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Specific heat capacity in the low-density regime of asymmetric nuclear matter
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Thermal and isospin composition effects on the heat capacity of infinite nuclear matter are studied within the
binodal coexistence region of the nuclear phase diagram. Assuming the independent conservation of both proton
and neutron densities, a second-order phase transition is expected, leading to a discontinuous behavior of the
heat capacity. This discontinuity is analyzed for the full range of the thermodynamical variables consistent with
the equilibrium coexistence of phases. Two different effective models of the nuclear interaction are examined in
the mean-field approximation: the nonrelativistic Skyrme force and the covariant QHD formulation. We found
qualitative agreement between both descriptions. The discontinuity in the specific heat per particle is finite and
decreases with both the density of particles and the isospin asymmetry. As a byproduct, the latent heat for
isospin-symmetric matter is considered.
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I. INTRODUCTION

The in-medium nuclear interaction gives rise to a complex
thermodynamical phase diagram. Several phases are expected
to take place as temperature and density are varied, for instance
superfluid, superconducting, boson condensed, Bose-Einstein
condensed deuteron, and quark deconfined phases. Along
these thermodynamical changes some constraints must be
fulfilled, such as conservation of baryonic number, electric
charge, etc., which have severe consequences on the evolution
of the state of matter.

As a typical situation, we mention the liquid-gas phase
transition (LGPT), expected to occur in the low-density,
low-temperature regime of nuclear matter. It has been subject
of study for a long time, and it has received renewed attention
in recent years [1–5]. The theoretical treatment requires an
interesting combination of quantum statistical approaches with
models of the nuclear interaction. Comparison with empirical
results can be done in the field of ion collision experiments—
see for example Ref. [6]—as well as with observational data
concerning the thermal equilibration of proto-neutron stars
[7,9]. Different situations prevent a direct application of the
theoretical predictions; for instance, finite size effects are
significant in heavy-ion collisions. Furthermore, the very short
characteristic times of the reactions makes the applicability
of equilibrium thermodynamics dubious. On the other hand,
the possible frustration of the binodal transition and the
appearance of a nonhomogeneous phase near the surface layer
of neutron stars complicate the interpretation of the transport
properties of star matter.

It is clear that detailed calculations should take into account
a multitude of specific effects. However, with the purpose of
highlighting the basic features, some simplified calculations
are admissible and they serve as a useful reference for more
complex statements [5].
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The existence of more than one conserved charge is a feature
of the above-mentioned situations. A phase transition taking
place under such requirements has distinctive consequences,
such as the fact that the conserved charges do not distribute
uniformly among the coexisting phases [10]. Certainly, the
isospin fractionation observed in multifragmentation experi-
ences [11] could be the fingerprint of a LGPT occurring after
the collision.

A variety of models and approximations have been used
to describe the nuclear equation of state. The combination of
mean-field approaches with effective models, adjusted to re-
produce the nuclear phenomenology, offers the advantages of
simple calculations and reliable results. Among the most used
representations of the nuclear force, we mention the nonrela-
tivistic Skyrme model and the covariant formulation known
as quantum hadrodynamics (QHD). They have dissimilar
foundations—a density-dependent nucleon-nucleon potential
and a covariant exchange of mesons are respectively used—but
eventually both give rise to an energy density functional.
Within this formulation, they can be fairly compared.

The fact that nuclear systems could have more than
one conserved charge has noticeable consequences on the
evolution of thermodynamical instabilities. Indeed, there is
a change in the order of the transition, allowing a continuous
variation of the thermodynamic potentials. Discontinuities are
relegated to the first derivatives, corresponding, for instance,
to the compressibility and heat capacity of the system.

It is worthwhile to mention that the inclusion of other
effects, such as the Coulomb and surface-tension forces, could
change dramatically this description [8].

In the present work we intend to study the behavior of the
heat capacity of infinite nuclear matter within the coexistence
region. The heat capacity is of great significance in, for
instance, the evaluation of the rate of change of temperature
through the outer shell of young neutron stars [9]. It has also
been studied in relation to nuclear multifragmentation, where
it is considered to be an indicator of the LGPT [12,13]. A
statistical model of multinucleon clusters is frequently used
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for this purpose, focusing the calculations on the low-isospin
asymmetry regime. The upper limit for the temperature is
determined by a characteristic value, of the order T ∼ 10 MeV,
for which clusters start to dissolve.

In this work we explore a wide range of temperature,
particle-density, and isospin composition, which can be easily
combined in a mean-field calculation. We examine two effec-
tive models of the nuclear interaction: the Skyrme potential
and the QHD relativistic formulation.

This article is organized as follows. The general features of
the models are presented in the next section, and the results
are shown and discussed in Sec. III. A final summary is given
in Sec. IV.

II. THE NUCLEAR LIQUID-GAS PHASE TRANSITION IN
DIFFERENT MODELS

In order to check the generality of the results found, two
phenomenological models of the nuclear force have been used.
The first is the well known Skyrme model, where medium
effects are included through density-dependent parameters for

the nucleon-nucleon potential. As an alternative formulation,
we choose the QHD model. Here the interaction is mediated
by meson fields, which are evaluated in a self-consistent way.

In both cases the isospin composition can be easily handled.
It can be parameterized by the asymmetry fraction w = (n2 −
n1)/n, with n1 and n2 standing for the particle number density
of protons and neutrons respectively, and n = n1 + n2 is the
total nucleon density.

We assume both proton and neutron numbers are conserved
independently. Hence, different chemical potentials μa can be
assigned to each isospin component. The statistical distribu-
tion function can be written fa(T , p) = {1 + exp β[εa(p) −
μa]}−1, where the particle energy spectrum εa(p) is provided
by the proposed model.

Throughout this article we use units such that c = 1, h̄ = 1,
and kB = 1.

A. The Skyrme model

The Skyrme model is a well known effective formulation of
the nuclear interaction [14]. It consists of a basic Hamiltonian
with contact potentials and density-dependent coefficients,

vSky(r1, r2) = t0(1 + x0 Pσ )δ(r1 − r2) + 1

2
t1(1 + x1 Pσ )[

←
q

2
δ(r1 − r2)+ →

q
2

δ(r1 − r2)]

+ t2(1 + x2 Pσ )
←
q ·δ(r1 − r2)

→
q +1

6
t3(1 + x3 Pσ )δ(r1 − r2)ργ [(r1 + r2)/2]

+ iW0(σ1 + σ2)· ←
q ×δ(r1 − r2)

→
q,

where σk represent the Pauli matrices for spin, Pσ = (1 + σ1 ·
σ2)/2 is the spin exchange operator, and q = −i(∇1 − ∇2)/2
is the relative momentum operator. Several parametrizations
have been given, according to the applications planned. They
cover cases from exotic nuclei to stellar matter.

By taking the Hartree-Fock expectation value from this
force, an energy density functional is obtained, which for
infinite homogeneous nuclear matter is given by

ESkm = δs

∑
j

Kj

2m∗
j

+ 1

16
(a0 + a2w

2) n2. (1)

The factor δs = 2 takes account of the spin degeneracy, and the
kinetic density of particles with isospin j (j = 1,2 for protons
and neutrons, respectively) is given by

Kj = 1

(2π )3

∫
d3p p2fj (T , p). (2)

Here, fj (T , p) is the Fermi occupation number for the isospin
component j at temperature T . The effective nucleon mass m∗

j

for this state is given by

1

m∗
j

= 1

m
+ 1

4
n (b0 − b2wIj ), (3)

where m represents the in-vacuum degenerate nucleon mass
and Ij = (−1)1+j .

The density-dependent coefficients a0, a2 and b0, b2 can be
expressed in terms of the standard parameters of the Skyrme
model:

a0 = 6t0 + t3n
γ , b0 = [3t1 + t2(5 + 4x2)]/2,

a2 = −2t0(1 + 2x0) − t3(1 + 2x3)nγ /3, b2 = [t2(1 + 2x2)

− t1(1 + 2x1)]/2.

Within a Landau-Fermi liquid scheme, the particle spec-
tra can be obtained by the functional derivatives εas(p) =
δESkm/δfas(T , p). In such a way, the following result is
obtained [15]:

εj (p) = p2

2m∗
j

+ 1

8
vj + 	ε,

vj = (a0 − a2wIj ) n + δs

∑
k

(b0 + Ij Ikb2)Kk,

	ε = [3n2 − (1 + 2x3)n2w2]σ t3n
σ−1/48.

The set of self-consistent equations is completed with
the relation between the conserved particle numbers and the
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corresponding chemical potentials:

nj = δs

(2π )3

∫
d3p fj (T , p). (4)

B. QHD model

This is a model of the covariant field theory, proposed to
deal with in-medium nuclear properties [16]. The interaction
is mediated by isoscalar mesons σ and ωμ; the first one can be
considered as a resonant state. In the present case the isovector
mesons φ and ρμ are also included, as well as polynomial terms
in the σ field.

The lagrangian density is

L = �̄ (i �∂ − M + gs σ + gc τ · φ − gw �ω − grτ · �ρ) �

+ 1

2

(
∂μσ∂μσ − m2

s σ
2
) − A

3
σ 3 − B

4
σ 4

+ 1

2

(
∂μφ · ∂μφ − m2

cφ
2
) − 1

4
FμνFμν

+1

2
m2

wω2 − 1

4
Rμν · Rμν + 1

2
m2

r ρ
2,

where �(x) is the isospin multiplet nucleon field, Fμν =
∂μων − ∂νωμ, Rμν = ∂μρν − ∂νρμ, and gs, gc, gw, gr , A,

and B are coupling constants. The nonlinear self-interaction
of the σ meson is necessary to obtain an adequate behavior for
the incompressibility around the saturation density.

Within a mean-field approximation, the equations of motion
are

(i �∂ − M + gsσ + gcτ3φ − gwγ0ω − grγ0τ3ρ)� = 0, (5)

m2
s σ + Aσ 2 + Bσ 3 = gs

∑
j

nsj , m2
wω = gw

∑
j

nj ,

m2
cφ = gc

∑
j

Ij nsj , m2
r ρ = gr

∑
j

Ij nj .

As in the previous section, the density of particles
with isospin projection j is represented by nj = 〈�̄j γ0�j 〉,
whereas nsj = 〈�̄j�j 〉 was used for the scalar density. They
can be explicitly written as

nj = δs

∫
d3p

(2π )3
fj (p, T ), nsj = δs

∫
d3p

(2π )3
fj (p, T )

mj

Epj

,

where mj = m − gs σ − gcIjφ is the in-medium effective
mass and Epj =√

p2 + m2
j . Due to the assumed isotropy, only

the zero component of the vector fields survives. Furthermore
as there are no decaying channels between nucleons, only the
third component of the isovectors contributes. The statistical
distribution function fj (p, T ) depends on the quasiparticle
energies εj = Epj + gwω + grIjρ.

The energy density can be obtained by first evaluating the
energy-momentum tensor and then taking mean values. In such
a way, we obtain

E = δs

∑
j

∫
d3p

(2π )3
εj (p)fj (p) + 1

2
m2

s σ
2

+ 1

2
m2

cφ
2 + 1

2
m2

wω2 + 1

2
m2

r ρ
2 + A

3
σ 3 + B

4
σ 4.

C. The low-density nuclear phase transition

The entropy density for a system in thermodynamical
equilibrium is given by

S = −δs

∑
j

∫
d3p

(2π )3
[fj ln fj + (1 − fj ) ln(1 − fj )].

It can be used, together with the corresponding energy density
E , to evaluate the free energy density F = E − T S and the
pressure P = ∑

j μj nj − F of the system.
A homogeneous system at temperature T and isospin com-

position n1, n2 remains thermodynamically stable if the free
energy per unit volume F is lower than any linear combination
of energies corresponding to independent thermodynamical
states, say a and b, satisfying the conservation laws [10], i.e.,

F(T , n1, n2) < λF
(
T , n

(a)
1 , n

(a)
2

) + (1 − λ)F
(
T , n

(b)
1 , n

(b)
2

)
.

(6)

Otherwise, the system becomes unstable and a change of
phase is feasible. In such a case, two states can coexist if they
verify the thermodynamical equilibrium conditions

P
(
T , n

(a)
1 , n

(a)
2

) = P
(
T , n

(b)
1 , n

(b)
2

)
, (7)

μ
(a)
1 = μ

(b)
1 , μ

(a)
2 = μ

(b)
2 . (8)

Within the coexistence region, the total density of particles is
a combination of contributions coming from each phase,

nk = λ n
(a)
k + (1 − λ) n

(b)
k , 0 < λ < 1, k = 1, 2, (9)

where the λ parameter stands for the partial volume fraction
of the phase a. As a consequence, if the system has global
densities n1, n2, within the binodal region it could be composed
of phases with densities differing considerably from the global
values.

Any extensive thermodynamical quantity can be evaluated
in a similar way: for instance the free energy can be written [10]
F(T , n1, n2) = λF(T , n

(a)
1 , n

(a)
2 ) + (1 − λ)F(T , n

(b)
1 , n

(b)
2 ).

In practice, we proceed as follows. For a given temperature
T , we fix the pressure P0 within a reasonable range. We explore
this isobar and find a set of values (n(a)

1 , n
(a)
2 ) and (n(b)

1 , n
(b)
2 )

that fulfill Eq. (8). For these pairs of states we find all the
solutions (n1, n2, λ) consistent with the requirement of Eq. (9).
Exploring the range of temperatures and pressures for which
there exist solutions of Eqs. (7)–(9), we obtain the binodal
region immersed in a three-dimensional space, say (T , P,w).

An interesting situation occurs for certain values of the
variables (T , P,w), for which the parameter λ does not exhaust
the full range [0, 1]. In such situations λ = 0 at low density,
then it grows with the density, reaches a maximum value, and
then comes back to zero. This phenomenon is known as the
retrograde transition [10], because the system starts and ends
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at the same phase but in between develops a germ of the other
phase.

Within these prescriptions the thermodynamical potentials
remain continuous throughout the phase transition. Disconti-
nuities are relegated to their derivatives. Of special meaning
are the heat capacity, compressibility, and thermal expansion
coefficient. All of them are evaluated at constant particle
number; for instance the heat capacity at constant volume is
defined as cv = (∂S/∂T )N1,N2,V .

Within the binodal this derivative must be evaluated
carefully, since the total number of protons is distributed
between the two coexisting phases. Furthermore, the parameter
λ of Eq. (9) also has a temperature dependence that is
not explicitly written. Taking these facts into account, and
using Ea = E(T , n

(a)
1 , n

(a)
2 ) and Eb = E(T , n

(b)
1 , n

(b)
2 ), the heat

capacity per unit volume in the binodal can be written

cv(T , n1, n2) = λ

(
∂Ea

∂T

)
n1,n2

+ (1 − λ)

(
∂Eb

∂T

)
n1,n2

+ (Ea − Eb)

(
∂λ

∂T

)
n1,n2

, (10)

(
∂Ec

∂T

)
n1,n2

= Rc +
(

∂Ec

∂T

)
n

(c)
1 ,n

(c)
2

, (11)

Rc =
∑
k=1,2

(
∂Ec

∂n
(c)
k

)
T ,n

(c)
j

(
∂n

(c)
k

∂T

)
n1,n2

, j �= k.

(12)

The last term in Eq. (11) can be recognized as the heat capacity
for a homogeneous system composed of only one phase c(c)

v =
cv(T , n

(c)
1 , n

(c)
2 ). Therefore, Eq. (10) can be summarized as

cv(T , n1, n2) = λc(a)
v + (1 − λ)c(b)

v + 	cv, (13)

	cv = λRa + (1 − λ)Rb + (Ea − Eb)

(
∂λ

∂T

)
n1,n2

.

(14)

When the system approaches the binodal boundary from
inside, λ → 0 or λ → 1. For instance, cv(T , n1, n2) →
c(a)
v + Ra + (Ea − Eb)(∂λ/∂T )n1,n2 when λ → 1. Approach-

ing the same point, but from outside the binodal, yields
cv(T , n1, n2) → c(a)

v . Hence we have a discontinuity Ra +
(Ea − Eb)(∂λ/∂T )n1,n2 , where the first term contains several
derivatives evaluated at the binodal boundary, while the second
contribution is proportional to the energy difference between
the coexisting phases. Expressions for the several derivatives
appearing in Eqs. (10)–(12), can be found in the Appendix.

III. RESULTS AND DISCUSSION

In this section we show and discuss the results obtained
for the binodal region and its thermodynamical properties as
described by the selected models of the nuclear interaction.
In particular we analyze the specific heat at constant volume
throughout the phase transition, and in the case of symmetric

nuclear matter we consider the definition of a latent heat and
evaluate its temperature dependence.

For the Skyrme model the SLy4 parametrization is used, for
which t0 = −2488.91 MeV fm3, t1 = 486.82 MeV fm5, t2 =
−546.39 MeV fm5, t3 = 13777 MeV fm7/2, x0 = 0.834, x1 =
−0.344, x2 = −1, x3 = 1.354, and γ = 1/6 [17].

For the QHD model with isovector mesons the parametriza-
tion given by Ref. [18] is used, for which (gs/ms)2 =
10.33 fm2, (gw/mw)2 = 5.42 fm2, (gc/mc)2 = 2.5 fm2,
(gr/mr )2 = 3.15 fm2, A/g3

s = 0.033 fm−1, and B/g4
s =

−0.0048.
The saturation density, binding energy, incompressibility,

and symmetry energy obtained are n0 = 0.159 fm−3, EB =
−15.97 MeV, K = 229.9 MeV, and ES = 32 MeV in the
Skyrme model, and n0 = 0.16 fm−3, EB = −16 MeV, K =
240 MeV, and ES = 30.5 MeV for the QHD model. Another
significative quantity is the in-medium nucleon mass m∗
at the saturation density: the values m∗/m = 0.694, and
m∗/m = 0.75 are obtained for the Skyrme and QHD models,
respectively.

First the binodal region is constructed for both models.
Some results corresponding to the temperatures T = 5 and
10 MeV are shown in Fig. 1, in a plot of pressure versus proton
abundance y = (1 − w)/2. It can be seen that for the Skyrme
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FIG. 1. Isothermal sections of the binodal corresponding to T =
5 MeV (a) and T = 10 MeV (b), for the selected models. The line
convention specified in (a) is used for both cases.
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FIG. 2. The pressure as a function of the global density of
particles corresponding to T = 10 MeV and several isospin asym-
metries w, for the Skyrme (a) and QHD (b) models. Continuous
lines correspond to physical states in thermodynamical equilibrium,
dashed lines represent predictions of the models without the Gibbs
construction.

interaction that the coexistence of phases extends up to larger
pressures. The range of temperatures is, instead, smaller. The
critical temperatures are 14.5 and 15.9 MeV for Skyrme and
QHD, respectively. It is worthwhile to mention that for high
isospin asymmetries w (low y) the transition is of retrograde
character. This situation can be appreciated more clearly in a
plot of the pressure as a function of the global particle density,
and several isospin asymmetries, as shown for T = 10 MeV
in Fig. 2. Continuous lines correspond to the physical results,
whereas dashed lines represent nonequilibrium states prior
to the Gibbs construction. For high neutron excess (w =
0.6) the retrograde transition differs only slightly from the
noncorrected pressure. In this circumstance, the mechanical
stability condition (∂P/∂n > 0) is verified, but some of the
matter diffusion conditions, ∂μ1/∂n > 0 and ∂μ2/∂n < 0,
are not fulfilled. Furthermore, from the same figure it can
be appreciated that, within the nonequilibrium region of
highly asymmetric matter, the Skyrme model presents higher
incompressibility than the QHD case. This is a consequence
of the fast increase of the pressure while keeping almost
unchanged densities, chemical potentials, and especially the
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0.0

0.5
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  [
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(b)
w = 0.9

w = 0.6

w = 0.2

n / n0

FIG. 3. The free energy density as a function of the global
density of particles corresponding to T = 5 MeV and several isospin
asymmetries w, for the Skyrme (a) and QHD (b) models. Continuous
lines correspond to physical states in thermodynamical equilibrium,
dashed lines represent predictions of the models without the Gibbs
construction.

derivatives of the chemical potentials. Hence, larger pressures
are obtained in the former case within the range of densities that
does not satisfy the equilibrium conditions. This fact explains
why the binodal region extends up to larger pressures in the
Skyrme model than in the QHD calculations, as shown in
Fig. 1.

The effects of the Gibbs construction on the free energy
are shown in Fig. 3. In order to ease the comparison, the rest-
mass contribution has been removed from the QHD results. It
can be corroborated that the coexistence of phases effectively
minimizes the free energy, and changes its convexity also.
For the temperature shown, T = 5 MeV, there is a retrograde
transition for w = 0.9.

As a special case we consider matter to be globally
isosymmetric; in such a case it behaves as a one-component
system [10]. Along the phase separation the coexisting states
have w = 0, and the pressure remains almost constant. In
this sense the LGPT resembles a first-order transition. This
circumstance can be appreciated in Fig. 4, where the density
dependence of the pressure in the Skyrme model is shown for
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P
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  f
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-3
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n / n0

FIG. 4. The pressure for isospin symmetric nuclear matter as a
function of the global density of particles, for a set of temperatures
ranging from T = 0 to the critical temperature Tc = 14.5 MeV within
the Skyrme model. The dashed line represent the boundary of the
binodal.

several temperatures. The dashed line encloses the coexistence
area. As was pointed out, there is no discontinuity in the
thermodynamical potentials, and this is particularly true
for the entropy. The difference T [S(T , n(a)) − S(T , n(b))]
represents the heat transferred as the LGPT is accomplished
isothermically. It is interesting to compare this quantity with
the latent heat corresponding to a first-order phase transition.
It must be noted that some calculations find a first-order LGPT
in the nuclear medium, even for two-components system. See
for instance Ref. [13], where particle correlations beyond the
mean-field approximation are included. Therefore the thermal
dependence of this variation could be used to characterize the
order of the change of phases.

In a recent paper [3] the latent heat for the LGPT in sym-
metric nuclear matter was studied for several parametrizations
of the Skyrme model. In order to compare results, we consider
the quantity

L = T (S(T , n(a))/n(a) − S(T , n(b))/n(b)) (15)

along an isothermal within the binodal, which coincides with
the definition of the specific latent heat for a first-order
transition. For a given temperature, the coexisting states
with nucleon densities n(a) and n(b) are determined by the
conditions of equal chemical potentials and pressures, so that
L depends only on the temperature. In Fig. 5 the results
obtained for the SLy4 parametrization and nonlinear QHD
model are shown. The behavior is similar in both cases, with
maximum values Lmax = 29.7 and 30.8 MeV for Skyrme and
QHD forces, respectively. The value L = 0 is reached at the
critical temperature. We corroborate some of the conclusions
presented in Ref. [3]: (a) when T → 0, L approaches to
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0
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24

28

32

  Skyrme
  QHD

L 
[M

eV
]

T  [MeV]

FIG. 5. The thermal dependence of L [see Eq. (15)], correspond-
ing to the LGPT for symmetric nuclear matter, as given by the selected
models.

the binding energy at the saturation density; (b) for low
temperatures L grows almost linearly; and (c) greater Lmax

corresponds to larger critical temperature.
Now we consider the specific-heat capacity at constant

volume, evaluated according to Eqs. (10)–(12). First we
examine the results for the Skyrme model, as shown in Fig. 6,
where the density dependence of the heat capacity is displayed
for several isospin asymmetries. Dashed lines represent the
results obtained without the Gibbs construction. There are
discontinuities at the thresholds of the binodal, as discussed at
the end of Sec. II C. For a given temperature, the discontinuity
decreases with the asymmetry w, as expected from the fact
that pure neutron matter does not exhibit instabilities of the
LGPT type. Within the binodal, cv is a decreasing function of
the density, in contrast to its behavior outside. Comparing the
upper and lower panels of this figure, a general increment of
around 60% is observed in the specific heat at T = 10 MeV
compared to the T = 5 MeV outcome. For all the curves
shown, there are jumps toward greater values of cv as the
system reaches the pure liquid state. The only exception
occurs for the greater value of w shown in each figure, for
which a retrograde transition takes place. A comparison with
the results obtained using the QHD model can be made by
examining Fig. 7. There is a general agreement with the
previous description, with slightly greater values of cv in the
QHD case. In particular, for T = 10 MeV and w = 0.6, the
curve for cv does not show an appreciable discontinuity at
the higher transition density n = 0.47 n0 because it is at the
limit in the isospin asymmetry variable, separating full and
retrograde evolution.

The thermal dependence of Cv is shown in Fig. 8 for some
selected values of the global density and asymmetry. For this
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FIG. 6. The heat capacity per unit volume in terms of the global
density of particles for several asymmetries w, corresponding to
T = 5 MeV (a) and T = 10 MeV (b), within the Skyrme model.
Continuous lines correspond to physical states in thermodynamical
equilibrium, dashed lines represent predictions of the model without
the Gibbs construction.

purpose we have chosen the Skyrme model, because the QHD
results do not differ qualitatively. The heat capacity per particle
exhibits an evident discontinuity of a few units at the threshold
of the binodal. An increasing behavior is obtained for the full
range of temperatures examined. As expected, this quantity
approaches zero as the temperatures vanishes, according to
the Nernst principle [19]. On the other hand, for high enough
temperatures, the specific heat asymptotically approaches the
noninteracting limit 3kB/2. The degree of convergence to
this limit depends essentially on the global density n, with
a negligible influence of the isospin asymmetry. The transition
temperature is both a decreasing function of w (for fixed n)
and n (for fixed w).

It can be observed that the magnitude of the discontinuity
diminishes with both n and w. For the lowest density shown,
n/n0 = 0.2, the greatest jump corresponds to the lower
isospin asymmetry w = 0.2 at T 
 14 MeV, and for the
neutron-rich state w = 0.8 the discontinuity at T 
 10.5 MeV
decreases by 60%.

The results shown in Fig. 8(a) can be contrasted with
Fig. 6 of Ref. [13]. The comparison must be done cautiously
since the latter used a canonical description for a high (but
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FIG. 7. The heat capacity per unit volume in terms of the global
density of particles for several asymmetries w, corresponding to T =
5 MeV (a) and T = 10 MeV (b), within the QHD model. Continuous
lines correspond to physical states in thermodynamical equilibrium,
dashed lines represent predictions of the model without the Gibbs
construction.

finite) number of particles in an inhomogeneous probe of
nucleons. For A = 1000 the heat capacity increases slightly
with temperature, up to a characteristic temperature T 

10 MeV, where it reaches a peaked maximum. For higher T the
heat capacity remains almost constant. The difference 	Cv/N

between the maximum and the plateau varies within the range
5–25, decreasing with the asymmetry w. In contrast, we obtain
a high rate of growth before reaching the critical temperature,
which is of the same order T 
 10 MeV. Furthermore, the drop
from the peak to the plateau is less than 4. In our calculations
the precise location of the temperature corresponding to the
maximum decreases with w, in opposition to the behavior
shown in Ref. [13].

IV. CONCLUSIONS

In this work we have examined the behavior of the
heat capacity of infinite homogeneous nuclear matter in the
region of low particle density and low temperature, taking
the isospin composition as a relevant parameter. For this
purpose we have selected two different descriptions of the
nuclear interaction. Both the nonrelativistic Skyrme potential
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FIG. 8. The heat capacity per particle, within the Skyrme model,
in terms of the temperature for n/n0 = 0.2 and several isospin
asymmetries w (a), and for fixed asymmetry w = 0.2 and several
global densities (b).

and the field theoretical QHD model have been extensively
used in the literature with remarkable success. Although
these effective models have very different foundations, they
describe appropriately the nuclear matter phenomenology for
subsaturation densities.

We have examined the region of thermodynamical instabil-
ity, where nuclear matter separates spontaneously into different
phases. As we consider conservation of both neutron n2 and
proton n1 densities, we found a three-dimensional region of the
coexistence of phases. As a consequence, the thermodynamical
potentials are continuous, leading to a second-order phase
transition. Under these conditions, the heat capacity at constant
volume has been particularly analyzed. As a first approxi-
mation we neglected the electromagnetic interaction, which
could have significant influence on the thermodynamical
fluctuations, leading to a change of phase; see for example
Ref. [8]. The description obtained corresponds to a region of
the phase space wider than in previous calculations, where
more complex states of matter were considered [12,13].

The Gibbs construction allows conservation of the global
densities of each isospin component through the coexistence
of two phases with local densities differing appreciably
from the global values n1 and n2. The relative abundance
of each of these two phases can be represented through a
parameter 0 < λ < 1. The energy of the system is expressed
as a linear combination of the energy of each phase, with
coefficients λ and 1 − λ. The evaluation of the heat capacity
requires some care, since its definition prescribes derivatives
at constant global densities, which does not imply fixed local
densities. The temperature dependence of λ must also be
considered.

We have found qualitative agreement between the predic-
tions of both models. Only small differences can be found, for
instance in the extension of the binodal region, the critical
temperature, and the maximum value of the specific-heat
capacity.

As expected in a second-order phase transition, the heat
capacity exhibits a discontinuity at the boundary of the binodal.
A detailed characterization of this discontinuity has been
presented in terms of the thermodynamical variables for the
full range of the coexistence of phases. For a fixed temperature
we found a discontinuity at very low density and another one
at a relatively greater value, corresponding to the transitions
to pure gas and pure liquid, respectively. As the isospin
asymmetry is increased, the full transition is replaced by
a retrograde one. The high-density discontinuity in cv has
opposite behavior for each of these situations. For instance,
in the retrograde evolution, cv decreases suddenly when the
matter leaves the coexistence region towards the pure liquid
phase.

The thermal variation of the specific heat, at fixed density
or isospin asymmetry, also shows a sharp but finite jump at a
characteristic value. The location of this critical temperature
decreases with both n and w. The magnitude of the discontinu-
ity in the heat capacity per particle is less than 4, diminishing
for increasing density and asymmetry.

As a special situation, we examined the change of phase
for symmetric nuclear matter, which develops at very low
pressures. In such a case we examined the entropy variation
between the final states of an isothermal process within the
binodal, and we have compared it with the latent heat L,
defined for a first-order phase transition. As a function of
temperature, L(T ) has a maximum value and vanishes for the
critical temperature. We have found small differences between
Skyrme and QHD predictions, and a general agreement with
recently published results [3].
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APPENDIX

The derivatives appearing in Eqs. (10) and (11) are obtained
as solutions of a set of algebraic linear equations. We start by
taking derivatives of Eqs. (9), keeping constants n1 and n2, for
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k = 1, 2. After rearranging terms we obtain

0 = (
n

(a)
1 − n

(b)
1

) [
λ

∂n
(a)
2

∂T
+ (1 − λ)

∂n
(b)
2

∂T

]

+ (
n

(a)
2 − n

(b)
2

) [
λ

∂n
(a)
1

∂T
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∂n
(b)
1

∂T

]
, (A1)

∂λ

∂T
=

[
λ

∂n
(a)
1

∂T
+ (1 − λ)

∂n
(b)
1

∂T

] /(
n

(a)
1 − n

(b)
1

)
. (A2)

In the next step, derivatives of Eqs. (8) are taken, giving(
∂μ

(a)
j

∂T

)
n

(a)
1, n

(a)
2

+
∑
k=1,2

(
∂μ
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∂n
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(
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(b)
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+
∑
k=1,2

(
∂μ

(b)
j

∂n
(b)
k

)
n

(b)
l , T

∂n
(b)
k

∂T
, (A3)

where j = 1, 2 and l �= k. When there is no explicit
statement, partial derivatives with respect to T are evalu-
ated while holding the global densities n1 and n2 fixed.

Writing P (T , n1, n2) = ∑
b μb nb − F(T , n1, n2) be-

fore taking the derivative of Eq. (7) leads to

∑
j=1, 2

(
n

(a)
j − n

(b)
j

) ⎡
⎣

(
∂μ

(a)
j
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)
n

(a)
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(
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(a)
k

)
n

(a)
l , T
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(a)
k

∂T

⎤
⎦ = Sb − Sa (A4)

with Sc = S(T , n
(c)
1 , n

(c)
2 ).

Equations (A1)–(A4) constitute a set of five equations in the unknowns ∂n
(c)
j /∂T , j = 1, 2, c = a, b, and ∂λ/∂T . Some of

the coefficients are model dependent; for instance in the Skyrme model we have(
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∑
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where the effective mass mk and potential vk have been given in Sec. II A, and
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Similar calculations have been carried out within the QHD model, but in this case further complications arise because the
interaction is mediated by the meson fields.
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