. These authors have shown in a similar manner and
for another Skyrme parametrization SkO′ that the dynamical
moment of inertia J (2) of the SD band of 152Dy depends
mainly on the spin-isospin Landau parameter g′

0 and not so
much on the actual values of the individual coupling constants
Cs

1 and CT
1 . Different combinations of EDF coupling constants

leading to the same value of g′
0 were found to change little

to the J (2). Note that these authors have also varied C�s
1 ,

extending their study well outside the limits for which we find
instabilities. This discrepancy might be attributable to the use
of a different technique for solving the mean-field equations,
that is, by means of an expansion on an oscillator basis instead
of using a Cartesian mesh.

Note also that empirical values for g0 ≈ 0.4 [91] and 1.4 �
g′

0 � 1.6 [92–94] have been derived from M1 and Gamow-
Teller response. The values quoted in Tables I and II are in all
cases except one very different from the empirical values.

The previous analysis shows that the Cs
t , CF

t , and CT
t ,

coupling constants are linked by their contribution to the

values of the Landau parameters g0 and g′
0. One might

wonder whether variations of Cs
t affect mainly the terms in

the EDF depending on the spin-density st . To analyze how
all terms in the EDF are affected by a variation of Cs

t , we
have decomposed the J (2) obtained for the modified T44
parametrizations in the same way as in Figs. 25 and 26.
Differences appear only for large values of h̄ω. At h̄ω = 0.4,
taking Cs

0 = 100 MeV fm3 modifies the total energy obtained
with the T44 parametrization by about 600 keV. This change
results from the partial cancellation of larger changes with
different signs of all terms of the EDF, including the pairing
and Coulomb energy. In particular, the Skyrme time-even and
time-odd contributions decrease the energy by about 900 and
500 keV, respectively. The energy differences obtained for
Cs

0 = 200 MeV fm3 are of the same order of magnitude, but
are much smaller for variations of Cs

1. These energy changes
at high h̄ω affect the slope of the different energy contributions
and therefore their contributions to the J (2). These are plotted
in Figs. 25 and 26. One clearly sees that the modification of
the coupling constant of a relatively small term, in casu the
Ess , affects all other terms through self-consistency and how
little changes in the energy can make a large difference in
the J (2).

Our analysis demonstrates that the variations of pairing and
of the time-odd terms have clearly distinguishable effects on
the shape of the J (2). The time-odd terms influence the slope
of the J (2) and the h̄ω at which the plateau occurs. While the
effect of variations of the C∇s

t and C�s
t coupling constants

on the J (2) is rather small and depends on the sign of the
coupling constant, variation of the Cs

0 coupling constant may
lead to significant changes in the J (2).

TABLE I. Spin and spin-isospin Landau parameters for SLy4,
T22, T26, T44, and T62 parametrizations.

g0 g′
0 g1 g′

1 h0 h′
0

SLy4 1.387 0.901 − − − −
T22 0.856 −0.066 0.502 0.972 −0.100 −0.194
T26 0.916 −0.074 0.463 0.976 0.295 0.192
T44 0.400 0.060 0.959 0.846 0.198 −0.169
T62 −0.097 0.194 1.430 0.715 0.108 −0.536
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TABLE II. Spin and spin-isospin Landau parameters g0 and g′
0 for

the density-independent variations of the Cs
t [0] coupling constants of

SLy4, T22, T26, T44, and T62 described in the text. The units of the
Cs

t [0] coupling constants is MeV fm3.

g0 g′
0

Cs
0 = 100 Cs

0 = 200 Cs
1 = 50 Cs

1 = 150

SLy4 0.904 1.808 0.452 1.356
T22 0.413 1.328 −0.514 0.401
T26 0.446 1.354 −0.522 0.387
T44 −0.044 0.870 −0.388 0.526
T62 −0.507 0.415 −0.253 0.669

IV. RESULTS FOR THE SUPERDEFORMED BAND IN 152Dy

A. General comments

The SD rotational bands known in 152Dy exist in a very
different regime than the one of 194Hg. SD band in the A ≈ 150
region have only been detected for spins higher than 20h̄.
For such angular momenta, pairing correlations are strongly
weakened by the Coriolis antipairing effect. Hence, pairing
is expected to play only a minor role in that region. Early
studies by Bengtsson et al. [95] using the Nilsson-Strutinsky
approach have demonstrated that the behavior of the SD
bands is strongly influenced by the number of nucleons that
occupy the intruder orbitals. SD bands in the Dy region have
been studied extensively within self-consistent mean-field
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of the rotational frequency for variations of the Cs
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All coupling constants not explicitly mentioned are determined by
the T44 parametrization. The Cs
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FIG. 26. (Color online) Same as Fig. 25, but for the time-odd
terms in the Skyrme EDF.

approaches [32,40,73,96]. Moreover, they have been used as a
laboratory to study the time-odd terms in the EDF [28,40,55].

B. General features

The dynamical moments of inertia [panel (a)] and the charge
quadrupole moments [panel (b)] are shown in Fig. 27 for
SLy4, T22, and T44 and in Fig. 28 for the T26, T44, and
T62. As for 194Hg, the J (2) calculated with SLy4 and T22
are very close, with small differences at low spin. The main
difference between the parametrizations is the presence of a
strong peak at low spin for T62, which is less pronounced for
T44 and absent for the other parametrizations. In all cases, the
difference between the J (2) is caused by the neutrons. The
Qc values presented in panels (b) differ by less than 2% and
all display the same behavior, increasing until h̄ω = 0.6 MeV
after which they slowly start decreasing again.

The total energy and the J (2) are decomposed into
their time-even and time-odd components in Figs. 29–32,
respectively, as was done for 194Hg. Decompositions are only
shown for the SLy4, T22, and T44. The results for T26 and
T62 are very similar. The difference of energy between the
lowest (〈Jz〉 = 28h̄) and highest (〈Jz〉 = 74h̄) states that we
have calculated amounts to 26.3 MeV for SLy4 and T22 and
25.5 MeV for T44. All parts of the EDF give contributions of
the same order of magnitude to this change in energy, about
12 MeV for the Skyrme EDF, 10 MeV for the kinetic energy,
7 MeV for the pairing energy, and −2 MeV for the Coulomb
energy. The Skyrme contribution can be decomposed into
18 MeV from the time-even and −6 MeV from the time-odd
terms.

Focussing on the time-even contributions (Fig. 29), their
h̄ω dependence is very similar for all parametrizations, which
is also reflected in the corresponding contributions to J (2)

presented in Fig. 31. As expected, the pairing energy is
smaller than in the A ≈ 190 region, because the SD bands
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parametrizations in the calculation of the ground state SD band of
152Dy.

in the A ≈ 150 region only occur at higher spin. The ratio
Eρ∇J (T 22)/Eρ∇J (T 44) is again approximately equal to the
ratio of the corresponding coupling constants. For the time-odd
terms (Fig. 30), the contributions of EsT and EsF terms that
appear for T44 cancel out the Ess term, which is much larger
without the inclusion of a tensor term.

The time-even and time-odd contributions to the J (2)

(Figs. 31 and 32), indicate that the ESk (time-even) is the largest
contribution at low h̄ω, amounting up to 96% of the total value
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FIG. 30. (Color online) Same as Fig. 29, but for the time-odd
terms in the Skyrme EDF.
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FIG. 31. (Color online) Dynamical moments of inertia of differ-
ent terms in the EDF as a function of the rotational frequency for
the SLy4, T22, and T44 parametrizations in the calculation of the
ground-state SD band of 152Dy.

for T22 and about 80% for T44. The pairing energy Epair is
the second-largest contribution, averaging about 70%, and is
mostly canceled out by Ecoul (about −40%) and the time-odd
ESk terms (about −25%). The Ekin + Ec.m. contribution is
negligible at low h̄ω. With increasing h̄ω, the Epair + ELN and
Ecoul contributions drop to 13% and 2%, respectively, while
the Ekin + Ec.m. contribution quickly grows to about 50%.
Whereas the time-odd ESk contribution stays more or less
constant with h̄ω, the time-even part of ESk reduces to about
70%. Hence, in contrast to 194Hg, the Skyrme EDF plays a
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FIG. 32. (Color online) Same as Fig. 31, but for the time-odd
terms in the Skyrme EDF.
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more important role in the decompositions of the total energy
and of the J (2). Even though changes to the time-even and
time-odd components of the Skyrme EDF no longer almost
cancel out, they still counteract each other.

Finally, the proton and neutron quasiparticle Routhians
for the SLy4, T22, and T44 parametrization are presented in
Figs. 33 and 34. Again, the low-lying quasiparticle Routhians
are very similar for all parametrizations and subtle differences
are observed in the alignment of the Routhians. The main
difference observed between the parametrizations is the
location and evolution of the neutron h 1/2+ state. When
going from SLy4 to T22 and further on to T44, the h 1/2+
quasiparticle state starts of at lower energy and the minimum
becomes more pronounced.
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FIG. 34. Same as Fig. 33, but for neutrons.
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V. DISCUSSION AND CONCLUSION

We have studied the impact of the introduction of tensor
terms in the Skyrme EDF on the dynamical moments of
inertia of SD bands. The excellent description of these bands
by conventional EDFs was a major success of microscopic
mean-field models in the 1990s. Therefore, it is important to
verify that the inclusion of a zero-range tensor force does not
destroy this agreement. In our study, special attention was paid
to the time-odd tensor terms in the Skyrme EDF, which are zero
when self-consistent time-reversal symmetry is not broken, as
is the case for the ground states of the spherical and deformed
nuclei that were studied in Articles I and II.

To disentangle their respective roles, we have tested a
selection of four TIJ parametrizations, introduced in Article I,
which represent a wide range of values for the isoscalar and
isovector tensor coupling constants. As a reference without
tensor terms, we have included the SLy4 parametrization. We
have found that the inclusion of tensor terms in the Skyrme
EDF does not change the overall behavior of the dynamical
moments of inertia, although differences in slope and location
of plateau do occur. This results from an intricate compensation
mechanism owing to the self-consistency that is implemented
at two different levels in our method: in the fitting procedure of
the interactions considered and in the solution of the mean-field
equations.

Even though the energy contribution of the time-even EJJ

tensor terms is in general an order of magnitude larger than that
of the time-odd EsT + EsF tensor terms, the time-odd tensor
terms evolve more rapidly as a function of rotational frequency
such that their contribution to J (2) is of the same order of
magnitude as the one of the time-even tensor terms. Similarly,
the Skyrme time-even and time-odd energy contributions ESk

typically differ by three orders of magnitude but have similar
contributions to J (2). In all cases encountered, the time-odd
ESk contributions to theJ (2) partially cancels out the time-even
ESk contribution.

A detailed study of the time-odd terms in the Skyrme EDF
has shown the following features:

(i) We have seen that the values of the coupling constants
of the time-odd tensor terms that contain derivatives
of spin densities (Es�s and E∇s∇s) have to be chosen
within strict limits to avoid finite-size instabilities. Such
instabilities were encountered for all TIJ parametriza-
tions considered. Therefore, we adopted the functional
point of view in our study and put their coupling
constant to zero. By contrast, these instabilities are not
encountered in spherical QRPA studies using the same
TIJ parametrizations [11–17], presumably because
of the nonvariational character of QRPA. A point
of special interest will be the analysis of finite-size
instabilities using the technique of Ref. [84,85] that is
currently under way.

(ii) The effect of modifications in the strength of the
pairing interactions can be clearly distinguished
from modifications of the time-odd terms in the
Skyrme EDF that are not restricted by symmetry
considerations.

(iii) The energy changes that are introduced through the
presence of the time-odd tensor terms EsT + EsF are
partially canceled out by the presence of the other time-
odd terms that contain the spin density st . Consequently
the time-odd ESk is almost entirely determined by the
Ejj contribution. Variations of the Cs

t coupling constant
indicate that only combinations of the EsT + EsF and
Ess terms with similar values of g0 and/or g′

0 act
independently.

When comparing the dynamical moments of inertia ob-
tained for an EDF including tensor terms to the experimental
ones, the agreement for T22 and T26 is as satisfactory as
for SLy4. The T62 parametrization that acts only between
neutrons and protons in spherical symmetry exhibits a pro-
nouncedly peaked behavior that does not compare well with the
experimental J (2). Finally, the results obtained with the T44
parametrization, which was one of the two parametrizations
leading to the best results for low-lying collective states in a
RPA calculation of 208Pb and 40Ca [17], are found to be in
good comparison with the experimental results.
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APPENDIX A: COUPLING CONSTANTS OF THE SKYRME
ENERGY DENSITY FUNCTIONAL IN THE ISOSPIN AND

THE PROTON-NEUTRON FORMULATION

In Table III, we provide the relation between the coupling
constants of the Skyrme EDF in the isospin formulation
[Eqs. (13a) and (13b)] and those appearing in the Skyrme
EDF in the proton-neutron formulation (21).

APPENDIX B: DENSITIES AND CURRENTS IN CR8

In this Appendix, we provide the expressions of the
densities and currents as they are implemented in our cranked
Hartree-Fock-Bogoliubov solver CR8. This extends the dis-
cussion of Ref. [27] by the densities and currents entering the
tensor terms.

The CR8 code uses a coordinate-space representation of the
wave functions and fields. The HFB equations are solved with
the so-called two-basis method, where in an iterative scheme
the HFB Hamiltonian (19) is diagonalized in a single-particle
basis that converges toward the eigenstates of the mean-field
Hamiltonian h [Eq. (20)]. The densities needed to construct the
local fields are calculated in the canonical single-particle basis,
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TABLE III. Coupling constants in the isospin formulation of the
EDF as a function of the coupling constants in the proton-neutron
formulation of the EDF in the format C = ∑

i aibi , where the factors
ai are given in the table.

b1 b2 b3 b4 b5 b6 b7 b8

C
ρ

0 1 1/2 0 0 0 0 ρα
0 ρα

0 /2
C

ρ

1 0 1/2 0 0 0 0 0 ρα
0 /2

Cτ
0 0 0 1 1/2 0 0 0 0

Cτ
1 0 0 0 1/2 0 0 0 0

C
�ρ

0 0 0 0 0 1 1/2 0 0
C

�ρ

1 0 0 0 0 0 1/2 0 0

b9 b9q b10 b11 b12 b13 b14 b15

C∇J
0 1 1/2 0 0 0 0 0 0

C∇J
1 0 1/2 0 0 0 0 0 0

Cs
0 0 0 1 1/2 ρα

0 ρα
0 /2 0 0

Cs
1 0 0 0 1/2 0 ρα

0 /2 0 0
CT

0 0 0 0 0 0 0 −1 −1/2
CT

1 0 0 0 0 0 0 0 −1/2

b16 b17 b18 b19 b20 b21

CF
0 −2 −1 0 0 0 0

CF
1 0 −1 0 0 0 0

C�s
0 0 0 1 1/2 0 0

C�s
1 0 0 0 1/2 0 0

C∇s
0 0 0 0 0 1 1/2

C∇s
1 0 0 0 0 0 1/2

which is obtained by diagonalization of the density matrix ρ.
For a detailed discussion of our method of solving the cranked
HFB equations, we refer to Refs. [65,69].

The CR8 code assumes triaxial symmetry of the nucleus,
where all single-particle wave functions have a plane reflection
symmetry about the x = 0, y = 0, and z = 0 planes. There
are several possible choices to achieve this [97]. The CR8
code chooses the single-particle wave functions �k(r, σ ) to be
eigenstates of

(i) parity,

P̂�k(r, σ ) = �k(−r, σ ) = pk�k(r, σ ), pk = ±1,

(B1)

(ii) z signature,

R̂z�k(r, σ ) = eiπĴz�k(r, σ ),

= iηk�(r, σ ), ηk = ±1, (B2)

(iii) y T simplex,

ŜT
y �k(r, σ ) = T̂ P̂ R̂y�k(r, σ ),

= �k(r, σ ), (B3)

where T̂ is the time-reversal operator.
A wave function is completely determined by four real

functions, �k,α (α = 1, . . . , 4), that correspond to the real
(Re) and imaginary (Im) parts of the spin-up and spin-down
components of �k . A different numbering of these four
components was adopted for wave functions of positive and

TABLE IV. Parities of the components �k,α of a wave function
�k of parity pk with respect to the x = 0, y = 0, and z = 0 planes.

α x y z

1 + + pk

2 − − pk

3 − + −pk

4 + − −pk

negative signature in Ref. [27]:⎛
⎜⎜⎜⎝

�k,1(r)

�k,2(r)

�k,3(r)

�k,4(r)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

Re�k(r,+)
Im�k(r,+)

Re�k(r,−)

Im�k(r,−)

⎞
⎟⎟⎠ for ηk = 1, (B4)

⎛
⎜⎝

�k,1(r)
�k,2(r)
�k,3(r)
�k,4(r)

⎞
⎟⎠ =

⎛
⎜⎝

Re�k(r,−)
Im�k(r,−)
Re�k(r,+)
Im�k(r,+)

⎞
⎟⎠ for ηk = −1. (B5)

This choice ensures that each of the four real functions �k,α

has the same definite reflection symmetry about the x, y, and
z planes, listed in Table IV independently of its signature.

In our code, the local densities and currents (2a)–(2f)
entering the Skyrme EDF are constructed in the canonical
basis. There, they can be expressed as

ρq(r) =
∑
k,σ

v2
k �

†
k(r, σ )�k(r, σ ), (B6a)

τq(r) =
∑
k,σ

v2
k [∇�k(r, σ )]† · ∇�k(r, σ ), (B6b)

Jq,μν(r) = − i

2

∑
k,σ,σ ′

v2
k {�†

k(r, σ )σν;σ,σ ′ [∇μ�k(r, σ ′)]

−[∇μ�k(r, σ )]†σν;σ,σ ′�k(r, σ ′)}, (B6c)

jq(r) = − i

2

∑
k,σ

v2
k {�†

k(r, σ )[∇�k(r, σ )]

−[∇�k(r, σ )]†�k(r, σ )}, (B6d)

sq(r) =
∑
k,σ,σ ′

v2
k�

†
k(r, σ )�k(r, σ ′)σ̂ σ,σ ′ , (B6e)

Tq(r) =
∑
k,σ,σ ′

v2
k [∇�k(r, σ )]† · [∇�k(r, σ ′)] σ̂ σ,σ ′ , (B6f)

Fq(r) = 1

2

∑
k,σ,σ ′

v2
k {[∇ · σ̂ σ,σ ′�k(r, σ )]†[∇�k(r, σ ′)]

+[∇�k(r, σ )]†[∇ · σ̂ σ,σ ′�k(r, σ ′)]}, (B6g)

where v2
k are the occupation probabilities and μ, ν = x, y, z.

Expressed in terms of the functions �k,α , the scalar local
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densities take the form

ρ(r) =
∑

k

v2
k

4∑
α=1

�2
k,α, (B7a)

τ (r) =
∑

k

v2
k

4∑
α=1

(∇�k,α)2, (B7b)

whereas the vector densities are given by

j(r) =
∑

k

v2
k (�k,1∇�k,2 − �k,2∇�k,1

+�k,3∇�k,4 − �k,4∇�k,3), (B8a)

sx(r) =
∑

k

2v2
k (�k,1�k,3 + �k,2�k,4), (B8b)

sy(r) =
∑

k

2v2
kη(�k,1�k,4 − �k,2�k,3), (B8c)

sz(r) =
∑

k

v2
kη
(
�2

k,1 + �2
k,2 − �2

k,3 − �2
k,4

)
, (B8d)

Tqx(r) =
∑

k

2v2
k {[∇�k,1] · [∇�k,3] + [∇�k,2] · [∇�k,4]},

(B8e)

Tqy(r) =
∑

k

2v2
kηk{[∇�k,1] · [∇�k,4] − [∇�k,2] · [∇�k,3]},

(B8f)

Tqz(r) =
∑

k

v2
kηk{[∇�k,1] · [∇�k,1] + [∇�k,2] · [∇�k,2]

− [∇�k,3] · [∇�k,3] − [∇�k,4] · [∇�k,4]}, (B8g)

Fq,μ(r) =
∑

k

v2
k {φk,1[∇μ�k,1] + φk,2[∇μ�k,2]

+φk,3[∇μ�k,3] + φk,4[∇μ�k,4]}, (B8h)

where we defined the spinor

∇ · σ̂�k =

⎛
⎜⎜⎝

φk,1

φk,2

φk,3

φk,4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

∇x�k,3 + η(∇y�k,4 + ∇z�k,1)

∇x�k,4 − η(∇y�k,3 − ∇z�k,2)

∇x�k,1 − η(∇y�k,2 + ∇z�k,3)

∇x�k,2 + η(∇y�k,1 − ∇z�k,4)

⎞
⎟⎟⎟⎠ .

(B9)

Finally, the spin-current tensor densities are

Jμx =
∑

k

v2
k {�k,1[∇μ�k,4] − �k,2[∇μ�k,3]

+�k,3[∇μ�k,2] − �k,4[∇μ�k,1]}, (B10a)

Jμy =
∑

k

v2
kηk{−�k,1[∇μ�k,3] − �k,2[∇μ�k,4]

+�k,3[∇μ�k,1] + �k,4[∇μ�k,2]}, (B10b)

Jμz =
∑

k

v2
kηk{�k,1[∇μ�k,2] − �k,2[∇μ�k,1]

−�k,3[∇μ�k,4] + �k,4[∇μ�k,3]}. (B10c)

TABLE V. Parities of the nucleon densities with respect to the
x = 0, y = 0, and z = 0 planes.

x y z

ρ, τ + + +
sx , Tx , Fx − + −
sy , Ty , Fy + − −
sz, Tz, Fz + + +
jx , Jxz, Jzx + − +
jy − + +
jz, Jxx , Jyy , Jzz − − −
Jxy , Jyx + + −
Jyz, Jzy − + +

for μ = x, y, z. The symmetries (B1)–(B3) of the single-
particle wave functions impose reflection symmetries on the
components of the local densities and currents, which are listed
in Table V.

APPENDIX C: THE LANDAU-MIGDAL INTERACTION

1. General considerations

Landau theory for normal Fermi liquids provides a frame-
work for the study of the long-wavelength response of a
many-body system [72,98]. In this framework, the residual
interaction is provided by the so-called Landau interaction. It
determines the response of the system but cannot be used to
calculate its ground state. Based on this, Migdal developed the
Landau-Migdal theory of finite Fermi systems and applied
it successfully to study collective modes in atomic nuclei
[98]. The residual Landau-Migdal interaction acts between
two particles with momenta q1 and q2 at the Fermi surface,
|q1| = |q2| = kF , and is given by

vres(q1, q2) = N0{F (q1, q2) + F ′(q1, q2)(τ 1 · τ 2)

+G(q1, q2)(σ 1 · σ 2) + G′(q1, q2)(σ 1 · σ 2)

× (τ 1 · τ 2) + q2

k2
F

[H (q1, q2)

+H ′(q1, q2)(τ 1 · τ 2)]S12(q̂)}. (C1)

The normalization factor is defined as the average level
density N0 ≡ 2kF m∗/h̄2π2 at at the Fermi momentum kF =
( 3

2π2ρ0)1/3, with m∗
0 being the isoscalar effective mass. The

tensor operator

S12(q̂) = 3(σ 1 · q̂)(σ 2 · q̂) − σ 1 · σ 2 (C2)

depends also on the angle between the direction q̂ = q/|q|
of the momentum transfer q = q1 − q2 and the direction of
the particles’ spins. Because the single-particle momenta are
restricted to the Fermi surface, the parameters F , F ′, G, G′,
H , H ′ depend only on the angle between q1 and q2 and can
be expanded into Legendre polynomials, that is,

F =
∑

�

f�P�(cos θ ), (C3)

and similar for the other parameters.
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2. The Landau parameters derived from the Skyrme
energy density functional

To establish the relationship between the Landau param-
eters in Eq. (C1) and the coupling constants of the Skyrme
EDF in symmetric nuclear matter, we follow the procedure
outlined in Refs. [71,84]. Starting from the Skyrme EDF,
the residual particle-hole interaction in coordinate space is
obtained as

〈r′
1σ

′
1τ

′
1, r′

2σ
′
2τ

′
2|Vph|r1σ1τ1, r2σ2τ2〉

= δ2ESk

δρ(r1σ1τ1, r′
1σ

′
1τ

′
1)δρ(r2σ2τ2, r′

2σ
′
2τ

′
2)

. (C4)

From this, the momentum-space matrix elements of the
residual Landau interaction (C1) are obtained through the
substitutions ∇1 = iq1, ∇2 = iq2, ∇′

1 = −iq1, and ∇′
2 =

−iq2 in the Landau limit where initial and final momenta
q1 and q2 are both on the Fermi surface. This results in
momentum-space matrix elements of the form

〈q1, q2|Vph|q1, q2〉 =
{

Wss(q1, q2) + Wsv(q1, q2)(τ 1 · τ 2)

+
∑
μ,ν

Wvs
μν(q1, q2)σμ

1 σ ν
2

+
∑
μ,ν

Wvv
μν (q1, q2)(τ 1 · τ 2)σμ

1 σ ν
2

}
,

(C5)

with

Wss(q1, q2) = 2C
ρ

0 [ρ0] + 4
∂C

ρ

0

∂ρ0
ρ0 + ∂2C

ρ

0

∂ρ2
0

ρ2
0

+Cτ
0 (q1 − q2)2, (C6)

Wvs(q1, q2) = 2C
ρ

1 [ρ0] + Cτ
1 (q1 − q2)2,

(C7)
Wvs

μν(q1, q2) = {
2Cs

0[ρ0] + CT
0 (q1 − q2)2

}
δμν

+CF
0 (q1 − q2)μ(q1 − q2)ν,

Wvv
μν (q1, q2) = {

2Cs
1[ρ0] + CT

1 (q1 − q2)2
}
δμν

+CF
1 (q1 − q2)μ(q1 − q2)ν . (C8)

The tensor operator S12(q̂) is easily recognized in Eq. (C5)
when we rewrite Wvs

μν and Wvv
μν

Wvs
μν(q1, q2) = {

2Cs
0[ρ0] + (

CT
0 + 1

3CF
0

)
(q1 − q2)2

}
δμν

+ 1
3CF

0 q2(3q̂μq̂ν − δμν), (C9)

Wvv
μν (q1, q2) = {

2Cs
1[ρ0] + (

CT
1 + 1

3CF
1

)
(q1 − q2)2

}
δμν

+ 1
3CF

1 q2(3q̂μq̂ν − δμν). (C10)

Because q1 and q2 are both on the Fermi surface, (q1 − q2)2

can be rewritten as 2kF (1 − cos θ ), with θ being the angle
between q1 and q2. A straightforward comparison between
(C1) and (C5) then finally gives us the relation between the
Landau parameters and the coupling constants in the Skyrme
EDF,

f0 = N0

{
2C

ρ

0 [ρ0] + 4
∂C

ρ

0

∂ρ0
ρ0 + ∂2C

ρ

0

∂ρ2
0

ρ2
0 + 2Cτ

0 k2
F

}
,

f1 = −2N0C
τ
0 k2

F ,

f ′
0 = N0

{
2C

ρ

1 [ρ0] + 2Cτ
1 k2

F

}
,

f ′
1 = −2N0C

τ
1 k2

F ,

g0 = 2N0

[
Cs

0 +
(

CT
0 + 1

3
CF

0

)
k2
F

]
,

(C11)

g′
0 = 2N0

[
Cs

1 +
(

CT
1 + 1

3
CF

1

)
k2
F

]
,

g1 = −2N0

(
CT

0 + 1

3
CF

0

)
k2
F ,

g′
1 = −2N0

(
CT

1 + 1

3
CF

1

)
k2
F ,

h0 = 1

3
N0C

F
0 k2

F ,

h′
0 = 1

3
N0C

F
1 k2

F .
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[70] S. O. Bäckman, A. D. Jackson, and J. Speth, Phys. Lett. B 56,

209 (1975).
[71] K.-F. Liu, H. Luo, Z. Ma, Q. Shen, and S. A. Moszkowski, Nucl.

Phys. A 534, 1 (1991).
[72] E. Olsson and C. J. Pethick, Phys. Rev. C 66, 065803 (2002).
[73] C. Rigollet, P. Bonche, H. Flocard, and P.-H. Heenen, Phys. Rev.

C 59, 3120 (1999).
[74] A. Chatillon et al., Eur. Phys. J. A 30, 397 (2006).
[75] A. Chatillon et al., Phys. Rev. Lett. 98, 132503 (2007).
[76] S. Ketelhut et al., Phys. Rev. Lett. 102, 212501 (2009).
[77] M. A. Riley et al., Nucl. Phys. A 512, 178 (1990).
[78] M. W. Drigert et al., Nucl. Phys. A 530, 452 (1991).
[79] H. Flocard, B. Chen, B. Gall, P. Bonche, J. Dobaczewski, P.-H.

Heenen, and M. Weiss, Nucl. Phys. A 557, 559 (1993).
[80] M. Girod, J. P. Delaroche, J. F. Berger, and J. Libert, Phys. Lett.

B 325, 1 (1994).
[81] P.-H. Heenen and R. V. F. Janssens, Phys. Rev. C 57, 159 (1998).
[82] J. Dudek, Prog. Part. Nucl. Phys. 28, 131 (1992).
[83] S. Frauendorf, Rev. Mod. Phys. 73, 463 (2001).
[84] T. Lesinski, K. Bennaceur, T. Duguet, and J. Meyer, Phys. Rev.

C 74, 044315 (2006).
[85] D. Davesne, M. Martini, K. Bennaceur, and J. Meyer, Phys. Rev.

C 80, 024314 (2009); 84, 059904(E) (2011).
[86] A. Pastore, K. Bennaceur, D. Davesne, and J. Meyer

(unpublished).
[87] H. Esbensen and G. F. Bertsch, Ann. Phys. (NY) 157, 255 (1984).
[88] A. Pastore, V. Hellemans, M. Bender, K. Bennaceur, D. Davesne,

T. Duguet, J. Meyer, and P.-H. Heenen (unpublished).
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